巨大地震前に起こる TEC 変化:標準曲線の導 出とそれが示唆する物理過程

Ionospheric TEC changes immediately before large earthquakes: Derivation of the standard curve and discussion on the physical mechanisms

北海道大学 理学部 地球惑星科学科

宇宙測地学研究室4年

高坂宥輝

Yuki Takasaka

指導教員名 日置幸介

2019年1月31日

概要

地震の前兆現象は捉えることができない。現在でも多くの科学者がそう考えているので はないだろうか。2011 年東北沖地震を契機に地震の前兆が地球の超高層大気である電離圏 の電子数の変化として現れることが見いだされた(Heki, 2011)。原因となる物理過程に関 しては未解明な部分も多いが、観測事実は確かであり、本格的な断層滑りが始まる前に地 震の最終的なサイズがある程度決まっていることも示唆されている。

現在地震前における電離圏電子数の変化の原因はどのように考えられているのか。仮説 として以下のような考えがある。地震の前に応力の高まりとともに地殻を構成する各部分 に微小な割目や食い違いができる。その過程で過酸化架橋と呼ばれる格子欠陥が切断さ れ、電子の空隙(正に帯電しているので正孔と呼ばれる)が残り、それを補うために電子 が次々に移動するとともに正孔は逆向きに移動する。この過程が隣接する岩石粒を通して 繰り返され、正孔は互いの反発によって拡散し地表に蓄積する。蓄積した正孔は大気中に 電場を生じさせる。この電場は地震の起こる断層が大きいと超高層大気に達する。この電 場が地球磁場と相互作用(ExBドリフト)して電離圏の電子が移動する。この仮説は He and Heki(2018)が推定した 2015 年チリ地震直前の電離圏電子密度の3次元構造からも支 持される結果となっている。

本研究では上で紹介したような物理過程の解明に向けて、GNSS(Global Navigation Satellite System)衛星から発せられる周波数の異なる2種類のマイクロ波の位相データを 使用し、電離圏の全電子数(Total Electron content、TEC)を求めることにより、地震直 前から地震直後までの電離圏全電子数の変化を、地震の前兆が認められた18の地震につ いて解析した。そして、それらのデータを使用し地震前TECの変化の標準曲線を導出し た。その標準曲線を用いて、原因となる物理過程を先行研究や地震のスケーリング則と照 らし合わせて考察した。

先ほど紹介した物理過程から考えると、地震が起こる瞬間には地震の前兆現象としての TECの変化は停止すると予想される。地震時には応力が解放され、新たな食い違いや割れ 目の発生が起こらず、正孔の地表での蓄積も頭打ちになると考えられるからである。また 地震前 TEC 異常は地域性を持つ可能性がある。陸域の割合が少ない、つまり海域の割合 が大きい地域で起こった地震では、電気伝導度の高い海水の影響で電荷が地表に蓄積しに くく、TEC 異常の成長も早期に定常状態になると推測されるからである。逆に陸域での地 震では電荷の拡散が小さく地震まで継続して TEC 異常も成長を続けると考えられる。導 出した標準曲線から、地震時から音波擾乱が生じる地震約十分後までの間は、TEC はほぼ 一定で推移していることが示唆された。しかし TEC 標準曲線と各々の地震における TEC 変化曲線との比較から、一見違うように見える各地震の地震前 TEC 上昇曲線の形の差異 は少なく、地域性に関してはそれほど顕著ではないことが示唆された。

目次

1.	Intr	roduction····· 1
1	.1	東北沖太平洋沖地震直前の電離圏 TEC 擾乱
1	2	東北、スマトラ、マウレ地震直前の電離圏 TEC 擾乱
2.	観測	則・ 解析方法
2	2.1	GNSS4
2	2.2	GPS····· 5
2	2.3	GNSS-TEC 法による解析 5
2	2.4	GNSS-TEC 法による TEC の算出
3.	先行	テ研究
3	8.1	Mwと地震前 TEC 変化の規模・変化開始時間の関係 8
3	8.2	AIC を利用した地震前 TEC 異常の検出
3	3.3	地震前 TEC 変化の物理的メカニズムの仮説
3	8.4	2015年チリ地震直前の電離圏電子数密度の3次元トモグラフィー12
4.	結果	是
4	.1	18 個の地震についての VTEC データ
	4.1	.1 VTEC 変化
	4.1	.2 VTEC とレファレンス曲線の残差
	4.1	.3 VTEC とレファレンス曲線の相対残差
4	.2	標準曲線
	4.2	2.1 標準曲線(VTEC 残差)
	4.2	2.2 標準曲線(VTEC 相対残差)
	4.2	2.3 標準曲線と VTEC 残差の比較
5.	考察	案······24
6.	謝話	\div ····································
7.	参考	考文献······26
8.	付錄	录 ·····27

1. Introduction

地球の高度 80 km から 1000 km 程度の高層大気では、太陽光に含まれる紫外線などにより大気分子の一部が電離したプラズマとして存在している。この領域を電離圏(電離層) と呼ぶ。

電離圏の電子数は、太陽光をはじめとする様々な物理的パラメーターにより季節変化・ 日変化する。さらに太陽活動など様々な要因により突発的な電離圏擾乱が起こることがわ かっている。その変化する電子数は GPS(全地球測位システム Global Positioning System)をはじめとする GNSS(全地球航法衛星システム Global Navigation Satellite System)衛星からの電波を地上で観測し解析することによって TEC として求めることが できる。この手法に関しては2章で詳しく述べる。電離圏電子密度は高度 300km あたり で最も高い値を示し、衛星と地上局を結ぶ視線が、その高度に仮定した薄い層と交わる点 (IPP, Ionospheric Piercing Point)を地上に投影した点を SIP(Sub-Ionospheric Point)と 呼ぶ。これによって衛星が電離圏のどのあたりの電子数を観測しているかを表すことが多 い。

本章 1.1 では、2011 年に起きた東北地方太平洋沖地震(東北沖地震)の直前に観測された TEC 擾乱を 2 つの衛星からみた事例を紹介する。続いて 1.2 では東北沖地震に加え2004 年のスマトラ・アンダマン地震、2010 年のチリ・マウレ地震の解析結果を示し、同様の異常が複数の巨大地震の直前に確認されたこと紹介する。

1.1 東北沖太平洋沖地震直前の電離圏 TEC 擾乱

ここではGNSS衛星からの搬送波を利用するGNSS-TEC法(詳細は2.1章)を用いて解析した東北沖地震直前のTEC変化を示す。国土地理院

(https://terras.gis.go.jp/sso_guide.php)から取得した GNSS データを用いて解析した TEC の地震前後の変化と SIP の軌跡を示す。ここでは衛星の仰角の変化に伴って生じる変 化を取り除くために鉛直方向の TEC (VTEC; Vertical TEC)に換算したものを示してい る。

図1に示した GPS15 番衛星と26 番衛星は地震時にそれぞれ日本列島上空と太平洋沖の 上空に位置しており、地震の40分前ほどに、TEC がそれまでのなめらかな変化曲線から 正にずれ始めたことが分かる。また、複数衛星が同様な結果を示すことから地震前 TEC 変化はある程度の空間的な広がりを持つことが分かる。

図1の右図は図上で示された局と衛星の組み合わせにおける SIP の軌跡である。地震の 10-15 分後に起こっている急激な TEC の乱れは地震による地殻上下変動で励起された音波 による擾乱である。

図2ではすべての GEONET (GNSS Earth Observation Network System) 点から

GPS15 番衛星を見て求めた、2011 年東北沖地震直前の VTEC 異常(Heki, 2011)を表している。時間が地震発生に近づくにつれて、断層上空付近で正の VTEC 異常が起こっていたことがわかる。

図1:2011 年東北沖地震の前後の VTEC 変化(左図)、実線が実際に観測された VTEC、点線は地震前 後の TEC 擾乱が起こっていない部分を用いて多項式近似で求めたレファレンス曲線である。0221 局から GPS26 番衛星を見たものと、3009 局から GPS15 番衛星を見たものを示す。UT 5:46 における縦線は地 震が起こった時間を表している。右図は左図に対応するそれぞれの局と衛星のペアにおける SIP の軌跡を 示す。黄色の☆印が震源で、緑の□印と数字はそれぞれの観測局を、赤い☆印が地震時の SIP の位置、青 い☆印が TEC の増加が始まった時間の SIP、黒い○印が毎時 0 分の SIP の位置を表す。

図 2: すべての GEONET 点から 15 番衛星を見て求めた、2011 年東北沖地震時直前の VTEC 異常。観測 された VTEC から地震前後一時間を除いた部分に当てはめた多項式モデルからの差を異常と定義した。 赤い色が正の異常を示す。左から地震の(a)1時間前(b)20分前(c)1分前をしめす(Heki, 2011)。

1.2 東北、スマトラ、マウレ地震直前の電離圏 TEC 擾乱

次にカリフォルニア大 San Diego 校にある GNSS のデータセンター (ftp garner.ucsd.edu) を始めとする様々なデータセンターから取得した GNSS データを使い、 2010 年のチリ・マウレ地震(M_w8.8)、2004 年のスマトラ・アンダマン地震 (M_w9.2)、 2011 年の東北沖地震(M_w9.0)の前後の VTEC の変化を同じスケールで比較したものを示 す。TEC 擾乱を比較しやすくするためにそれぞれの地震が起こった時間をゼロとして表示 してある。実際に起こった時間 (現地時間)はチリ地震が 3:34、スマトラ地震が 7:58、東 北沖地震が 14:46 である。

電離圏には太陽放射によって大気分子からはじかれた自由電子が漂う。これによって電 子数は昼間側に多くなる。東北沖地震に比べ、深夜に発生したチリ地震の VTEC が小さい のはこのためである。またスマトラ・アンダマン地震では、最初は小さかった VTEC の値 が、太陽が昇るにつれて上昇してゆく様子がわかる。

図3:3つのM9クラスの巨大地震前後のVTEC変化。図上にはそれぞれの地震の発生年、マグニチュード、4文字の観測局、カッコ内に2桁の衛星番号(GPS)が示してある。実線がVTEC変化、点線がレファレンス曲線である。

2. 観測·解析方法

ここでは、TECを観測する際に使用される GNSS、特にアメリカの GNSS であり、最 も早い時期から実用化されていた GPS を引き合いに出し、その概要について説明する。 2.2 章では本論文での解析において TEC がどのようにして GNSS の観測生データ標準形式 から取り出されるのか記述する。

2.1 GNSS

GNSSとは、地球をまわる複数の人工衛星から送信される電波を利用して、それぞれ受 信点間での電波受信の時間差を観測・解析することで、測位・航法・測量を行うシステム である。GNSS にはアメリカ合衆国が運営する GPS、ロシアの GLONASS (GLObal'naya NAvigatsionnaya Sputnikovaya Sistema)、中国の北斗 (BeiDou) や EU の Galileo があ り、地域限定のシステム(RNSS)としてインドの NAVIC (Navigation Indian Constellation)、日本の QZSS (Quasi-Zenith Satellite System)がある。GPS、GLONASS は元来軍事目的の測位システムとして整備されてきた経緯があり、軍事分野からのニーズ を中心として利活用が進められてきたが、現在は軍事以外の様々な分野で利活用されてい る。Galileo は民生利用を主体とする衛星測位システムとして、北斗は中国が自国の安全保 障の観点から GPS に依存しない測位システム構築のため整備された。2018 年 4 月の内閣 府の資料ではそれぞれの GNSS 衛星の数は下図のような状況である。

国	測位衛星システム	信号精度	運用状況
米国	GPS	5~10m	31 機
ロシア	GLONASS	10~25m	24 機
欧州	Galileo	15~20m	14 機
中国	BeiDou	10~15m	15 機
インド	NAVIC	~20m	7 機
日本	QZSS	5~10m	4機

2020 年には Galileo と BeiDou は 30 機体制を予定しており、これからも増えていくと 思われる。

2.2 GPS

GPS とは、アメリカによって運用される GNSS である。

航空機・船舶等の利用では、4個以上の GPS 衛星からの距離を同時に測量することによっ て自分の位置等を決定する。GPS 衛星からの 距離は、GPS 衛星から発信された電波が受信 機に到達した時間から求めることができる。 衛星から発信される電波には衛星の軌道情 報、セシウム・ルビジウム原子時計の正確な 時刻情報が含まれる。

GPS 衛星からは L1・L2 の 2 つの周波数の 搬送波に軌道や時間等の情報を載せ、衛星ご とに固有のコードで変調して送っている。こ れにより衛星からの信号を識別している。 L1・L2 の周波数は以下の通りである。

L1:1575.42 MHz

L2:1227.60 MHz

GPS衛星のイメージ 図 4:GPS 衛星のイメージ(国土地理院のページより)

2.3 GNSS-TEC 法による解析

前の節で示した GNSS 衛星から発せられる電波は、大気の屈折率の不均一などの影響に より受信局への到達時間にずれが生じる。電離圏においては、電子がマイクロ波の伝搬を 遅延(電離圏遅延)させる。この電離圏によるマイクロ波の遅延は遅延要因のなかで影響 が最も大きいものの一つである。ただし、この電離圏での遅延は地殻変動を観測するよう な精度の高い受信機での観測の場合は完全に補正される場合がほとんどである。理由とし て、マイクロ波は電離圏の電子数に比例して、位相速度を速め、群速度を遅らせる性質が ある。この速度変化は電子数だけでなく、周波数の二乗に反比例するという依存性を持 つ。そのため2つの周波数を観測して遅延を比較すれば、電離圏での遅延は簡単に補正す ることができる。そしてこれを逆に利用することによって、衛星視線(LOS, Line Of Sight)に沿った電離圏の電子数(TEC)を算出しようというのが、GNSS-TEC 法であ る。LOS に沿った TEC をとくに STEC(Slant TEC)、STEC を鉛直方向の TEC に直した ものを VTEC という。TEC の単位には TECU(TEC Unit=10¹⁶electron/m²)がよく用い られる。また便宜的に電離層の電子数が高い高度に薄い層を仮定し、その層と LOS が交 わる点を IPP、その地表への投影点を SIP という。ここでは日置幸介、菅原守、大関優、 岡崎郁也による「GPS-TEC 法による地球物理学」(測地学会誌 2010)を大いに参考にして記述した。

図 5: GNSS 衛星と受信機、LOS、IPP、SIP、STEC、VTECの模式図

GPS 受信機では $L_1 \cdot L_2$ の 2 周波を同時受信することにより、周波数の 2 乗に逆比例する電離圏遅延を除去している。その時に用いられる $L_1 \ge L_2$ の線形結合(ここでは $L_3 \ge 3$ 記する)はそれぞれの搬送波周波数を $f_1, f_2 \ge 5$ ると、

$$L_3 = f_1^2 / (f_1^2 - f_2^2) L_1 - f_2^2 / (f_1^2 - f_2^2) L_2 \cdot \cdot \cdot (1)$$

で表される。この線形結合には電離圏遅延が含まれないため、Ionosphere-free linear combination と呼ばれる。ここで L₁・L₂ は、観測された位相に波長をかけて長さ(m)の 単位にしている。一方 L₁ と L₂の単純な差(ここでは L₄ と表記する)は、電離圏の情報の みを含んでおり、中性大気遅延や衛星位置、局位置などの情報は差をとった時点で除かれ ている。

$$L_4 = L_1 - L_2 \cdot (2)$$

この線形結合は電離圏遅延以外の幾何学的な情報を含まないため、Geometry-free linear combination とも呼ばれる。L₄は衛星視線に沿って積分した電子の数に比例するため、電 離圏そのものの研究に広く用いられてきたが、本研究のような固体地球の現象に関わる電 離圏擾乱の研究にも使用されている。

2.4 GNSS-TEC 法の算出及び解析

本節では、TEC がどのようにして GNSS の観測生データ標準型式(Receiver Independent Exchange Format; RINEX 型式)から取り出されるか記述する。

本論文で取得した RINEX データには様々な衛星で得られた $L_1 \ge L_2$ の位相が含まれている。位相にそれぞれの波長をかけて単位をラジアンから長さに変換する。光速を c とすると波長は $c/f_1, c/f_2$ で表され、 L_4 は以下のようになる。

$$L_{4} = L_{1} - L_{2}$$
$$= -\frac{c}{f_{1}}L_{1c} - \left(-\frac{c}{f_{2}}L_{2c}\right) + N \cdot \cdot \cdot \cdot \cdot (3)$$

 $L_{1c} \ge L_{2c}$ はそれぞれ L_1 、 L_2 の位相、N は位相データの整数値の不確定性である。 L_4 に次のようなファクターをかけて、視線方向の電子数を積分した STEC に換算する。

$$\Delta \text{STEC} = \left(\frac{1}{40.308}\right) f_1^2 f_2^2 / (f_1^2 - f_2^2) \Delta L_4 \cdot \cdot \cdot \cdot \cdot (4)$$

位相データには一般的に整数値の不確定性があるため、実際には L₄の絶対値には意味はな く、衛星の観測開始から終了までの時間変化にのみ意味がある。上の式で ΔL_4 および $\Delta STEC$ となっているのはそのためである。RINEX ファイルに二周波のコード情報が含まれている 場合は、それらの差に L₄を合わせることによって整数値不確定性を除去することができ る。さらにそこから、受信機の周波数間バイアスと衛星の周波数間バイアスを除去すれば 正しい STEC が得られる。衛星のバイアスは GIM(全球電離圏図)ファイルに、受信機 バイアスは GIM ファイルにある場合とない場合があり、ない場合は Minimum Scalloping 法(Rideout & Coster, 2006)を使って独自に決定する。

また STEC に視線の電離圏の入射角をかけることで VTEC に換算できる。STEC は仰角 の変化に伴う見かけの変化を含むが、VTEC の変化は実際の電子数の増減を示す。そのた め本研究では VTEC での議論を行った。STEC から VTEC への換算は、薄い層で近似し た電離圏への視線の入射角をζとして以下の式で表される。

$$VTEC(t) = [STEC(t, \zeta) - bias] cos \zeta \cdot \cdot \cdot \cdot \cdot (5)$$

(5)式で bias となっているのは上で説明した衛星や受信機内部における L₁と L₂の経路差に

起因する周波数間バイアスである。

3 先行研究

ここまで地震前 TEC 変化の観測例とその解析手法の説明を行った。本章では本研究にお ける結果の考察の助けとなる地震前 TEC 変化に関する先行研究の紹介を行い、地震前 TEC 変化の特徴やこれまでに解明されている事実について詳しく整理する。

はじめに 3.1 節で M_wと地震前 TEC 変化の規模・変化開始時間の関係(Heki & Enomoto, 2015; He & Heki,2017; 日置, 2018)を、次に 3.2 節で AIC(赤池情報量規準; Akaike's Information Criterion)を利用した地震前 TEC 異常の検出(Heki & Enomoto, 2015)、また 3.3 節では現在考えられている地震前 TEC 変化の物理的メカニズムを、3.4 節では地震前 TEC 変化のメカニズムを 2015 年チリ地震直前の電離圏電子密度の 3 次元ト モグラフィー(He & Heki, 2018)の結果と関連づけて説明する。

3.1 Mwと地震前 TEC 変化の規模・変化開始時間の関係

2011 年東北沖地震の直前に起こった TEC 変化(Heki, 2011)と同様の変化は、その後の GNSS データが利用可能な他の地震の解析の結果、地震による実際のエネルギー解放量を 反映するモーメントマグニチュード(M_w)が 8.2 以上ならほぼ毎回起こることが確認され た。図 6a はそれらの地震の代表的な局と衛星の組み合わせで観測された TEC 変化 (レフ ァレンス曲線からのずれ)を比較したものである。また M_w の大きな地震ほど、大きな TEC 変化が広い範囲に早く生じるという依存性が明らかになってきた。図 6b は様々な地 震について先行時間と地震発生時における異常の大きさを M_w と比較したものである。図 6a と図 6b は、これらの内容が報告されている Heki & Enomoto (2015)、He & Heki (2017)、日置(2018)などの文献を参考に再現した図である。

図 6b は、プレート間地震とプレート内地震の直前の TEC 変化の、先行時間と地震時の 異常の大きさ(background VTEC に対する割合で示した相対的な大きさ)を M_wと比較 したものである。M_wと先行時間および異常の大きさとの相関がわかる(Heki, 2018)。 ここで、断層運動による仕事(断層面積 x すべり量 x 剛性率)の量を表す地震モーメント M₀と、モーメント・マグニチュード M_wの関係を表した式

$M_W = (log_{10}M_o - 9.1)/1.5$

と地震のスケーリング測からこの結果について考察すると、図 6b の TEC 変化の先行時間 は地震が起こる断層の長さに、TEC 変化の地震時の異常の大きさは断層の面積に比例して いることが推測される。図 6 では、先行時間がおおむね Mo^{1/3}に、また異常の大きさがお おむね $M_0^{2/3}$ に比例していることが示されている。一般に地震の M_w が1上がるとエネル ギーが 30 倍になるというときのエネルギーは M_0 に相当する。断層の長さ、幅、すべり量 が比例すると考えると、 M_w が1変わると断層の長さや幅、すべり量は約3倍になること を意味する。また断層の面積は M_w が1変わると約 10 倍になる。つまり前者の量は $M_0^{1/3}$ に比例、後者の量は $M_0^{2/3}$ に比例することになる。言い換えると先行時間は断層の長さに 比例し、異常の大きさは断層の面積に比例するともいえる。

図6: Mwが7.3から9.2におよぶ18の事例において、地震前TEC 擾乱をレファレンス曲線(地震の影響を受けている部分を除いて近似した多項式)からの差として示したもの(a)と、それらの例における先行時間(丸印)と地震直前の異常の大きさ(四角印)を Mwの関数として示したもの

(b)。 両図とも赤で示されたものがプレート間地震、青で示されたものがプレート内地震を示す。 (a)において、地震の発生年と名前と Mwを左に、観測局と衛星番号を右に記載してある。(a)におい て TEC 異常の発生時刻と地震の音波による影響が終わった時間を縦線で示している。二つの線で囲 まれた部分を地震に影響された部分としてレファレンス曲線の導出時に除外した。(b)でみられる関 係は、先行時間は地震断層の長さ(または幅)に比例、最終的な異常の大きさは地震断層の面積に 比例することを示唆する。

3.2 AIC を利用した地震前 TEC 異常の検出

TEC の異常を示す方法として、本研究やその他の先行研究では異常が起こっている時間 帯を除いて、多項式近似によって得られたレファレンス曲線を用い、実際の TEC と比較 する方法をとっている。地震の約 10 分後から始まる音波擾乱でも地震の規模に応じた TEC の変化が起こるため、この手法で用いた地震後のデータがレファレンス曲線自体を不 適切にゆがめて、見かけ上の Mw 依存性を見せているのではという批判があった。それに 対し Heki & Enomoto (2015)は、図 7 のように赤池情報量規準(AIC)を用いた統計的な 手法を利用して、地震発生前のデータのみを用いて TEC のトレンド変化(正の折れ曲が り)を検出する方法で過去のデータを再解析して反論した。

図7:東北沖地震前後のVTECデータに対して、AIC を利用して正の折れ曲がりを検出した例(Heki & Enomoto, 2015). オレンジ色の四角で示す時間窓(図の例では ±30 分)を動かして、時間窓の中央に折 れ曲がりを入れた場合と入れなかった場合のAIC の差(–ΔAIC)によって折れ曲がりの有意性を定量化 し、その時系列をプロットしている(色のついた丸、色は折れ曲がり前後のトレンド変化を示す)。

3.3 現在考えられている地震前 TEC 変化の物理的メカニズム

ここでは概要で触れた、現在考えられている地震直前 TEC 変化の物理メカニズムにつ いて E・バンス(2018)に掲載されているイラスト(図8)を用いて再度説明する。

地震発生が近くなると、応力の高まりとともに断層周辺の地殻を構成する各部分に微小 な割目や食い違いができる。その過程で過酸化架橋と呼ばれる格子欠陥が切断され電子の 空隙(正に帯電しているので正孔と呼ばれる)が残り、それを補うために電子が次々に移 動し、同時に正孔は逆向きに移動する。この過程が隣接する岩石粒を通して繰り返され、 正孔は互いの反発によって拡散し地表に蓄積する。蓄積した正孔(正電荷)は大気中に上 向きの電場を生じさせる。この電場は地震の起こる断層が大きいと超高層大気に達する。 この電場が地球磁場と相互作用(ExBドリフト)して電離圏の電子が移動する。この仮 説は、次の節で紹介するが推定した 2015 年チリ地震直前の電離圏電子密度の 3 次元構造 (He and Heki, 2018)からも支持される。

大地から空へ

新研究によると,大地震発生の30分以上前に,地表から数 なる可能性があるだろう。岩石中の割れ目がはるか上空で変化 百km上空で電気的な乱れが生じるようだ。地震の初期警報と

1. 割れ目ができる 地下では地殻を構成する各部分が 互いにゆっくりとずれている。これ 岩石粒の分子内で酸素原子どうし らはときどき断層において急に動き, を結びつけている結合(過酸化架 その動きが生んだ歪みによって岩 石が引き裂かれて, マイクロフラク チャーと呼ばれる微小な割れ目が 電した電子のエネルギーを変え, 生じる。

2. 電子がジャンプ マイクロフラクチャーが生む力は。 橋)を切断するだけの強さがある。 この力が, 岩石粒内にある負に帯 電子を動かす。移動の跡には「正 孔」という正に帯電した空隙が残 る。電子の移動が進むにつれて正 孔は逆向きに移動し, 岩石粒の内 部に小さな電流が生じる。

3. 地表へ

電子が動いて正孔を残すこの過程 が, 隣接する岩石粒を通じてドミノ 倒しのように続く。正孔の正電荷は, 岩石粒から岩石粒へと飛び移りな がら、元の割れ目から地表へと移 動していく。元の場所では, 蓄積し た歪みが臨界に近づく。

4. 上空へ

を生み出す仕組みについて,下のような仮説が提唱されている。

地表に正孔が蓄積すると、周囲に電 場を生じて反対の電荷を持つ電子を 引き寄せる。この電場の電気力線は はるか上空に及ぶ場合がある。日置 は,この電場と地球磁場の電磁気 的な作用で電子が移動、電離層内 の電子の分布パターンを変えて、密 度の高い部分と低い部分を生み出す と考えている。こうした電子密度の 異常は GPS 衛星で検出できる。

図8:現在考えられている地震前 TEC 変化の物理メカニズムの説明図(E・バンス, 2018)

3.4 2015 年チリ地震直前の電離圏電子密度の3次元トモグラフィー

3.3節で記載した物理過程は、3.1節の Mw と地震前 TEC 変化の規模・変化開始時間の 関係とも整合性があり、かつ He and Heki(2018)による 2015 年チリ中部地震直前の電子 密度異常の空間分布からも支持される。He and Heki (2018)では5つの GPS、5つの GLONASS、146 個の GNSS 観測局を使用して 2015 チリ・イジャペル地震前の電離圏電 子数濃度異常の三次元トモグラフィーを行った。それによると、電子密度は上空 200km 程 までは正の異常を示し、その上の 400km 程までは負の異常を示した。そして、それらの正 と負の異常は大まかに地磁気に沿って並んでいることが分かった。このことから、地震前 TEC 異常は地表に蓄積した正電荷が作る巨大な電場と地球磁場の相互作用によって生じた 下向きの E×B ドリフトによることが示唆された(電場に西向き成分があると、北向きの 地球磁場との相互作用で下向きに電子がドリフトする)。

図 9:3Dトモグラフィーによる、2015 年チリ・イジャペル地震直前における、高度 100 km から 600 km までの電子濃度異常の空間分布 (He & Heki, 2018)。左から地震 25 分前、5 分前、1 分前の異常を示す。 図中の白い線は海岸線と国境を表す。黄色い☆印は震源である。

(右)と南北断面(左)。右は経度285.75度から1.5度ごとに290.25度までのブロックの値の中央値を、左は緯度-29.8度から1.2度ずつ-26.2度までのブロックにおける電子密度異常の中央値をしめす(He & Heki, 2018)。白色の曲線は地球磁場を、黄色の☆印は震源を表す。

4 結果

本研究では、日置(2018)で使用された地震前 TEC 異常開始時間・終了時間と衛星・観 測局のペアを最適化したデータを入手、それらを使用して、地震前 TEC 変化が確認され た地震の発生前後の VTEC 変化と VTEC のレファレンス曲線からの残差の絶対数(以降 VTEC 残差)と、VTEC とレファレンス曲線からの残差の割合を解析し、それらを用いて VTEC 残差の標準曲線と、VTEC 残差を背景 VTEC で正規化した相対残差(以降 VTEC 相対残差)の標準曲線を作成した。

4.1 18 個の地震の前後の VTEC データ

ここでは 18 個の地震の VTEC 変化、VTEC 残差、VTEC 相対残差の解析結果を示す。 VTEC 変化の解析結果をまとめた図 11 では 18 個の地震を共通の縦軸と横軸で比較したた め、個々の地震のデータは小さく表示されている。拡大した図は、第1章1節の図1を参 照されたい。また各地震の TEC 変化の比較のために地震が起こった時間をゼロとして表 示してある。実際に起こった時間に加え、地震の Mw等の情報を表1に記載した。

地震(図中表記)	発生年	$M_{\rm W}$	発生時刻
スマトラ・アンダマン (Sumatra)	2004	9.2	0.95
東北沖 (Tohoku)	2011	9.0	5.77
チリ・マウレ (Maule)	2010	8.8	6.57
北スマトラ (North Sumatra)	2012	8.6	8.62
スマトラ・ブンクル (Bengkulu)	2007	8.5	11.17
北海道東方沖 (Hokkaido-toho-oki)	1994	8.3	13.33
チリ・イジャペル (Illapel)	2015	8.3	22.90
北スマトラ(余震)(North Sumatra_afters)	2012	8.2	10.72
ペルー (Peru)	2001	8.2	20.55
チリ・イキケ (Iquique)	2014	8.2	23.78
ネパール (Nepal)	2015	7.8	6.18
エクアドル (Ecuador)	2016	7.8	23.97
ニュージーランド (New Zealand)	2009	7.7	9.37
チリ・イキケ(余震) (Iqueque_after)	2014	7.7	2.72
パプアニューギニア (3月) (PNG_Mar)	2015	7.5	23.80
パプアニューギニア(5 月) (PNG_May)	2015	7.5	1.73

表1 直前に電離圏全電子数に異常がみられた18個の地震の名前、発生年、
M_w、発生時刻(UT hour)をまとめたもの

メキシコ・オアハカ (Oaxaca)	2012	7.4	18.03
ネパール(余震) (Nepal_after)	2015	7.3	7.08

4.1.1 VTEC 生データ

第一章では地震直前の TEC 変化の事例の紹介のため、2011 年東北沖地震、2004 年スマ トラ・アンダマン地震、2010 年チリ・マウレ地震の 3 個の M9 級地震の VTEC 変化の解 析結果を紹介した。ここではその 3 地震に加え、15 個の地震を解析した。各地震において VTEC の値に大きな差があるのはバックグラウンドの TEC が時間帯や緯度等の要因でそ れぞれ異なるからである。Mw7.8 以上の地震前の TEC の折れ曲がり(異常開始)は先行 研究の章で紹介した AIC により検出できている。より小さい地震の異常開始と地震後の異 常終了時刻は He & Heki (2017)に倣った。レファレンス曲線を作成する際に近似する曲線 の次数は L カーブ法(He & Heki, 2017)で決定している。

図から分かるように、地震直前に TEC 擾乱がみえた最も小さな地震は M_W7.3 (2015 年 ネパール地震最大余震) であるが、これは震源がバックグラウンドの電離圏 TEC が非常 に大きい赤道異常の直下であったために観測されたものである。一方 M_W8.2 以上の事例で は、地震前 TEC 変化は GNSS データが利用できるすべての地震で確認されている。イキ ケ地震を見てみると、バックグラウンド TEC が大きいと M_W8.2 レベルの地震でも M9 級 地震に劣らない大きな変化を示すことが分かる。2001 年ペルー地震の例で観測結果が途中 で切れているのは地震の発生とともにアレキーパ局の GNSS 受信機の観測データが失われ たことによる。

また、地震発生1時間前から地震発生30分後までのSIPの軌道を付録の章に記載するので必要があれば参照していただきたい。

図 11: 地震前 TEC 擾乱が確認された 18 個の地震前後の VTEC 変化。横軸は地震発生時をゼ ロとした時間を、縦軸は VTEC の絶対数を示す。実線が実際の VTEC 変化、点線がレファレ ンス曲線を表す。詳細は表1を参照のこと。

4.1.2 VTEC 残差の解析結果

ここでは図 12 として、実際の VTEC の値からレファレンス曲線の値を引いたもの (VTEC 残差)を示す。この結果が示すものは地震前に TEC が通常時(なめらかに地震 前後をつないだ値)よりどれだけ増加(または減少)しているかである。各地震の VTEC の線を表す色は図 11 と対応している。図 12(b)~(d)は(a)中の結果の拡大図である。(a)を 見てい M い思常のまます。思常問始時間の相関が見て取れて

見ると、M_wと異常の大きさ、異常開始時間の相関が見て取れる。 (a) (b)

図 12:レファレンス曲線に対する VTEC 残差を Mwが大きい順に並べたもの. (a)では地震の発生年と名

前と M_Wを左に、観測局と衛星番号(すべて GPS)を右に記載してある。(b) (c) (d)では左上にそれぞれ 示してある。また、TEC 異常の発生時刻と地震の音波による影響が終わった時間を短い縦線で示してい る。レファレンス曲線は、二つの短い縦線で囲まれた部分を除いたデータに関して、多項式(次数は L カ ーブ法で決める)近似して求めている。(a)中の 3 地震を拡大して(b)、(c)、(d)に見やすく表示した。

4.1.3 VTEC 相対残差の解析結果

図 11 ではレファレンス曲線からの VTEC 残差の値そのものを見た。この節では VTEC 残差を背景 VTEC で正規化した相対残差を図 12 に示す。異常の割合が極めて大きかった もの 4 つについては縮尺を同じにして別に示した。

図 12:VTEC 残差を背景 VTEC で正規化した相対残差を Mwの大きい順に並べたもの(a)と異常の割合が 極めて大きいもの(b)~(e).図 11と同様に地震の発生年と名前と Mwを左に、観測局と衛星番号を右に、 TEC 異常の発生時刻と地震の音波による影響が終わった時間を縦線で示している

以上、地震前の VTEC、VTEC 残差、VTEC 相対残差から、M_wと地震前 TEC 変化の 相関が確認できた。また VTEC と VTEC 残差の割合についての結果の比較から、当然で あるがバックグラウンド TEC の値が小さい場合は、残差の割合は大きくなることが分か った。

次に、地震前 TEC 変化の標準的な振る舞いを解明しそこから物理的過程を考察するために、VTEC 残差と VTEC 相対残差に関しての標準曲線を作成した。この標準曲線は、個々の事例における VTEC 変化曲線と比較することにより、個々の地震の直前における電離圏変化の個性を浮かび上がらせるために使用される。

4.2 標準曲線

本研究では地震前 TEC 変化の標準的な振る舞いと個々の地震の個性を解明するため に、地震前 TEC 変化が確認された 18 個の地震の VTEC 残差と VTEC 相対残差をそれぞ れスタックして標準曲線を作成した。標準曲線の作成に当たっては、地震前 TEC 異常開 始時間から地震発生までの時間と地震発生時の VTEC 残差または VTEC 相対残差の値が 地震によってそれぞれ異なるので単純に足し合わせても意味のある曲線は得られない。そ のため本研究では**地震前**の TEC 変化に関して、①それぞれの地震のデータの TEC 異常開 始から地震までの時間を東北沖地震の事例に正規化し、②地震時の VTEC を 100%として 正規化しスタックした。**地震後**のデータに関しては時間に関しては伸び縮みさせず、地震 時の VTEC のみ 100%として正規化しスタックした。また、各データの VTEC の時系列 の間隔は一定でないため、各地震データの VTEC 残差または VTEC 相対残差の時系列 を、60 秒の幅を持つ時間枠に次々に入れてゆき、それらの枠の中に入れられたデータの平 均および中央値を計算した。

4.2.1 標準曲線(VTEC 残差)

ここでは、**地震前**に関し、各地震の TEC 異常開始から地震時までの時間を東北沖地震 の TEC 異常開始から地震時までの時間(0.612 時間)にあわせ、地震時の VTEC 残差を 100%に合わせ正規化しスタック、**地震後**に関して、時間方向には伸び縮みさせず地震時 の VTEC 残差のみを 100%に合わせ正規化してスタックした標準曲線を示す。標準曲線は 18 個の地震について平均をとったものと中央値をとったものの双方を作成した。これら二

つの図を見ると、地震発生時から地震後の音波擾乱が起こるまで TEC はほぼ一定で推移 している(地震後に TEC の増加は停止)ことが分かる。また TEC 増加は上に凸の曲線を 描いており、地震発生に近づくにつれて TEC 増加は減速していることが確認された。

Time after earthquake(hour)

図 13:地震直前 TEC 異常が確認された 18 個の地震の VTEC 残差を足し合わせて作成した標準曲線。赤 い丸で 60 秒毎の平均(a)と中央値(b)を表す。それぞれの図の薄い灰色で書かれた線は、本来の 18 個の**地 度前**の VTEC について異常開始から地震時までの時間を東北沖地震の事例に、地震時の VTEC 残差を 100%に合わせて正規化、**地震後**の VTEC について、地震時の VTEC 残差を 100%に合わせて正規化した 曲線を表す。標準曲線はこれらをスタックすることによって得られた。(a)に関して、各時間窓のデータ のばらつきを示す標準偏差(1 σ)をエラーバーで示してある。

4.2.2 標準曲線(VTEC 相対残差)

ここでは背景 VTEC を基準とした VTEC 相対残差を用いて求めた標準曲線を示す。 VTEC 相対残差の場合でも、VTEC 残差の場合と同じで、各地震の**地震前**に関して TEC 異常開始から地震時までの時間を東北沖地震の TEC 異常開始から地震時までの時間

(0.612 時間) に合わせ伸び縮みさせ地震時の VTEC 相対残差を 100%として正規化、地 **震後**に関しては地震時の VTEC 相対残差のみを 100%として正規化してスタックし曲線を 作成した。上に凸な地震前の上昇曲線、および地震発生とともに上昇が頭打ちになる点 等、前節で示した VTEC 残差の場合とほぼ同じ特徴を示す結果が得られた。

図 14: 地震直前 TEC 異常が確認された 18 個の地震の VTEC 相対残差を足し合わせて作成した標準曲 線。青い丸で 60 秒毎の平均(a)と中央値(b)を表す。それぞれの図の薄い灰色で書かれた線は、本来の 18 個の**地震前**の VTEC について異常開始から地震時までの時間を東北沖地震の事例に、地震時の VTEC 相 対残差を 100%に合わせて正規化、**地震後**の VTEC について地震時の VTEC 相対残差を 100%に合わせ て正規化した曲線を表す。標準曲線はこれらをスタックすることによって得られた。(a)に関して、各時

間窓のデータのばらつきを示す標準偏差(1σ)をエラーバーで示してある。

4.2.3 標準曲線と VTEC 残差の比較

ここではそれぞれの事例の地震前の TEC 変化の特徴を考察するために、4.2.1 で示され た中央値で得られた標準曲線を逆にそれぞれの事例の縦・横軸に戻して、各事例と重ね書 きした例を示す。ここでは、地震前の変化に関してそれぞれの事例の縦・横軸に合わせて 重ね書きしているので、地震後の TEC 変化の比較についてはあまり意味がない。

Time after earthquake(hour)

図 15:中央値として求めた VTEC 残差の標準曲線を、18 個の地震それぞれの事例の本来の横軸(時間 軸)と縦軸(VTEC 残差)に戻して、 元のデータに重ね書きしたもの。地震の発生年と名前と Mwを左

に、観測局と衛星番号を右に、TEC 異常の発生時刻と地震の音波による影響が終わった時間を縦線で示 している。右側の3つの図は、2004年スマトラ・アンダマン、2011東北沖、2012インド洋(本震)の 三つの事例について拡大したものである。

標準曲線でみられた二つの特徴(地震前の TEC 上昇は地震発生時に頭打ちになること、および上昇曲線が上に凸になること)は個々の事例でもおおむね成り立っていることが分かった。それぞれの地震の VTEC 異常曲線は一見違うように見えるが、標準曲線と比べるとそれらの間に特筆すべき大きな違いは見られない。

次の章では、標準曲線の形から地震前 TEC 変化の物理的メカニズムを3章で紹介した 先行研究と合わせて考察する。

5 考察

図8で示したモデルによると、地震前 TEC 変化の原因は、(Step 1)断層付近における微 小な割目や食い違いの発生によって断ち切られた過酸化架橋から正孔が動きやすくなり、 (Step 2)正に帯電した正孔が互いの反発によって拡散して地表に蓄積、(Step 3)それらが作 る上向きの電場が電離圏まで到達し地球磁場と相互作用(E×Bドリフト)することによ って電子が再配置、電子密度の濃淡が生じる、という三つのステップが考えられている。 本章では標準曲線の形からこのプロセスに対して様々な考察を行う。

第一に標準曲線でみられた特徴である、地震前の TEC 上昇は地震時にはほぼ停止し、 その後(地震約十分後の)音波の到達までほぼ一定の値で推移する点について考察する。 この結果を Step1 と関連させて考察すると、地震時には断層付近における応力が大部分解 放され、新たな食い違いや割れ目の発生が少なくなることに相当すると思われる。新たに mobilize される正孔が無いと、地表での蓄積も頭打ちになり電場もそれ以上強くならな い。したがって、さらなる電子の移動も起こらないということであろう。

第二に、TEC 変化率は異常開始直後が最も大きく、それ以降は減速してゆく(曲線が上 に凸になる)ことについて Step 2 と関連させて考察する。一つの可能性として考えられる のが、地表電荷の量がある程度以上増えないことである。時間の経過とともに地表に蓄積 する正孔の絶対量が増えると、海洋への拡散等で減少する率も増加していく。したがって ある時点で生まれる正孔と失われる正孔がバランスして一定値に達することが考えられ る。穴のあいたバケツに一定の割合で注水してゆくと、ある水位で注水と漏洩がバランス してそれ以上水位が上がらなくなるのと同様である。正孔の蓄積率が下がると、上空に形 成される電場の成長率も小さくなって電子の再配置もスローダウンするのだろう。また、 E×B ドリフトによって動ける電子数は時間とともに減少していくことも可能性として考 えられる。しかし標準曲線とのフィットが大きな地震と小さな地震でそれほど変わらない ことから、動ける電子が時間とともに少なくなる効果はあまり関係ないのではと思われ る。

さらに当初の考えでは正孔の蓄積のしやすさの地域性(たとえば断層の上の地表が海面 下にある割合が多いと海水を通じて失われる正電荷が多くなり電荷の頭打ちが早くなる) が、TEC標準曲線と各々の地震における TEC 変化曲線との比較から浮かび上がることを 期待していたが、一見違うように見える各地震の地震前 TEC 上昇曲線の形の差異は、図 15 でわかるように意外に少ないことが示唆された。これについては、地球磁場の強さや向 きの地域性からくる、地表電荷によって形成された電場との相互作用に地域性が大きいこ と、GNSS 衛星と局を結ぶ視線が電離圏にたいして移動することによる空間変化が時間変 化と完全に分離できないこと等々、様々な要因による相違を取り除かないと個々の地震の 個性は浮かび上がってこないのかも知れない。

図 16:地震前 TEC 変化の原因と考えられている電場 E と 地球磁場 B の相互作用(**E**×**B**ドリフト)による電子の再 配置の概念図。薄い黄色の矢印が電子の移動を表す。

また、プレート内地震(2012年インド洋地震等)のほうがプレート間地震よりも相対的 に早い段階で擾乱が始まることが Heki & Enomoto (2015)で示唆されたが、その原因につ いて最後に考察する。地震前の地下での物理過程に不明な部分が多い現状では憶測の域を 脱しえないが、おそらくプレート内地震の場合は海溝型に代表されたプレート間地震より も断層強度が強いことが関係しているかも知れない。後者では応力による微小割れ目が発 生してから完全に破壊される(地震が発生する)まで、前者より多くの時間を必要とする ことが、前兆開始から地震発生までの時間が長くなる原因の一つと考えることができる。

6. 謝辞

本研究で使用した RINEX データは国土地理院、カリフォルニア大学から、GIM ファイルはベルン大学から提供していただきました。

本研究を行うにあたり、宇宙測地学研究室をはじめ、固体ゼミの皆様には多くのご指摘 やご指導を賜り大変お世話になりました。

指導教官である日置幸介教授には、現在のテーマを扱うにあたり、基礎的な知識や解析 のためのプログラム、研究の方向性、論文指導などあらゆる点でご教授頂きました。ま た、固体ゼミの先輩方には卒業研究に向けて様々なことを教えていただきました。ゼミ発 表の際には先生方に多くのご指摘を頂き、発表の仕方から研究そのものに対してまで勉強 させていただきました。皆様ありがとうございました。修士課程でも、ご指導ご鞭撻のほ どよろしくお願い致します。

7. 参考文献

Coster, A. and W. Rideout (2006), Automated GPS processing for global total electron content data, GPS Solutions, Volume 10, Issue 3, pp 219–228, doi: 10.1007/s10291-006-0029-5

He, L. and K. Heki (2017), Ionospheric anomalies immediately before Mw 7.0-8.0 earthquakes, J. Geophys.
Res. Space Phys.122, 8659–8678, doi:10.1002/2017JA024012.

He, L. and K. Heki (2018), Three-dimensional tomography of ionospheric anomalies immediately before the 2015 Illapel earthquake, central Chile, J. Geophys. Res. Space Phys., 123, doi:10.1029/2017JA024871.

- Heki, K. (2011), Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett. 38, L17312, doi:10.1029/2011GL047908.
- Heki, K. and Y. Enomoto (2015), Mw dependence of the preseismic ionospheric electron enhancements, J. Geophys. Res. Space Phys., 120, 7006-7020, doi:10.1002/2015JA021353.
- 日置幸介、菅原守、大関優、岡崎郁也(2015)、GPS-TEC 法による地球物理学、測地学会誌, 56 (解説・入門講座)、125-134.
- Vance, E. (2019), 特集:超巨大地震に至る地下の変動 大地震直前に観測された電離層の変化, 日経サイ エンス, 2019 年 2 月号

参考 Web ページ

国土地理院ホームページ

<u>http://www.gsi.go.jp/</u> 各国測位衛星の状況について-内閣府 www8.cao.go.jp/space/comittee/dai68/siryou3.pdf ベルン大学・データセンター <u>http://www.aiub.unibe.ch/download/</u> カリフォルニア大学サンディエゴ校・IGS データセンター <u>http://garner.ucsd.edu/</u>

8. 付録

ここでは地震前 TEC 変化の地域性の比較をする際に用いた、各地震に対応する SIP の 軌道と観測局と震源の情報を記載する。図(a)、図(b)の資格で囲われた部分を拡大して下 に示す。各情報の色は、4 章で示した VTEC 変化等を表した曲線の色と対応させてある。

0°

90°

100°

図 17:18 個の地震前 TEC 擾乱の観測に対応する、地震発生 1 時間前から地震後 30 分までの SIP 軌道と観測局と震源を示した図。☆印が震源を、○印が観測局を、SIP 軌道上の□印が地震の発生 した時間における SIP を表す。(a)中の四角で囲われた部分を拡大したものを(c)~(g)に、(b)中の 四角で囲われた部分を拡大したものを(h)~(k)に示す。各図の色は 4 章の VTEC 変化の解析結果 の曲線の色に対応している。