原始太陽系における水と有機物の挙動 一物質科学的惑星系起源論へ向けて一

Introduction ◎ 隕石学ミニマム ◎ 原始太陽系における水と有機物の挙動 ◎ 修士論文へ向けて ● ライバルの動向

PLANISPHAR Sige VNIVERSI TO EN HYPO COPERNI

FLANG

COPERNICANVM

CANA IN PENHIBITYM

THEST

REAT

1. Introduction

image from "http://www.wisegorilla.com/images/solarsystem/solarsystem.html"

惑星系形成の標準モデル ⁶ Hayashi, C. et al. (1985) 他 Snow Line が1980年代に構築. Sun Gas & Dust ● 各種惑星の形成, その配置 などが説明可能. Gas ●問題もあるけれど Dust (Ice) Dust (Rock ●星雲モデルの妥当性 Gas Accretion ● ダスト落下問題 ◎ 微惑星形成問題 Gas Giant Ice Giant Rocky ◎ "異形の惑星" 問題 ・ 大体わかった気になってる

物質科学的問題

◎ 地球の組成とその起源 ◎ コンドライトと PUM の 組成の相違 ●"地球型"隕石が存在する (した)か? ●他の地球型惑星は? るコンドライトの起源 ●各グループの成因は? ◎構成物質の成因は?

2. 隕石学ミニマム

image from "http://mail.dominikanerinnen.at/gaeste/goldi/vmoe/boerse2.html"

THE ASLAND

隕石の分類

 成因的分類
 未分化な隕石
 ニコンドライト
 分化した隕石
 ニエコンドライト, 石鉄隕石, 隕鉄
 分類の根拠

分類の根拠
 組織的な特徴
 太陽組成との類似

コンドライトの構成物質

るコンドリュール [●]mm サイズの球粒 ●ケイ酸塩鉱物,ガラス ◎ 難揮発性包有物 I cm ~ 10 μ m サイズ ^る Al-Ca 酸化物, シリケイト るマトリックス [●] μ m サイズの微細結晶 ● プレソーラー粒子を含む

http://www.star-bits.com/CV3.htm

コンドリュール

◎ 球粒の由来 ● 無重力下での融解・再固化 ◎前駆物質はマトリックス ●形成機構 ●組織から冷却時間に制限 ◎ 形成年代 ^SCAIより数 Myr 若い [▲] CAI-bearing chondrule の発見 ◎ 酸素同位体組成 。CAIに比べ16O-poor

http://www.zeiss.com/

http://rst.gsfc.nasa.gov/Sect19/ Sect19_2.html

Ca-Al-rich2nclusion

●最も高温で凝縮する物質 ▲太陽系最古の固体物質 s fine grain (< 50 μ m) …気相からの凝縮 \leq coarse grain (>50 μ m) ... 蒸発残渣 chondrule-bearing CAI ◎ 酸素同位体組成 [●]地球等に比べ¹⁶O-rich [●] coarse grain は複雑

コンドライトの分類

Fe_met/Si

グループ	サブグループ	名前の由来	
	CI	Ivuna, ~ C1	
C (Carbonace ous)	СМ	Mighei, ~C2	
	СО	Ornans	
	CV	Vigarano	
O (Ordinary)	H	Hi-Fe	
	L	Low-Fe	
	<u>L</u>	Low-Fe, Low-metal	
E	EH	Hi-Fe Low-Fe	
(Enstatite)	EĹ		

 Fe の総量の違い
 シリケイトとの分別過程 の存在を示唆

• Fe_ • Fe_ • Fe_ • Fe_	met/Si (H) met/Si (L) met/Si (LL) met/Si (EH)	 Fe_me Fe_me Fe_me Fe_me 	et/Si (EL) et/Si (Cl) et/Si (CM) et/Si (CO)	 Fe_met/ Fe_met/ Fe_met 	Si (CV) Si (CR) (CH)		
1.2							
1							
0.8							
0.6	•	•••					
0.4	•						
0.2		•	•				
0 0	0.2	0.4	0.6	0.8			
	(Fe_ox+Fe_sul)/Si						

(倉本さん作成)

Si/Al-Mg/Al2比, 酸素同位体組成

Larimar & Wasson (1988)

CAI 形成

シリケイト

CAI 付加少

3. 原始太陽系における 水と有機物の挙動

CAI 付加多

有機物+

シリケイト

X-wind による CAI の還流

CAI 付加少

Evolution of Protoplanetary Disk

- Dynamical evolution Disk structure Accretion rate → recently available (e.g., Calvet et al. 2000) Compositional evolution Chemical composition?
 - Isotopic composition?

Hints from Chondrites: Oxygen Isotopic Composition

- Mass-independent fractionation
 - ³ ¹⁶O-rich ... CAI
 - ⁸ ¹⁶O-poor ... Chondrule
- Implying existence of ¹⁶O-rich & -poor reservoirs
- Chronology suggests that oxygen isotopic composition changed during several Myr

Hints from Chondrites: Redox State

- Systematic variations in Si/Mg ratio and redox state
 - More reduced type has higher Si/Mg ratio
 - Heterogeneous addition of SiC and reprocessing possibly produce these variations.
- Formation of SiC requires high C/O ratio (>0.95) relative to original one (0.5).

Early Studies

Cuzzi & Zahnle (2004)

pointed out that preferential migration of dust particles would enhance vaporized component at inner disk.

Surimoto & Kuramoto (2004)

modeled oxygen isotopic evolution of disk by using same process, but they assumed steady evolution of disk and time scale of the evolution was not fully discussed.

Nakano et al. (2003)

suggested that C-bearing vapor (hydrocarbons) from organic materials controlled C/O ratio of disk, but they did not consider the effect of advective diffusion in accretion disk.

In This Study...

We have performed a numerical calculation for advective diffusion in accretion disk, considering preferential migration of dust particles evaporation of H₂O ice and organic materials rapid decay of gas accretion To clarify compositional evolution of disk & its time scale.

Preferential Migration of Dust

Dust particles radially migrate faster than gas due to gas drag.

 v_{dust} / v_{gas} increases with decay of disk accretion.

For mm sized particle :

In the second state of the second state of

Advective Diffusion Equation

$$\frac{\partial c_i}{\partial t} + v_r \frac{\partial c_i}{\partial r} - \frac{1}{\Sigma r} \frac{\partial}{\partial r} \left(\Sigma r D \frac{\partial c_i}{\partial r} \right) = \frac{S_i}{\Sigma}$$

 c_i : Concentration of species i S_i : Source for species ir: Distance from disk center v_r : Migration velocity of gas \sum : Surface density of disk D: Diffusion coefficient

We can rewrite as...

$$v_r = \frac{\dot{M}}{2\pi r\Sigma}, \quad \nu = -\frac{2rv_r}{3}, \quad D = \nu$$

 ν : Turbulent viscosity

Distribution of O&C for Each Carrier

	Silicate	Ice (H ₂ O)	Organic material	Gas (CO)
Ο	1	3.5	~ 0	1.5
δ ^{17,18} OMC (‰)	0	+100	-	-230
С	0	0	1.5	1.5

Assuming that half of C is partitioned into CO gas and another half into organic materials.

 δ $\delta^{17,18}$ O_{MC} means deviation from isotopic composition of molecular cloud.

Disk Model & Parameters

Results

Evaporation of organic materials

Evaporation of H_2O ice

Radial distance (AU)

Evolution of Oxygen Isotopic Composition

 $t_{\rm res}$

Compositional evolution time is scaled by residence time t_{res} ~ 4 Myr;

> inner disk mass mass accretion rate

This value is consistent with evolution time suggested by chronology (several Myr).

Locational heterogeneity also exists.

Evolution of C/O ratio

In case that time scale of accretion decay is sufficiently shorter than t_{res}, a reduced environment would be formed at innermost region of disk.

*t*_{res} ~ 4 Myr is longer than the lifetime of CTTS, so this is a presumable assumption.

At 0.05 AU where X-wind arises, SiC formation would last for 1 Myr.

A Possible Scenario of Material Formation

1. at high accretion rate ... oxidized ¹⁶O-rich disk, CAI formation at the disk center 2. soon after accretion decays ... reduced disk center, SiC formation 3. at low accretion rate ... oxidized ¹⁶O-poor disk, continuous chondrule formation event, reprocess with added SiC Large addition of SiC ... reduced chondrule Small addition of SiC ... oxidized chondrule

A Possible Scenario of Material Formation

4. 修士論文へ向けて

image from "http://www.ep.sci.hokudai.ac.jp/~chihiro/

円盤モデルの精密化

日盤温度の進化 まずは解析的モデルで ダストサイズ分布と合わせて 円盤面密度の進化 ダストは枯渇するか?

ダストの付着成長過程

● 島沢コードの活用 ●サイズ分布の考慮が可能 ●ダスト-ガス分別への影響 [●] z 方向の分別は? ● 有機物の付着限界速度大 水との濃集度に差? ●円盤構造への影響 ◎ 温度分布 etc.

同位体交換速度の見積り

るコンドリュール ⁸ ¹⁶O-poor ³元々は¹⁶O-rich (YK04) ³ 融解時間:1~100 hour ◎形成環境への制約 ● ダストディスクの厚さ ●他の見積りとの比較

Tennessee North Carolin5. とも 強敵の動向

GREAT SMORY MOUNTAINS

F.2.2 iesla23 λ

●ダスト-ガス分別過程 ● 我々と同じ ◎ 有機物は考えない [●] H₂Oの欠乏で還元的環境 ●計算コード ● 色々解いているらしい ◎ 付着成長過程 ● ダストの動径移動

