Postseismic gravity changes observed from GRACE satellites:

The two components of postseismic gravity changes and their
mechanisms

EH#E GRACE ZR ULV - BERENTILOBHR:
RVEBDO_RSDSTEEE ETDAD=ZXLDER

Space Geodesy, Earth and Planetary Dynamics
Department of Natural History Sciences,
Graduate School of Science, Hokkaido University

Yusaku Tanaka

Supervisor: Prof. Kosuke Heki

tEEXRE KFhk HER BRALRFER
HIRREBF A FIVRBE FHAMPHRE

He 21

HESE-RE = &%

February 2014



ABSTRACT

The time series analysis of the gravity changes of the three M,,9-class mega-thrust earthquakes,
i.e. the 2004 Sumatra-Andaman earthquake, the 2010 Chile (Maule) earthquake, and the 2011
Tohoku-oki earthquake, provides the possibility to identify their multiple postseismic
phenomena. We have three sensors for earthquakes. The first sensor is seismometers, and we
can measure seismic waves with them. The second sensor, such as GNSS (Global Navigation
Satellite System) and SAR (Synthetic Aperture Rader), can measure crustal movements
associated with earthquakes. The third sensor is gravimetry. The first sensor cannot catch the
signal of postseismic phenomena because they do not shake the ground. The second sensor can
catch the signal of postseismic phenomena, but they cannot separate phenomena, such as
afterslip and viscous relaxation, because these mechanisms let the ground move in the same
polarity. However, these postseismic processes may result in different polarities in gravity
changes. This suggests that the gravity can be a powerful sensor to separated signals of different
postseismic processes.

GRACE (Gravity Recovery And Climate Experiment) is the twin satellite systems launched in
2002 by NASA (National Aeronautics and Space Administration) and DLR (German Space
Agency). It provides the two-dimensional gravity field of the earth with high temporal and
spatial resolution. GRACE gives us insights into mass movements beneath the surface
associated with earthquakes. The gravity time series before and after large earthquakes with
GRACE suggest that the gravity (1) decreases coseismically, (2) keeps on decreasing for a few
months, and (3) increases over a longer period. In other words, the postseismic gravity changes
seem to have two components, i.e. the short-term and the long-term components. This new
discovery suggests that the gravity observations detected two different postseismic processes
with opposite polarities.

The mechanisms of coseismic gravity changes are relatively well known but those of short-
and long-term postseismic gravity changes are not so clear at the moment. They are explained
with afterslip and viscoelastic relaxation to some extent, but problems still remain. Nevertheless,
the gravity observation can do what seismometers and GNSS/SAR cannot do, i.e. to separate

different postseismic processes giving rise to gravity changes in different polarities.
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1 Introduction

1.1 Space Geodesy in geoscience

Space geodesy is the discipline of the shape, size, gravity fields, rotation, and so on, of the
earth, other planets, and the moon with space techniques. Geodesy with satellite started in 1957,
when the first satellite “Sputnik I was launched by the Soviet Union. Space geodesy has been
applied to many disciplines in geoscience, and has contributed to their advances. For example,
GPS (Global Positioning System) and SAR (Synthetic Aperture Radar) are applied to
seismology, volcanology, meteorology, solar terrestrial physics, and so on. This is because
observations from satellites are often superior to those on the ground in various aspects. One is
the temporal continuity: satellites keep providing observation data until they stop functioning.
Another aspect is that huge amount of data will eventually become available to researchers,
giving all scientists chances to study using such data. One more aspect is that satellites often
give two-dimensional observation data with uniform quality. This cannot be achieved by
deploying many sensors on the ground. These aspects make space geodesy a very important

approach in geosciences.

1.2 Satellite gravimetry

Gravity measurements in general have played and will continue to play important roles in
earth sciences because they provide much information on the matters beneath the surface that
we cannot see directly; the gravity fields reflect how mass is distributed there.

Satellite gravimetry started in 1958, when USA launched the satellite “Vanguard I”. Tracking
of this satellite enabled us to estimate low degree/order gravity field of the earth for the first
time. Satellite gravimetry can be done in several different ways. The first one is SLR (Satellite
Laser Ranging), which started in late 1960s. Satellites for SLR have a lot of
corner-cube-reflectors (CCR) on their surfaces. The CCRs reflect laser pulses emitted from the
ground station, and people can measure the two-way travel times of the laser pulses between the
ground station and the satellites. The changes in orbital elements depend on the gravity, so we
can recover the gravity field model. SLR has some benefits. First of all, it is relatively easy to
continue the operation of SLR satellites because they have only passive function to reflect laser
pulses with CCRs (they do not need batteries). Another benefit is that SLR is a relatively old
technique, and we can go back further in time.

The second type is composed of “twin” satellites, and is represented by GRACE (Gravity
Recovery And Climate Experiment), launched in 2002. The gravity irregularities change not

only the orbital parameters of satellites but also their velocities. Then, the relative velocity
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between the two satellites tells us how different the gravity fields are between the two satellites.
GRACE has good spatial and temporal resolution. The spatial resolution of GRACE is
300~500 km. This is much better than that of SLR because the GRACE orbit is much lower
than SLR satellites. For example, LAGEOS, one of the most useful SLR satellites, has an orbit
as high as about 6000 km. The temporal resolution of GRACE is about one month, which is
better than GOCE (Gravity field and steady-state Ocean Circulation Explorer), the third type of
satellites to measure the gravity field with an on-board gradiometer. GOCE is called “Ferrari of
the satellites” because it flies the lowest orbit of the satellites (this means its speed is the
highest). GOCE has the best spatial resolution of the three types. Each type of satellites has its

benefit and has produced valuable sets of data.

1.3 Gravity and earthquakes

Gravity observation is considered to be the third approach to understand earthquakes. The first
sensor is seismometers to observe elastic (seismic) waves, and the second sensor is GNSS
(Global Navigation Satellite System) like GPS and SAR to observe static displacement of the
ground surface. Gravimetry, the third sensor, can observe the mass transportation under the
ground.

There are two kinds of gravity changes due to earthquakes: co- and postseismic gravity
changes (we do not discuss preseismic changes here). The mechanisms responsible for
coseismic gravity changes have been understood to a certain extent. The coseismic gravity
change occurs in two processes, i.e. (1) vertical movements of the boundaries with density
contrast, such as the surface and Moho, and (2) density changes in mantle and crust. They are
further separated into four: surface uplift/subsidence, Moho uplift/subsidence, dilatation and
compression within crust and mantle. For submarine earthquakes, movement of sea water also
plays a secondary role. These mechanisms are shown in Figure 1.1. The mechanisms of
postseismic gravity changes are, however, not so clear.

Coseismic gravity change was first detected after the 2003 Tokachi-oki earthquake (M,8.0),
Japan, by a ground array of superconducting gravimeters [/manishi et al., 2004]. The second
example (also the 1* example with satellite gravimetry) was coseismic gravity changes by the
2004 Sumatra-Andaman earthquake (M,9.2) detected by the GRACE satellites [Han et al.,
2006]. Satellite gravimetry enabled similar studies for the 2010 Maule (M,,8.8) [Heki and
Matsuo, 2010; Han et al., 2010] and the 2011 Tohoku-Oki (M9.0) [Matsuo and Heki, 2011,
Wang et al., 2012] earthquakes. These reports showed that coseismic gravity changes are
dominated by the decrease on the back arc side of the ruptured fault reflecting the density drop
of rocks there [Han et al., 2006].
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Postseismic gravity changes were first found for the 2004 Sumatra-Andaman earthquake
[Ogawa and Heki, 2007; Chen et al., 2007]. They showed that the gravity increased after
coseismic decreasing (Figurel.2) by fitting the function (1.1) with the least-squares method.
They also revealed that postseismic gravity changes show opposite polarity and slight
trenchward shift, i.e. gravity increase occurred directly above the ruptured fault.

For the other two M, 9-class earthquakes (2010 Maule and 2011 Tohoku), the time series of
postseismic gravity changes have not been reported yet. Here we use the newly released Level-2
(RLO5) GRACE data, which were improved in accuracy [Dahle et al., 2012; Chambers and
Bonin, 2012], and study common features in the co- and postseismic gravity changes of these
megathrust earthquakes.

I model the gravity G as a function of time ¢ as follows,

G = a+ bt +csin(wt +6;) + dsinQwt + 6,) + H({E) {Ag +e(1—exp (1))} (1.1)

(0 (t<ty)
H(t)‘{l(tztﬁ)

At =t —t,

where a, b, ¢, d, and e are the constants to be estimated with the least-squares method, t, is
the time when the earthquake occurred, the second term means the secular trend, the third and
fourth terms correspond to the seasonal changes (o = 2n/1yr), Ag is the coseismic gravity step,
and the last term is the postseismic gravity change. H(¢) is the step function, and z is the time

constant.

1. Surface uplift/subsidence

4. Movement of sea water

3. Crustal/mantle .
dilatation/compression

2. Moho subsidence/uplift

Mantle

Figure 1.1 The four major mechanisms responsible for coseismic gravity changes.
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98 Figure 1.2 The postseismic geoid height changes of the 2004 Sumatra-Andaman earthquake
99  shown by Ogawa and Heki [2007]. The geoid height decreased when the earthquake occurred
100  and increased slowly afterwards.
101
102
103 2 Data and Methods
104 2.1 GRACE data
105
106 GRACE data can be downloaded from http:/podaac.jpl.nasa.gov/ (PO.DAAC: Physical
107  Oceanography Distributed Active Archive Center) or http:/isdc.gfz-potsdam.de/ (ISDC:
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Information Systems and Data Center). These data are provided by the three research centers, i.e.
UTCSR (University of Texas, Center for Space Research), JPL (Jet Propulsion Laboratory), and
GFZ (GeoForschungsZentrum, Potsdam). UTCSR and JPL are in USA, and GFZ is in Germany.
These three institutions analyze data based on somewhat different approaches so the data sets
differ slightly from center to center.

There are three levels of GRACE data available to the users: Level-1B, Level-2, and Level-3.
Level-1B gives the data of the ranges (distances) between the twin satellites together with their
changing rates, and it takes some expertise in technical details to use them. Level-2 data are
provided as spherical harmonic coefficients, and we need only certain mathematical knowledge
to use them. Level-3 data are composed of space domain gravity data after being filtered in
several ways. Because it takes neither technical nor mathematical knowledge to use them,
Level-3 is the most friendly to users. However, Level-3 data do not give us much information
because many filters have already been applied. In this study, Level-2 data analyzed at UTCSR
are used.

Level-2 data are composed of spherical harmonic coefficients (Stokes’ coefficients). They
coefficients can be converted to the static gravity field g (6, @) of the earth by the equation (2.1)
[Kaula, 1966; Heiskanen and Moritz, 1967].

nmax

n

GM : =

g,p) = =z Z n—-1) Z (Cpm cosme + Sy, sSinme) P, (sin 0) (2.1)
n=2 m=0

Where G is the universal gravity constant, M is the mass of the earth, R is the equatorial radius,

P,.(sin 8) is the n-th degree and m-th order fully-normalized associated Legendre function. An

example of the static gravity field of the earth is shown in the Figure 2.1.
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Figure 2.1 The map of the static gravity field of the earth in November 2013 calculated from

Level-2 GRACE data. Degrees and orders of spherical harmonic coefficients are up to 60.

Figure 2.1 shows the mean of the gravity is about 9.8 m/s” and the gravity on lower latitude is
stronger than that on higher. But this is contradictory to the fact that the gravity on lower
latitude is weaker because the centrifugal force of the rotation of the earth works. The reason of
this contradiction is that the gravity fields measured by satellites do not include centrifugal
forces and gravitational pull of the equatorial bulge is isolated. Because the C20 term
predominates in the earth’s gravity fields, I removed it and plot the rest of the gravity
components in Figure 2.2. When we discuss time-variable gravity, we use Cx from SLR

observations because C20 values by GRACE are less accurate.
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Figure 2.2 The map of the static gravity field of the earth in November 2013 calculated from
Level-2 GRACE data after removing the C20 component.

Figure 2.2 shows that the gravity anomaly is so small that gravity is uniformly 9.8 m/s’
throughout the surface. In order to highlight the gravity anomalies, we should use the unit of
mGal (1Gal = lem/s”) and should also make Coo zero because it gives the mean value of the

gravity field. Figure 2.3 and Figure 2.4 show the gravity anomaly with the unit mGal.
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Figure 2.3 The map of the static gravity anomaly of the earth in November 2013 calculated
from Level-2 GRACE data. I removed the C20 and Coo components.
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Figure 2.4 The map of the static gravity anomaly of the earth in October 2013 calculated from
Level-2 GRACE data. I removed the C20 and Coo components. This looks almost identical to
Figure 2.3.
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Figures 2.3 and 2.4 show the gravity anomaly in November and October, respectively. They
represent different time epochs, but they look alike because the temporal changes of the gravity
fields are small. In order to study time-variable gravity, we have to use the unit of pGal. Figure

2.5 shows the difference of the gravity fields in November 2013 from October 2013.
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Gravity Change

Figure 2.5 The gravity fields in November relative to those in October 2013.

Figure 2.5 shows the strong north-south stripes. These stripes appear because GRACE data
are noisy in short-wavelength components; GRACE satellites orbit the earth in a polar circular
orbit at the altitude of about 500 km, taking about 90 minutes per one cycle (they experience
about 550 revolutions every month). This suggests that we have to take certain means to analyze
(e.g. applying special filters) time variable gravity with the GRACE data.

One way to avoid these stripes is to use northward components rather than the downward
component of the gravity field. The north components do not show the stripes because the
GRACE satellites move in the north-south direction. We can calculate this by differentiating the
gravity potential with respect to the latitude. Figure 2.6 shows the distribution of the northward

component of the gravity changes between October and November, 2013.
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Figure 2.6 The northward component of the gravity changes from October to November in

2013. Strong north-south stripes in Figure 2.5 have disappeared.

The northward gravity changes observed with GRACE satellites are shown in Figure 2.6.
They are largely free from strong stripes although short wavelength noises still remain. After all,

we have to apply additional filters to GRACE data.

2.2 Spatial filters
2.2.1  De-striping filter

The filter to remove stripes is called de-striping filter proposed by Swenson and Wahr [2006].
They found that the stripes come from the highly systematic behavior of the Stokes’ coefficients
in the GRACE data. The Stokes’ coefficients of Cnis are shown in Figure 2.7 as an example.
There the red points (the evens of coefficients) are always bigger than blue points (odds) when n
is larger than 30 and black line connecting them goes zigzag strongly. Swenson and Wahr [2006]
considered that this is responsible for the stripes, and tried to suppress the stripes by getting rid
of this systematic behavior. To do that, two polynomial functions were fitted with the
least-squares method to each evens and odds of coefficients separately, and residuals between

the values of original data and the fitted polynomial were taken as the new “de-striped”

10
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coefficients. Figure 2.8 shows the gravity change calculated with the de-striped coefficients.
This de-striping filter is called as PSM10, which means that polynomials of degree 5 were fitted
to the coefficients of degrees and orders 10 or more.

In this section, the gravity changes were calculated at first and then the de-striping filter was
given because this order makes sense to understand the de-striping filter. Practically, the
de-striping filter is applied to the data at first, and then the gravity changes are calculated to

obtain the time series.
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Figure 2.7 This figure gives conceptual explanation of the de-striping filter. (above) The solid
black line indicate the Stokes’ coefficients of order 16, i.e. ACuis (Cnis in November 2013 — Cuis
in October 2013) as a function of degree n. The red points denote the values of coefficients with
even n and blue points denote those with odd . The broken lines are the curves fitted to each
color’s data with polynomial degrees = 10. (below) The broken black line is the same line of the
solid black line above. The purple line shows the difference between the black line and the fitted

polynomial curves. The horizontal straight line means zero.
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Figure 2.8 The gravity change in from October to November 2013 calculated with the

“de-striped” coefficients.

Figure 2.8 shows that the de-striping filter effectively suppressed longitudinal stripes to a
certain extent. However, it is not sufficient, and so the coefficients need to be further filtered as

described in the next section (even the northward component data have to be filtered in the same

way).

2.2.2  Fan filter

The best filter to make the spatial distribution of gravity change smooth is the two-dimensional
Gaussian filter, called Fan filter [Wahr et al., 1998; Zhang et al., 2009]. The definition of this
filter and how to apply it to the coefficients are shown with equations (2.2) ~ (2.6).

nmax n
GM -
Ag(®, ) = =z Z (n—1W, Z W (ACy, cosme + ASy,,, sinme) Py, (sin 6)
m=2 m=0
(2.2)
WO =1 (2.3)
1+e720 1
Wi=1—=—5 (2.4)
2n+1

Wiz = === Waps + W (25)
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where W,, and W, are the weighting function with Gaussian distribution at degree » and m,

and r is the averaging radius. Weights with different » are shown in Figure 2.9.
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Figure 2.9 The values of W#(n) as a function of degree n for the different values of r, i.e. 100 km,

250 km, 500 km, and 1000 km. For larger degrees, the weight becomes smaller.

Figure 2.9 shows that the fan filter gives smaller weights to coefficients of higher degree and
order. That is why the shortwave noises are reduced by this filter. The gravity changes from
October to November 2013 calculated with GRACE data after the de-striping filter and the fan

filter are shown in Figure 2.10.
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257  Figure 2.10 The gravity changes from October to November 2013. (above) The downward
258  components of gravity change calculated from GRACE data with both de-striping (P3M15) and

259  Fan filter (» = 250km). (below) The northward components of gravity change calculated from
260  GRACE data with Fan filter (» = 250km).
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263 2.3 GLDAS model
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In this study, GLDAS Noah model [Rodell et al., 2004] is used to remove the contribution of
land hydrology to gravity. GLDAS model is made from the observed data of precipitation,
temperature, and so on, and given as monthly values at 1 X 1 degree grid points, except for
Antarctica and Greenland. The data give the amount of water (kg/m®) there, so it has to be
changed into spherical harmonic coefficients and into those of gravity by formulations given in
Wahr et al. [1998]. They are filtered in the same way to de-stripe and reduce short-wavelength
noises as for the GRACE data. Before converting to spherical harmonic coefficients, grid values

in Greenland/Antarctica were set to zero.
2.4 Time series analysis
The function (2.7) is fitted to the GRACE data with the least-squares method to estimate the

postseismic gravity changes and the function (2.8) is used to get the time series of gravity

deviations by eliminating components not related to earthquakes.

G =a+ bt +csin(wt + 0;) +dsin(Qwt + 6,) + H(t)

Ag + Z e; X fl-(At)}

(2.7)
G = G — { bt + csin(wt + 0;) + d sin(RQwt + 6,) } (2.8)

There f; (At) are certain functions to be fitted to the time-decaying components after the
earthquakes and the others in (2.7) are the same as (1.1). G is the gravity changes obtained by
removing the secular and seasonal components. We will discuss what kind of f;(At) best

models the postseismic gravity changes in the chapter of results and discussion.
2.5 Model calculation

The software package by Sun et al. [2009] is used to calculate coseismic gravity changes
together with fault parameters shown in Banerjee et al., [2005] for the 2004 Sumatra-Andaman
earthquake, Heki and Matsuo [2010] for the 2010 Chile (Maule) earthquake, and Matsuo and
Heki [2011] for the 2011 Tohoku-oki earthquake.

The contribution of sea water to gravity also has to be added because Sun et al. [2009] gives the
amount of gravity changes on “dry” earth, which has no water on it. The earthquakes give the
surface of the earth deformation and it makes the sea water move, so the observed gravity
changes have contributions of both dry earth and sea water. The correction is simply achieved

by assuming the gravity field made by thin sea water layer as deep as the vertical crustal
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movements.

3 Results and discussion

3.1 Re-analysis of postseismic gravity changes of the 2004 Sumatra-Andaman earthquake.

I re-analyzed the postseismic gravity changes of the 2004 Sumatra-Andaman earthquake with
newer data (Release 05) than those used in Ogawa and Heki [2007] (Release 02) with the
equation (1.1), and found that the gravity had decreased for a few months after the earthquake
and increased slowly after that. This behavior cannot be modeled with the equation (1.1)
because the component there for postseismic gravity changes is expressed only with one
exponential function, which is used for long-term increasing (the red curve in Figure 3.1).
Therefore, we gave one more exponential function term to the equation (equation (3.1)), so that
both the short- and long-term postseismic gravity changes are expressed with the model (the
blue curve in Figure 3.1). This finding encouraged us to examine gravity changes of other large
earthquakes. It is also important to compare two-dimensional distribution of postseismic gravity
changes of these two components. Hence, we analyzed the gravity change time series of not
only the 2004 Sumatra-Andaman earthquake, but also the 2010 Chile (Maule) earthquake and
the 2011 Tohoku-oki earthquake.

G = a+ bt + csin(wt + 0,) + d sin(Rwt + 6,)

+H(t) {Ag +e ( 1—exp (i—:)) +e, (1 — exp (i—zt))} (3.1
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Figure 3.1 Time series of gravity changes before and after the 2004 Sumatra-Andaman
earthquake at a point (4N, 97E), shown in Figure 3.2, fitted with two different models. The
white circles are the time series after removing seasonal and secular gravity changes and the
steps at the 2005 Nias earthquake and 2007 Bengkulu earthquake. The vertical lines indicate the
occurrences of three earthquakes. The red and blue curves are fitted with the postseismic gravity
change modeled with only one component (t=1.2 year) and with two components (t,=0.2 year
and 1,=2 year), respectively. The gravity decrease immediately after the earthquake is well

modeled only with the blue curve.

3.2 Co- and postseismic gravity changes of three Mw9-class earthquakes
3.2.1 Vertical gravity changes (Observed and calculated)
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3.2.1.1 Coseismic gravity changes

In Figure 3.2 we compare the geographic distributions of coseismic, and short- and long-term
postseismic gravity changes of the three megathrust events. The signal-to-noise ratio is not good
especially for the Maule earthquake due to the relatively small magnitude and large land
hydrological signals. In fact, this area is known to have experienced a drought in 2010. The
removal of hydrological signals by GLDAS did not work well enough in this region (Figure 3.3)
due possibly to insufficient meteorological observation data to be put into the GLDAS models.
Nevertheless, fairly systematic gravity signals are seen near the epicenter.

Figure 3.2 (a-1, b-1, and c-1) shows that the coseismic signatures of the three cases are
dominated by gravity decreases on the back arc side of the fault with smaller increases on the
fore arc side. The latter are often attenuated by the existence of seawater [Heki and Matsuo,
2010]. Such coseismic changes are well understood with the theory discussed in Section 1.3.
The coseismic signature, after spatial filtering, appears as the gravity decrease on the back arc
side of the arc [Han et al., 2006].

The observed and calculated coseismic gravity changes are compared in Figures 3.5-3.7. In
the model calculation, I used the software package by Sun et al. [2009] and fault parameters
from other references, as described in Section 2.5. Each case shows certain difference between
the observation and the calculation, but the two patterns are more or less consistent suggesting

that the theoretical model is realistic enough.

3.2.1.2 Postseismic gravity changes

The middle column of Figure 3.2 suggests that the short-term postseismic gravity changes also
show negative polarities, although their centers seem to shift a little from back-arc regions
toward trenches. On the other hand, the long-term postseismic gravity changes (the right column
of Figure 3.2) have positive polarities and occur directly above the ruptured fault. These features
are common in the three earthquakes.

The elastic response to the afterslip should occur as the continuation of the coseismic gravity
changes. The distribution of the postseismic gravity changes by the afterslip of the 2011
Tohoku-oki earthquake is shown in Figure 3.8, which was calculated with the software of Sun et
al. [2009] from the afterslip distribution shown in Figure 3.9 inferred from GPS data. They are
both dominated by negative changes. However, the trenchward shift of the center is seen, and
this cannot be explained simply by the down-dip migration of the slip [Ozawa et al., 2012]. In
addition to that, the time constant of the short-term postseismic gravity change of the 2011

Tohoku-oki earthquake (0.1 year) is different from the afterslip (0.4 year in Ozawa et al. [2012],
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although the mathematical model to express the postseismic change is different from ours).

The long-term postseismic gravity changes may reflect multiple processes possibly except for
afterslip. So far, several mechanisms have been proposed for the postseismic gravity changes,
e.g. viscous relaxation of rocks in the upper mantle [Han and Simons, 2008; Panet et al., 2007,
Tanaka et al., 2006; Tanaka et al., 2007], diffusion of supercritical water around the down-dip
end of the ruptured fault [Ogawa and Heki, 2007].

The viscoelastic mantle relaxation can play a major role in the long-term postseismic gravity
changes. Figure 3.10 shows the postseismic gravity changes for two years from observation and
from calculation on viscoelastic postseismic deformation with the method of Tanaka et al.
[2006; 2007]. This figure suggests that the mantle relaxation has the strong possibility to explain
postseismic gravity changes.

However, this does not necessarily rule out other possibilities, and also has a problem that the
viscoelastic relaxation normally takes a longer time (10 years or more) because of the high
viscosity of rocks in the upper mantle. The average viscosity in the upper mantle at ~100 km
depth is more than 10%° (Pa s) [Fei et al., 2013] while the calculation results in Figure 3.10
assumes the viscosity of 3X10'® (Pa s). I had to assume such a small viscosity to explain the
long-term postseismic gravity changes with the viscoelastic mantle relaxation. Even if the
mantle under the faults of 2004 Sumatra-Andaman earthquakes are much softer than the average,
the long-term postseismic gravity changes of the 2010 Chile (Maule) earthquake and the 2011
Tohoku-oki earthquake take only a few months for the gravity to start increasing. It is not
realistic that all of the viscosities of the rocks under the faults of the three megathrust
earthquakes are much lower than average. Viscoelastic mantle relaxation has strong possibility
that it plays an important role of long-term postseismic gravity changes but it cannot explain
them completely.

The diffusion of supercritical water around the down-dip end of the ruptured fault can explain
the postseismic gravity increase in the relatively short timescale to some extent, but there have
been no decisive evidence to prove or disprove it. And there is another problem: the diffusion of
supercritical water does not explain the distribution of the changes, i.e. they occur directly

above the rupture area.
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Figure 3.2 Coseismic (left), and short-term (middle) and long-term (right) postseismic gravity
changes of the three M9 class earthquakes, i.e. the 2004 Sumatra-Andaman (a), the 2010 Maule
(b), and the 2011 Tohoku-Oki (c) earthquakes. The postseismic gravity changes are expressed
with 2 year (the 2004 Sumatra-Andaman) and 1 year (the other two earthquakes) cumulative
changes. Time constants are shown on the figure. The yellow stars and black squares show the
epicenters and the approximate shapes of the faults that slipped in the earthquakes. The red
circles in (a) and the black circles in in (a), (b), and (c) show the points whose gravity time
series are shown in Figure 3.1 (red circles) and in Figure 3.4 (black circles). The contour
intervals in (a), (b), and (c) are 4 uGal, 3 puGal, and 3 pGal, respectively. The gravity show
coseismic decreases, then keep decreasing for a few months (short-term postseismic). It then
increases slowly (long-term postseismic) with slightly different spatial distribution from the

other two components.
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Figure 3.3 Co- (left) and postseismic (middle and right) gravity changes calculated with
GRACE data and GLDAS model. There is no improvement in the postseismic gravity changes
by considering land hydrological contribution with the GLDAS model (middle and right).
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Figure 3.4 Time series of gravity changes before and after the three megathrust earthquakes at
the black circles shown in Figure 3.2. The white circles are the data whose seasonal and secular
changes were removed. The vertical translucent lines denote the earthquake occurrence times.
All the three earthquakes suggest the existence of two postseismic components in gravity

changes with opposite polarities and distinct time constants.
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Figure 3.5 The distribution of observed coseismic gravity changes of 2004 Sumatra-Andaman
earthquake (left) and those calculated with the software of Sun et al. [2009] and the fault model
of Banerjee et al. [2005] (right) as described in Section 2.5. The amounts of gravity changes are
nearly consistent but the spatial pattern is significantly different. This may suggest the fault

model is not so good to explain the coseismic gravity change.
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Figure 3.6 The distribution of the observed coseismic gravity changes (left) of the 2010 Maule
earthquake and those calculated with the software of Sun et al. [2009] and the same fault model
as used in Heki and Matsuo [2010] (right). The two patterns are similar to each other. The black

squares, yellow stars, and black points are the same as in Figure 3.2.
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Figure 3.7 The distribution of observed coseismic gravity changes (left) of the 2011 Tohoku-oki
earthquake and those calculated with the software of Sun et al. [2009] and the same fault model
as in Matsuo and Heki [2011] (right). The two figures are similar to each other to a certain

extent. The black squares, yellow stars, and black points are the same as in Figure 3.2.
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454  Figure 3.8 (left) The same figure as Figure 3.2c-2 (right). The gravity changes of the afterslip
455  calculated with the slip distribution inferred from GPS data shown in Figure 3.9 [Koji Matsuo,
456  personal communication]. The amplitudes of gravity changes are consistent but there are

457  significant differences in their spatial patterns.
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458
459  Figure 3.9 The slip distribution of the afterslip of 2011 Tohoku-oki earthquake inferred from

460  GPS data [Koji Matsuo, personal communication].
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Figure 3.10 (left) The same figure as Figure 3.2a-3. (right) The gravity changes of the
viscoelastic mantle relaxation calculated with the viscosity of 310" (Pa s) by Yoshiyuki
Tanaka [personal communication], based on the algorithm of Tanaka et al. [2006; 2007]. Both

of the amounts and spatial patterns of gravity changes are similar to each other.

Next I perform the F-test to see if the two postseismic gravity change components are
statistically significant. The F-test is a statistical test to infer the possibility that the scatters of
two groups are the same. If this possibility is low enough, we can tell that the scatters of the two
groups are different (i.e. one is significantly smaller than the other) with a certain confidence. In
the next paragraph, I will briefly explain its procedure using equations (3.2) ~ (3.5).

At first, the short-term postseismic gravity changes are presumed to be noises. Then each data
becomes independent because they are just noises, so F-test can be done. If F-test showed that
the possibility of the coincidence is high, the hypothesis cannot be ruled out (i.e. the short-term
changes would be only noises). If the possibility is low, the hypothesis is turned down (i.e. the

short-term gravity changes would be real signals).
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I compared the variances between the two cases, i.e. (1) one exponential function, and (2) two

exponential functions with different time constants, at the black points in Figure 3.2 to do F-test.

, _ L(x—%)?
n—1
(3.2)
_wvariance1 _ of
~ variance 2 0_22
(3.3)
@1 Q)l_
f(; 1 2)_ ®2> F(&)r(%) (Z) %
2 2 (1 + ®—1F>
2
34
I'(z) = [ t*letdt,
3.5

where o2 is the variance (o is the standard deviation), x; are the values of data, X is the mean
of x;, n is the number of data x;. @ is the degree-of-freedom of the data (=n — 1), and 7’ is the
gamma-function. The value f gives the possibility that the difference of variances of two groups
is insignificant. In this study, the data x; are observed gravity values and X corresponds to the
fitted function (either one or two exponential functions).

The time constant for the case of single exponential function is determined so that the variance
of the whole data set becomes minimal. However, the two time constants for the function with
double exponential functions cannot be determined in this way because the inferred short- and
long-term postseismic gravity changes become too much to be realistic (they become larger than
coseismic gravity changes) with unrealistic spatial distributions (Figure 3.11). Though the
mechanisms of postseismic gravity changes are not clear, this is obviously unreasonable. The
time constants in the case of two exponential functions are determined subjectively so that the
model fits the data well near the epicenters.

I tried three cases in which the data lengths were taken as twelve, eighteen, or twenty months
after the earthquake. In all of these cases, unfortunately, the result of the F-test did not show that
the variances in the two-exponential-function model are significantly smaller than the
one-exponential-function model. This suggests that both of the models can approximate the
long-term time series equally well from statistical point of view. Obviously, we need evidence

other than F-test to claim the existence of the two component.
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Figure 3.11 The gravity changes calculated with the time constants of 0.3 year and 0.4 year,
which minimizes the variance within the yellow square after the earthquake. The area and the
term are decided because short-term postseismic gravity changes are seen well there. The other
marks are the same as Figure 3.2. Clearly, there are strong negative correlations between the
short- and long-term postseismic gravity changes (which are much larger than coseismic gravity
changes). When the yellow square is sifted, these distributions also change. These results are
quite unrealistic, and the simple method to minimize the variance (or RMS) cannot be used to

get two time constants.

3.2.2 Northward gravity changes (Observed)

The northward co- and postseismic gravity changes are also calculated from the GRACE data
with the Fan filter (» = 250km) but without de-striping filter. They are shown in Figures
3.13-3.20. Coseismic gravity changes have northward components. However, the northward
component is not so strong in the postseismic gravity changes (Figure 3.12). I also found that
there are no significant differences between the variances of the fits with single-component and
with two-components (long- and short-term components) (Figure 3.13). After all, monitoring of
the north gravity component has a certain “stripe-free” benefit, but it may not provide additional

information on the two components in the postseismic gravity changes.
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Figure 3.12 The co- (left) and short-term (middle) and long-term (right) postseismic changes in

the northward gravity component associated with the 2004 Sumatra-Andaman earthquake. The
all symbols are the same as Figure 3.2. The coseismic gravity change is fairly large but

postseismic gravity changes are not so clear as in the vertical gravity component.
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Figure 3.13 The time series of northward gravity changes of the 2004 Sumatra-Andaman
earthquake at the point shown with a black circle in Figure 3.12 (95E, 5N). The gravity
decreased a little after the earthquake, but the longer-term component is not clear in this time

series.
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552  Figure 3.14 The co- (left) and short- (middle) and long-term (right) postseismic northward
553  gravity changes of the 2010 Chile (Maule) earthquake. The all symbols are the same as Figure
554  3.2. Although the coseismic gravity changes are clear, postseismic gravity changes are not
555  obvious.
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559  Figure 3.15 The time series of the northward gravity changes before and after the 2010 Chile
560  (Maule) earthquake at the point shown with a black circle in Figure 3.14 (75W, 35Y5).
561  Postseismic gravity change is seen well but this is not seen in Figure 3.14 because the

562  postseismic gravity changes are modeled with only single exponential component.
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Figure 3.16 The time series of northward gravity changes before and after the 2010 Chile
(Maule) earthquake at (72W, 338S), the center the region showing postseismic increase (bright
red part) in Figure 3.14 (right). The short-term decreased over the first few months after the
earthquake and long-term increase are seen, but they are not so clear as in the vertical

component.
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Figure 3.17 The co- (left) and short- (middle) and long-term (right) postseismic northward
gravity changes of the 2011 Tohoku-oki earthquake. The all symbols are the same as Figure 3.2.
Although the coseismic gravity changes are clear, postseismic gravity changes are not so clear

as in the vertical component.
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Figure 3.18 The time series of northward gravity changes before and after the 2011 Tohoku-oki
earthquake at the point shown with a red circle in Figure 3.17 (139E, 42N). The postseismic

changes are modeled only with a single exponential function.
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Figure 3.19 The time series of the northward gravity changes before and after the 2011
Tohoku-oki earthquake at the point shown with the blue circle in Figure 3.17 (139E, 36N). Two
components of the postseismic gravity change are clearly seen although their statistical

significance is not clear (because the middle panel of Figure 3.17 looks fairly noisy).

3.3 Contributions to geodynamics

This study suggests that the gravity is the unique method to separate two postseismic
phenomena. Fault ruptures in earthquakes are observed with seismographs, and can be studied
quantitatively in terms of surface displacements using GNSS networks. However, the two
representative postseismic phenomena, i.e. afterslip and mantle relaxation, are difficult to

separate with these conventional sensors. In this study, these two components of postseismic
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phenomena are suggested to emerge as the gravity changes with different polarities. This
suggests the unique role of satellite measurement of time-variable gravity to separate these two
processes.

It is important to understand postseismic phenomena in order to understand the physics behind
earthquakes. It might be also important to investigate when and where earthquakes occur
because the mechanisms of postseismic phenomena may also govern co- or preseismic
processes. I would be happy if the present study could move the frontier of the knowledge
farther ahead.

4. Summary

Satellite gravimetry is considered to be the third sensor to observe earthquakes after the
networks of seismometers and GNSS receivers that observe seismic waves and static crustal
deformation, respectively. The data from the GRACE satellites, which enable us to study time
variable gravity fields of the earth, give us insight into phenomena involving mass movements
at depth. They also let us know two-dimensional distribution of gravity changes associated with
large earthquakes.

Three mega-thrust earthquakes, i.e. the 2004 Sumatra-Andaman earthquake, the 2010 Chile
(Maule) earthquake, and the 2011 Tohoku-oki earthquake, occurred after the launch of the
GRACE satellites in 2002. In this study, I studied the gravity changes associated with these
earthquakes using the GRACE data. The main finding is that the postseismic gravity changes
are composed of two distinct components, i.e. short- and long-term gravity changes. Coseismic
gravity drops continue for a few months (short-term postseismic changes), and then gravity
increases gradually over a year or longer (long-term postseismic changes). I tried F-test to check
if the post-fit gravity residuals significantly decrease by assuming the two components, between
the observation and the calculation. However, the decrease of the residual was not large enough
to be significant from statistical point of view.

I also studied the changes in the north component of the gravity field because they are free
from longitudinal stripes. Although clearer coseismic changes are observed in this component,
their postseismic gravity changes did not suggest the existence of the two components so clearly
as the vertical component.

The physical mechanisms of the short- and long-term postseismic gravity changes would be
explained with afterslip and viscoelastic mantle relaxation, respectively, to some extent.
However, they also have some problems. Afterslip has a problem of spatial pattern. The
calculation of gravity changes caused by the afterslip gives the amplitude fairly consistent with

the observations. However, its spatial distribution often does not match with the observed
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pattern sufficiently. Viscoelastic mantle relaxation has a problem in time constant. We could
reproduce the spatial pattern consistent with the observed long-term postseismic changes of the
2004 Sumatra-Andaman earthquake by using the model by Tanaka et al. [2006; 2007]. However,
we have to assume much lower viscosity of the upper mantle than those inferred by various
observations. The long-term postseismic gravity changes of the 2010 Chile (Maule) and the
2011 Tohoku-oki earthquakes took only a few months to start increasing. Even if the upper
mantle beneath the faults of the 2004 Sumatra-Andaman earthquakes has a fairly low viscosity,
similar low viscosity upper mantle should also lie beneath the NE Japan and central Chile. I
think it rather unrealistic that the viscosities of the rocks under the faults of all the three
megathrust earthquakes are much lower than the global average. Then, other mechanisms may
be needed to explain the long-term postseismic gravity changes.

The mechanisms of postseismic gravity changes are still ambiguous, and will need long
discussion in the future. Nevertheless, the gravity observation is considered to be the important
“third sensor” of earthquakes to investigate postseismic phenomena in an approach that the first

(seismographs) and the second (GNSS and SAR) sensors cannot take.
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B, FREHE O BHRZIOES 2R L BnET. AEHERIIAE BAF- TL
ZED, BICIERAOSETE 24T 2852 <7230, FRCITEkA 27 a0fimaic
ML Tk RAFEE O # Ligin T D2 52 T &Y, £2RIET 4 —F
T T VAR FOHFEERNI LTS, RYICHEARE TR LTWeEEE L
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