降着率変動による原始惑星系円盤の 酸素同位体・化学組成進化

北海道大学大学院理学研究科地球惑星科学専攻修士2年

。研究背景

- 惑星系形成論
- 残された課題
- ・化学的・物質的な形成論へ

。円盤の酸素同位体・化学組成進化

- 最低限隕石学
- 円盤組成変化の機構
- 酸素同位体組成の進化
- 酸化還元状態の進化

研究背景

in the state of the section of the

When the second for any of the second of the

惑星系形成論の略歴

- 。1970年頃
 - Safronovの著書
- 。1980年代
 - 標準モデル(京大・林グループ他)
 - 原始惑星系円盤発見
- 。1995年頃
 - ・太陽系外に惑星発見
- 。2005年
 - ・系外惑星の直接観測に成功

惑星系形成の標準モデル

。太陽系の諸性質を再現

- 地球・木星・海王星型
 各タイプの形成
- 惑星の配置
- 問題点もあったけど...
 - ダスト落下問題
 - 微惑星形成問題
 - 海王星形成問題

時間切れ...

。地球の全岩組成, その形成過程は? 。惑星原物質(隕石) の組成、その形成 過程は?

化学的・物質的な形成論へ

- 太陽系物質から読み取れる様々な情報を元に,それを 統一的に説明できる円盤進化モデルを構築したい
 - 。アプローチの方法
 - 化学的性質
 - 同位体的性質
 - 鉱物学的性質
 - ・ダスト成長過程

降着率変動による原始惑星系円盤の 酸素同位体・化学組成進化

1. 最低限隕石学

an ender the transmithe house at most a - Adver

The A Tor was 'S men

The The Tan Adven

エコンドライト

コンドライト

エコンドライト

コンドライト

始源的隕石コンドライト

- 。構成成分
 - 。マトリックス
 - 細粒シリケイト
 - 金属鉄・硫化鉄
 - 。 コンドリュール
 - 直径数 mm の球粒
 - 組成はシリケイト
 - 。 高温鉱物 (後述)

http://web.eps.utk.edu/Faculty/mcsween/ displayimages/chondrite.htm

- 非質量依存分別(傾き 1)
 CAI (Ca Al rich Inclusion)
 ¹⁶O rich
 - 。 コンドリュール

• 17, 18**O** - rich

¹⁶O-rich 及び poor な 2 種類
 の reservoir が存在したこと
 を示唆

。 コンドライトタイプ 毎に Mg : Si は同じ

- ・ 円盤内縁から Si を 還流させるとうまく
 ・
 説明できる
 ・
- Si が最終的な残渣に
 なるためには, 還元
 的環境が必要

これらの特徴が示すこと

初期太陽系は時間的 (and / or)
 空間的に, 化学組成・同位体組
 成が不均質
 原始惑星系円盤の組成を変える
 プロセスは ?

2. 円盤組成変化の機構

the second s

the second to a second to me the second of the second with the second with the second of the second

ダスト・ガスの降着速度差

- ダストはガス抵抗を
 受け,ガスよりも速く
 動径移動 (< m サイズ)
- *V_{dust}* /*V_{gas}* は降着率が
 小さくなるほど増加

ダスト成分の濃集

- ダストの構成成分は
 周囲の温度が自身の
 融点を超えたところ
 で蒸発
- 。 ダスト・ガスの動径 速度差によりダスト 蒸気が濃集
- 濃度は,速度差無しの
 場合(=分子雲組成)
 で規格化

気相中の移流拡散

 $\frac{\partial c_i}{\partial t} + v_r \frac{\partial c_i}{\partial r} - \frac{1}{\Sigma r} \frac{\partial}{\partial r} \left(\Sigma r D \frac{\partial c_i}{\partial r} \right) = \frac{S_i}{\Sigma}$ $c_i : i \, \text{成分の濃度} \quad S_i : i \, \text{成分の蒸発による湧出}$ $r : \text{中心星からの動径距離} \quad v_r : \text{ガスの動径移動速度}$ $\sum : \text{円盤の面密度} \quad D : \text{拡散係数}$

右辺の湧出項は、平衡状態のときに c_i が
 v_{dust} / v_{gas} に等しくなるように決める

モデルの設定

• 面密度, 温度分布: 林モデル $T^{H} \simeq 2.8 \times 10^{2} \left(\frac{r}{1 \text{AU}}\right)^{-1/2}$ (K) $\Sigma_{g}^{H} = 1.7 \times 10^{3} \left(\frac{r}{1 \text{AU}}\right)^{-3/2}$ (g cm⁻²)

・ 円盤降着率,ダストサイズ:パラメータ

・ 降着率は時間とともに減衰

3. 酸素同位体組成の進化

- stand

Proline.

ar support of monor and the set of the set

分子雲における非質量依存分別

- 分子雲の C¹⁶O, C^{17, 18}O の不均質
 紫外線による前期解離反応
 - C¹⁶O ... 存在度大,反応は分子雲表層のみ
 - C^{17, 18}O...存在度小,中心部でも反応
- 。分子雲コア(中心部,星形成領域)
 - CO (gas) ... ¹⁶O-rich ($\delta^{17, 18}O_{MC} \sim -80 \%$)
 - O原子 … ¹⁶O-poor (δ^{17, 18}O_{MC} ~ +120 ‰)
 → H₂O ice に取り込まれる

¹⁶O-rich な CAI と ¹⁶O poor なコンドリュール
 の差:約 50 ‰

水蒸気が数倍の濃集す
 れば説明可能

 円盤降着率 10⁻⁸~10⁻⁹

 太陽質量 / 年, ダストサ

 イズ a few mm で可能

4. 酸化還元状態の進化

acousty by the states of a - Advert

The state to the state of the

各 carrier への C, O の 配分

	Silicate	Ice (H2O)	Gas (CO)	Organic material
0	1	3.5	1.5	~ 0
δ ^{17,18} O (‰)	0	+25 ~ +170	-60 ~ -400	
C	0	0	1.5	1.5

本計算では,有機物は0.3 AUで蒸発
 シリケイトの蒸発は考えない

定常的状態では...

。ダスト成分の濃集 は起きるが, C/O 比 が 1 を超えること はない

降着率が急激に減少した場合

。移流拡散のタイム スケールは, (inner disk 質量) / (accretion rate) 。ここでは、4×106年 。 円盤最内縁部に, 一 時的に還元的環境 が形成

まとめ

始源的隕石に見られる酸素同位体・ 酸化還元的な特徴を,同一のプロセス により統一的に説明できる(かも)

。降着速度差によるダスト蒸気の濃集 及びその移流拡散が重要