# Geodetic and seismological study of slow earthquakes and inter-plate coupling in the Ryukyu subduction zone



by

# Yoko TaoLin Tu

Department of Natural History Science Graduate School of Science, Hokkaido University September 2018

# Contents

| Acknowledgement | vi  |
|-----------------|-----|
| Abstract        | vii |

## Chapter 1. Ryukyu Subduction Zone

| 1.1 Subduction zones                                                     | 2  |  |
|--------------------------------------------------------------------------|----|--|
| 1.1.1 What are subduction zones?                                         | 2  |  |
| 1.1.2 Where are subduction zones?                                        | 4  |  |
| 1.1.3 Large earthquakes and subduction zones                             | 6  |  |
| 1.2 Geological setting of the Ryukyu Trench                              | 9  |  |
| 1.2.1 Plate tectonics                                                    | 9  |  |
| 1.2.2 Bathymetry                                                         | 11 |  |
| 1.2.3 Seafloor ages                                                      | 13 |  |
| <b>1.3 Historical large earthquakes in the Ryukyu subduction zone</b> 14 |    |  |
| 1.3.1 1771 Yaeyama earthquake                                            | 16 |  |
| 1.3.2 1911 Kikai earthquake                                              | 16 |  |
| 1.4 Issue of the Ryukyu Trench: coupled or decoupled?                    |    |  |
| 1.5 Primary purposes of this study                                       |    |  |

# Chapter 2. Slow earthquakes

| 2.1 | 1 What are slow earthquakes?                 | 22 |
|-----|----------------------------------------------|----|
| 2.2 | 2 Development of slow earthquake research    | 24 |
| 2.3 | 3 The slow earthquake family                 | 29 |
|     | 2.3.1 Slow slip events (SSEs)                | 31 |
|     | 2.3.2 Very low frequency earthquakes (VLFEs) | 32 |
|     | 2.3.3 Low frequency earthquakes (LFEs)       | 33 |

| 2.3.4 Episodic tremor and slip (ETS) | 35 |
|--------------------------------------|----|
| 2.4 Distribution of slow earthquakes |    |
| 2.4.1 Nankai Trough                  | 37 |
| 2.4.2 Ryukyu Trench                  | 39 |
| 2.5 Primary objectives of this study |    |

# Chapter 3. Slow Slip Events (SSEs)

| 3.1 | Introduction                                           | 44 |
|-----|--------------------------------------------------------|----|
|     | 3.1.1 What are slow slip events (SSEs)?4               | 44 |
|     | 3.1.2 Where do SSEs occur?                             | 44 |
|     | 3.1.3 SSEs in the Ryukyu Trench4                       | 45 |
|     | 3.1.4 Purposes of this study                           | 46 |
| 3.2 | Data and method                                        | 48 |
|     | 3.2.1 Detection of SSEs                                | 48 |
|     | 3.2.2 Model for the time series                        | 49 |
|     | 3.2.3 Estimation of fault parameters                   | 50 |
| 3.3 | Results                                                | 52 |
|     | 3.3.1 Characteristics of SSEs                          | 52 |
|     | 3.3.2 Fault Parameters of the SSEs                     | 53 |
|     | 3.3.3 Time-predictable recurrence                      | 56 |
|     | 3.3.4 Fluctuations of slip accumulation rate           | 57 |
| 3.4 | Discussion                                             | 50 |
|     | 3.4.1 Mechanisms of time-variable slip accumulation    | 50 |
|     | 3.4.2 Stress increases and the enhancement of slips    | 53 |
|     | 3.4.3 Coupling ratio of the southwestern Ryukyu Trench | 54 |
|     | 3.4.4 Comparison with other SSEs                       | 54 |
| 3.5 | Summary                                                | 59 |

# 4.1.1 What is a very low frequency earthquake (VLFE)?.....72 4.1.3 VLFEs in the Ryukyu Trench......73 4.1.4 Purposes of this study......74 4.3.6 Amplitude-magnitude (A-M) relation......96 4.4.1.3 Southern Kyushu area......105 4.4.2. Spatial correlations of VLFEs, SSEs, and large (M-8 class) ordinary earthquakes.109 4.4.3 Along-strike variation of earthquake distribution......116 4.4.4 Migration of VLFE activities......119

## Chapter 4. Very Low Frequency Earthquakes (VLFEs)

| 4.5 | ummary | 7 |
|-----|--------|---|
|     |        |   |

## Chapter 5. Repeating Very Low Frequency Earthquakes (RVLFEs)

| 5.1 Intro | duction                                                                | 130 |
|-----------|------------------------------------------------------------------------|-----|
| 5.1.1     | Repeating earthquakes (REs)                                            | 130 |
| 5.1.2     | Very low frequency earthquakes (VLFEs)                                 | 131 |
| 5.1.3     | Repeating VLFEs (RVLFEs)                                               | 132 |
| 5.1.4     | Purposes of this study                                                 | 132 |
| 5.2 Data  | and method                                                             | 134 |
| 5.2.1     | Detections of VLFEs                                                    | 134 |
| 5.2.2     | Observations of RVLFEs                                                 | 134 |
| 5.2.3     | Determinations of hypocenters and source mechanisms                    | 137 |
| 5.2.4     | Evaluations of the reliability of the waveform inversion               | 138 |
| 5.3 Resu  | lts                                                                    | 140 |
| 5.3.1     | Waveform similarity                                                    | 140 |
| 5.3.2     | Hypocenters and focal mechanisms                                       | 143 |
| 5.3.3     | Location errors                                                        | 145 |
| 5.3.4     | Recurrence intervals                                                   | 148 |
| 5.3.5     | Mainshock-aftershock relations                                         | 150 |
| 5.3.6     | <i>b</i> -values                                                       | 151 |
| 5.4 Discu | issions                                                                | 154 |
| 5.4.1     | Spatial correlations between RVLFEs and other repeating seismic events | 154 |
| 5.4.2     | Activity correlations between RVLFEs and SSEs                          | 159 |
| 5.4.3     | Burst type or continuation type                                        | 162 |
| 5.4.4     | Fault zone and seismic slip rate                                       | 164 |
| 5.5 Sumr  | mary                                                                   | 167 |

# Chapter 6. Conclusions

| 6.1 Slow slip events (SSEs)                                                    | 170           |
|--------------------------------------------------------------------------------|---------------|
| 6.2 Very low frequency earthquake (VLFEs)                                      | 170           |
| 6.3 Repeating very low frequency earthquakes (RVLFEs)                          | 171           |
| 6.4 Duration and magnitudes of the SSEs and VLFEs in the Ryukyu subduction zon | <b>ie</b> 172 |
| 6.5 Ryukyu subduction zone                                                     | 173           |

| Reference                                                                       | 175 |
|---------------------------------------------------------------------------------|-----|
| Supporting materials                                                            | 189 |
| S1. The catalog of VLFEs in 2005-2012                                           | 189 |
| S1-F1. 24-hour seismograms of VLFEs activated by the $M_w$ 8.3 Kuril earthquake | 209 |
| S2. The catalog of RVLFEs in 2005-2012                                          | 215 |

# Acknowledgement

I greatly appreciate my advisor Prof. K. Heki. Without his guidance, I cannot finish this thesis. Moreover, I am deeply grateful to Prof. M. Ando of Shizuoka University, Prof. H. Kumagai, and Prof. Y. Yamanaka of Nagoya University for their suggestions and assistance for this study. I also want to thank my family, friends, and people who I met in Japan. Thank you for giving me the warmest friendship and great support. Finally, I would like to thank the Japan-Taiwan Exchange Association and the Hokkaido University for the grant. The economic supports let me can concentrate on my research and enjoy the life in Japan.

Moreover, the broadband seismograms used in this study are provided by the NIED F-net in Japan (http://www.fnet.bosai.go.jp/top.php?LANG=ja) and BATS in Taiwan (http://tecws.earth.sinica.edu.tw/BATS/index\_login3.php). The GNSS data are supplied by GSI GONET in Japan (http://terras.gsi.go.jp/geo\_info/geonet\_top.html). This work used GMT, SAC, and Seis-PC software. Here, I express my appreciation to above research and development groups.

# Abstract

Slow earthquakes are important phenomena in discussing how plates converge in subduction zones. Here I detected slow slip events (SSEs) and very low-frequency earthquakes (VLFEs) in the Ryukyu Trench using GEONET (GNSS Earth Observation Network) GNSS (Global Navigation Satellite System) data and board-band seismic data of F-net and BATS (Broadband Array in Taiwan for Seismology) in order to investigate interplate coupling in this subduction zone.

From 1997 to 2016, I identified 38 SSEs beneath the Iriomote Island, southwestern Ryukyu Arc. These events occurred biannually on the same fault patch at a depth of ~30 km on the subducting Philippine Sea Plate slab with average moment magnitudes (M<sub>w</sub>) of ~6.6. Their slip accumulation rate varies in time and increases in 2002 and 2013, coinciding with the activation of the back-arc spreading as indicated by the earthquakes swarms in the Okinawa Trough. It suggests that episodic activations of the back-arc spreading at the Okinawa Trough caused extra southward movement of the block south of the trough and accelerated convergence at the Ryukyu Trench.

From 2005 to 2012, a total of 29,841 VLFEs were detected in the Ryukyu area also. These events are distributed near the Ryukyu Trench axis and have shallow thrust-faulting mechanisms, which indicates that they probably occur in the accretional prism or on the shallow plate interface of the Ryukyu subduction zone. Moreover, these VLFEs are characteristic of high *b*-values (2.3-5.0), and nearby SSEs often influence their activities. For example, in the Sakishima, Okinawa, and Amami areas, VLFEs are activated in 5-30 days,

vii

0-15 days, and 0-5 days, respectively, after the start of SSEs.

Among these VLFEs, 97 events south of the Miyako Island showed notable similarities in waveforms, amplitudes, magnitudes, and source mechanisms. These events recurred in the same area with an average interval of ~50 days. This new type of VLFEs, named as repeating very low frequency earthquakes (RVLFEs), are similar to small repeating earthquakes in the creeping zone of the plate boundaries. Seismic slip released by the RVLFEs is about 3-42 % of the average plate convergence in this segment of the subduction zone, significantly smaller than that of 72 % released by the repeating SSEs.

From the locations of SSEs and VLFEs detected in this study, and two suspect megathrust earthquakes (M<sub>w</sub>>8) in the Ryukyu area, slow and ordinary earthquakes in the Ryukyu Trench are found to occur in following depths, Sakishima: megathrusts (locked zone, ~10 km), VLFEs (~20 km), and SSEs (~30 km), and Okinawa: VLFEs (~20 km) and SSEs (~30 km). However, the situation in the Amami area is not well understood due to the complex tectonic setting and inaccurate hypocenters of large earthquakes and VLFEs.

# Chapter 1.

# **Ryukyu Subduction Zone**

## 1.1 Subduction zones

#### 1.1.1 What are subduction zones?

The lithosphere (containing the crust and shallow upper mantle) forms the outermost layer of the solid earth, which consists of several hundred tectonic plates. These plates (including oceanic and continental plates) float upon the asthenosphere and move relative to one another by the thermal convection of the mantle (Figure 1.1). Based on the relative movement of plates, their boundaries can be classified into three types, i.e., convergent, divergent, and transform fault (Figure 1.1). At convergent boundaries, plates collide with each other and often form majestic mountain ranges (e.g., Himalaya, the highest mountain system on Earth, caused by the convergence of two continental plates) or oceanic trenches (e.g., Mariana, the deepest trench on Earth, due to the convergence of two oceanic plates). In contrast, at divergent boundaries, plates are pushed apart by magma rising from the mantle to the surface. This process renews the oceanic plates and let the marine basins spread. Two typical cases for the type of boundaries are the mid-ocean ridge in the Atlantic Ocean and the Great Rift Valley in the continent of Africa. Moreover, at transform fault boundaries, plates slide sideways in front of each other. These boundaries are different from the convergent and divergent types; they cannot produce spectacular landforms such as high mountains or deep oceans but still can generate large earthquakes (e.g., the M<sub>w</sub> 7.9 San Francisco earthquakes of Apr. 18, 1906 along the San Andreas Fault in California).

Subduction is a geological process that occurs at the convergent plate boundaries. When two tectonic plates (usually consists of two oceanic plates or one oceanic and one continental plates) converge, the heavier plate will sink into the mantle under the lighter plate due to the gravitational force. This is called subduction. In this process, a large number of earthquakes occur along the slabs subducting to the depth. Additionally, the volcanism caused by the arc magmatism related to the melting of the upper mantle at the upper surface of the subduction slab is also activated. The region influenced by the subduction process can extend landward one to several hundreds of kilometers from the trench axis depending on the dip angle of the subduction slabs. Such an area is known as the *subduction zone*.



**Figure 1.1.** Schematic image of plate tectonics and three types of plate boundaries. (Diagram by the courtesy of the U.S. Geological Survey, https://pubs.usgs.gov/gip/dynamic/Vigil.html)

#### 1.1.2 Where are subduction zones?

Subduction zones exist along convergent plate boundaries, where at least one of tectonic plates is an oceanic plate. As shown in Figure 1.2, most subduction zones are located around the Pacific Ocean. These subduction zones can be divided into two major groups based on the type of plates (Figure 1.3). One of the groups is related to the convergence of two oceanic plates, characterized by an island arc parallel to the trench axis (Figure 1.3a). One typical example for this type of subduction zones is the Mariana Trench at the west margin of the Pacific Plate (Figure 1.2). The other group of subduction zones is caused by the oceanic-continental plate convergence (Figure 1.3b). This type of subduction zones forms a remarkable chain of volcanoes at the border of continental plates, and its oceanic trench is closer to the coastline in comparison to the type of the oceanic-oceanic plate convergence (Figure 1.3b). The Cascadia subduction zone in North America (Cascadia faces Canada and USA.) and the Peru-Chile Trench in South America are two typical examples (Figure 1.2).



**Figure 1.2.** Distribution of convergent plate boundaries (barbed lines) including subduction zones, whose names are shown in red, and continental collision zones, whose names are shown in blue. (Modified from Figure 1 of Stern, 2002) (Base-map by the courtesy of the Encyclopaedia Britannica, https://www.britannica.com/science/subduction-zone)



**Figure 1.3.** Schematic image of two types of subduction zones as (a) oceanic-oceanic plate convergence, and (b) oceanic-continental plate convergence. (Diagram courtesy of the U.S.

Geological Survey, https://www.usgs.gov/media/images/subduction-fault-zone-diagram; https://walrus.wr.usgs.gov/tsunami/sumatraEQ/tectonics.html)

#### 1.1.3 Large earthquakes and subduction zones

Although approximately 90 % of earthquakes occur in subduction zone areas, large interplate earthquakes (M<sub>w</sub> >8) only occur in few subduction zones and do not show a random distribution (Figure 1.4). Uyeda and Kanamori (1979) first discussed this phenomenon and attempted to understand its causes by analyzing characteristics of subduction zones where large interplate earthquakes occur. They found that these subduction zones seemed to have similar properties. Moreover, all subduction zones on Earth probably followed an evolution mode and could be classified into several different stages based on the age of subducting sea floor, the arc-normal stress, and the existence of active back-arc basins. The two extreme cases of this evolution mode are the Chilean and the Mariana types, respectively (Figure 1.5).

In the Chilean type subduction zones, a young (< 50 Ma), hot, and thin oceanic plate subducts beneath a continental plate (Figure 1.5). Such a relatively light subducting plate resists the subduction process due to high buoyant. This causes high seismicity and high coupling between the upper and lower slabs and induces the occurrence of large interplate earthquakes. Moreover, this type of subduction zones also has other significant characteristics, such as shallow dip angles, shallow seismic zones, and shallow oceanic trenches (Figure 1.5). The most famous example is the Peru-Chile Trench in South America (Figure 1.2). There, several large interplate earthquakes have occurred in the past 100 years,

including the  $M_w$  9.5 Chile earthquake in 1960, the largest earthquake recorded in the human history (Figure 1.4).

In contrast, the subducting plate in the Mariana type subduction zones is an old (> 50 Ma), cold, and thick oceanic plate. Such a relatively dense subducting plate can dive smoothly into the mantle, and causes low seismicity and low interplate coupling. Large interplate earthquakes rarely occur in such subduction zones. Moreover, they are also characterized by steep dip angles, deep oceanic trenches, and the existence of active back-arc opening systems (Figure 1.5). A typical case for this type of subduction zones is the Mariana Trench in the western Pacific Ocean (Figure 1.2).



Figure 1.4. Global earthquake distribution and 20 largest earthquakes in the world.(Diagram courtesy of the U.S. Geological Survey,https://earthquake.usgs.gov/earthquakes/byregion)



**Figure 1.5.** Two extreme types of subduction zones. (From Figure 7 of Uyeda and Kanamori, 1979)

## 1.2 Geological setting of the Ryukyu Trench

#### **1.2.1 Plate tectonics**

Japan is surrounding by several subduction zones, such as the Japan Trench, Nankai Trough, and Ryukyu Trench, generated by the interaction of the Eurasian, Philippine Sea, North America, and the Pacific plates (Figure 1.6). The southernmost Ryukyu Trench is a convergence plate boundary between the Eurasian Plate and the Philippine Sea Plate, extending ~2000 km from southern Kyushu to eastern Taiwan (Figure 1.6). Along this trench, the Philippine Sea Plate subducts beneath the Eurasian plate at a rate of ~8 cm/year (Hsu et al., 2012; Nakamura, 2009).

Northeast of the Ryukyu Trench runs the Ryukyu Arc and the Okinawa Trough (Figure 1.6). Unlike general island-arcs dominated by igneous rocks made by subduction magma activities, the Ryukyu Islands are composed of Holocene sediments and Pleistocene conglomerate and limestone (Ando et al., 2018). In addition, both geological (e.g., Yamano et al., 2001; 2003) and geodetic (Iwasa and Heki, 2018) data reveal that the uplift of these islands is non-uniform both in time and space. The Okinawa Trough lying behind the Ryukyu Arc is an active back-arc spreading system (Sibuet al., 1987). It causes the Ryukyu islands move trench-ward as demonstrated by the rapid southward movements of the Globe Navigation Satellite System (GNSS) stations there (Figure 1.7). Given the opening rate of the Okinawa Trough at the southwest segment is ~5 cm/year (Nishimura et al., 2004), the convergent rate between the southwestern part of the Ryukyu Arc and the Philippine Sea plate is probably up to 12.5 cm/year (Heki and Kataoka, 2008; Hsu et al., 2012).



**Figure 1.6.** The plate tectonic map around the Japan Islands. The blue curves show the plate boundaries with the Eurasian, Philippine Sea, North America, and the Pacific plates. The orange dashed rectangle represents the geometry range of the Ryukyu area, studied here. The Ryukyu Trench, Ryukyu Arc, and Okinawa Trough, three major geological structures in the Ryukyu area, run in parallel. Along the Ryukyu Trench, the Philippine Sea Plate subducts beneath the Eurasian Plate at a rate of ~8 cm/year (Nakamura, 2009; Hsu et al., 2012).



**Figure 1.7.** Velocities of GNSS stations (red arrows) relative to the Eurasian Plate during the period of 2000-2010. The data is from GEONET (GNSS Earth Observation Network), run by Geographical Information Authority (GSI) of Japan.

## 1.2.2 Bathymetry

The northern Philippine Sea Plate consists of two inactive marginal basins, i.e., the Shikoku Basin and the West Philippine Basin (Figure 1.8), whose evolutionary histories have been described in detail in several studies (e.g., Okino et al 1999; Deschamps and Lallemand, 2002). The West Philippine Basin subducts northward along the Ryukyu Trench and is bounded by the Kyushu-Palau ridge in the east and by the Gagua ridge in the west (Figure 1.8). Based on the bathymetry, the West Philippine Basin can be divided into two distinct subareas, i.e., the southwest block close to the Ishigaki, Miyako, and Okinawa Islands with a smooth seabed, and the northeast block near the Amami Island with several bathymetric highs (Figure 1.8). These marine ridges at the northeast block of the West Philippine Basin are Oki-Daito ridge, Daito ridge, and Amami Plateau from SW to NE. They are considered to be the remnants of paleo-island arcs subducting beneath the Ryukyu Trench together with the Philippine Sea Plate (Nishizawa et al., 2014).

The Kyushu-Palau Ridge near the Kyushu Island separates the Shikoku Basin from the West Philippine Basin (Figure 1.8). The two basins are subducting at the Ryukyu Trench and the Nankai Trough, respectively, and the Kyushu-Palau Ridge bounds these two subduction zones (Figure 1.8). The bathymetry of the Shikoku Basin is similar to the west block of the West Philippine Basin, i.e., smooth seafloor without significant bathymetric highs.



Figure 1.8. Bathymetry map of the northern Philippine Sea Plate. It is composed of the West

Philippine Basin and the Shikoku Basin. The two basins are bounded by the Kyushu-Palau Ridge and subduct beneath the Eurasian Plate along the Ryukyu Trench and Nankai Trough, respectively. Several linear structures lie on the eastern block of the West Philippine Basin. They are the remnants of paleo-island arcs subducting at the Ryukyu Trench (Nishizawa et al., 2013). The bathymetry of the Shikoku Basin is similar to the western block of the West Philippine Basin, having smooth seafloors with few bathymetric highs.

#### 1.2.3 Seafloor ages

The seafloor ages of the northern Philippine Sea Plate vary from region to region. As illustrated in Figure 1.9, the seafloor ages along the Ryukyu Trench (i.e., the west block of the West Philippine Basin) falls within 50-70 Ma, while those along the Nankai Trough (i.e., the Shikoku Basin) are only 20-35 Ma. As for the region around the Amami Island (i.e., the east block of the West Philippine Basin), the seafloor is considered to have a younger age due to the existence of paleo-island arcs (Muller et al., 2008). Such a difference significantly influences the subduction process of the Philippine Sea Plate and causes diverse seismic activities and complex crustal deformations in this region. Furthermore, based on this factor, several studies classified the Nankai Trough and the Ryukyu Trench into the Chilean type and the Mariana type subduction zone, respectively (e.g., Peterson and Seno, 1984; Scholz and Campos 2012), even though these two subduction zones belong to the same tectonic plate.



**Figure 1.9.** The seafloor age of the Philippine Sea Plate and the Pacific Plate around Japan. The data are provided by Muller et al. (2008). The seafloor age along the Ryukyu Trench falls into 50-70 Ma, which is significantly older than that of 20-35 Ma along the Nankai Trough. However, due to the existence of oceanic paleo-island arcs, the age of the seafloor subducting around the Amami Island are much younger than other regions.

## 1.3 Historical large earthquakes in the Ryukyu Trench

The Ryukyu Trench is different from the Nankai Trough or the Japan Trench; large interplate earthquakes ( $M_w \ge 8$ ) have not been reported in this region (Peterson and Seno,

1984; Ando et al., 2009; Nakamura, 2009; Scholz and Campos 2012). Figure 1.10 exhibits the disaster earthquakes ( $M_w \ge 7.0$ ) that have occurred along the Ryukyu Trench from 1700 to 2015. It is interesting to note that most of the earthquakes are located in eastern Taiwan and the offshore of Kyushu. Only very few events have occurred near the Ryukyu Trench axis. Among these earthquakes, I marked two significant events on this map, i.e., the 1771 Yaeyama earthquake and the 1911 Kikai earthquake, because they have larger magnitudes ( $M_w \ge 8$ ) and seem to have occurred on the plate boundary of the Ryukyu subduction zone.



**Figure 1.10.** Distribution of disaster earthquakes ( $M_w \ge 7$ ) in the Ryukyu area. The yellow and blue stars show the epicenters of the 1771 Yaeyama earthquake and the 1911 Kikai earthquake, respectively. The data are from the earthquake catalog of Japan Meteorological Agency (JMA).

#### 1.3.1 1771 Yaeyama earthquake

The 1771 Yaeyama earthquake occurred near the Ishigaki Island, southwestern Ryukyu Arc (Figure 1.10). This event was accompanied by a disastrous tsunami that struck Ishigaki and surrounding islands with the maximum run-up height of ~30 m and caused fatalities of one-third of the populations on the Ishigaki Island (Goto et al., 2012). For the mechanism of this event, Imamura et al. (2001, 2008) suggested that it was an extensive submarine landslide triggered by an M7-class intraplate earthquake, whereas Nakamura (2009b) considered that it should be an M<sub>w</sub> 8.0 tsunami (slow) earthquake near the Ryukyu Trench axis. Recently, Ando et al., (2018) investigated paleotsunami deposits on the Ishigaki Island and proposed that this earthquake might be an ordinary subduction thrust earthquake of  $M_w > 8.0$  based on earthquake-induced ground cracks observed in the soil bed underlying the Yaeyama tsunami sediments. It means that the 1771 earthquake is probably a large interplate earthquake ( $M_w \ge 8.0$ ) that occurred on the subduction plate interface of the southwestern Ryukyu Trench.

#### 1.3.2 1911 Kikai earthquake

The 1911 Kikai earthquake occurred near Amami Island (Figure 1.10), and its signal was recorded as far as Tokyo (> 1000 km) (Usami, 1988). This earthquake generated strong ground shaking that destroyed approximately 400 houses on Kikai Island and caused a tsunami (< 3m) with slight damage to surrounding islands (Hatori, 1988; Goto, 2013). Several studies considered this earthquake as an intraplate earthquake with a depth of  $\geq$ 

100 km ( $M_w \ge 8$ ) (e.g., Utsu, 1982; Abe and Kanamori, 1979). However, Goto (2013) relocated its hypocenter using old smoked seismograms and proposed that this event was a large shallow interplate earthquake ( $M_w 8.0$ ) near the Ryukyu Trench axis. That is, the 1911 Kikai earthquake may be another case of large interplate earthquakes that occurred in the Ryukyu subduction zone.

## 1.4 Issue of the Ryukyu Trench: coupled or decoupled?

As mentioned by Uyeda and Kanamori (1979), all subduction zones on Earth could be roughly divided into the Chilean and Mariana types based on the sea floor age, the arc-normal stress, and the existence of active back-arc basins (Figure 1.5). The Chilean type subduction zones have a young (< 50 Ma) subducting plate, which causes a low dipping seismic zone due to weaker negative buoyancy. The plate motion of this type of subduction zones is seismic, i.e., their coupled is high, and large interplate earthquakes may occur. In contrast, the Mariana type subduction zones possess an old (> 50 Ma) subducting plate, which results in a large dip-angle seismic zone and low coupling ratio between the upper and lower slabs. There, the plate motion is aseismic, and large interplate earthquakes seldom occur.

Under this hypothesis, the Ryukyu Trench should be classified into the Mariana type subduction zone because it has an older subducting plate (> 50 Ma, Figure 1.9) and an active back-arc opening system (Okinawa Trough; Sibuet al., 1987). Additionally, the absence of large interplate earthquakes in the past 300 years (Ando et al., 2009; Scholz and Campos

2012) and the trenchward monition of the Ryukyu Arc from GNSS observations (Figure 1.7) all indicate that the plate motion of the Ryukyu Trench is aseismic, i.e., the plate boundary here may be decoupled or weakly coupled (Peterson and Seno, 1984; Scholz and Campos 2012).

However, several investigations, such as the excavation of palotsunami sediments (e.g., Ando et al., 2018), slow earthquake detections (Heki and Kataoka, 2008; Ando et al., 2012; Nishimara, 2014; Nakamura and Sunakawa, 2015, Arai et al., 2016, Nakamura 2017), seafloor geodetic observations (Nakamura et al., 2010; Chen at al., 2018), the analysis of geological structures (e.g., Lin et al., 2014), and the estimation of locked zones from GNSS observations (e.g., Hsu et al., 2012) also suggest that the Ryukyu Trench may have slight, but significant interplate coupling and has potential to generate large interplate earthquakes. Such diverse views indicate that we have only insufficient understandings of the subduction process in the Ryukyu Trench. Hence, more detailed and multiple-approach studies are crucial.

## 1.5 Primary purposes of this study

The primary purpose of this study is to clarify the interplate coupling of the Ryukyu subduction zone. To achieve this goal, I focus on the subject of slow earthquakes. Slow earthquakes are a newly discovered type of earthquakes within the past of 50 years (Beroza and Ide, 2011). Theses earthquakes often observed in strongly coupled subduction plate boundaries, such as the Nankai Trough and the Cascadia subduction zone, and were

considered to be related to large interplate earthquakes (Obara and Kato, 2016). However, they are also detected in the Ryukyu Trench (e.g., Heki and Kataoka, 2008; Ando et al., 2012). Hence, I selected this subject for this study and expected that the properties of slow earthquakes and its relation with other seismic events could help us understand the general feature of the plate convergence in the Ryukyu subduction zone. Chapter 1: Ryukyu subduction zone

# Chapter 2.

**Slow Earthquakes** 

### 2.1 What are slow earthquakes?

Earthquakes are the ground shaking of the Earth, which release strain by fault ruptures/slips in the Earth's interior. Ordinarily, earthquake faults are locked due to the friction of fault planes, but the rupture/slip starts when the accumulated strain exceeds the friction. Because the way of fault slips and strain release is diverse, the velocity of fault slips can range from 10<sup>-9</sup> (creeping along plate boundaries) to 10<sup>0</sup> m/s (fast slippage along faults). A rapid slip of faults generates high-frequency elastic waves that propagate in the Earth and cause detectable ground shaking, i.e., ordinary (or regular) earthquakes (Utsu, 2001). In contrast, a slow fault slip predominantly generates low-frequency elastic waves (Beroza and Ide, 2011). Such earthquakes known as slow earthquakes are undetectable with short-period seismometers and do not cause significant ground shaking.

Although both slow earthquakes and ordinary earthquakes are phenomena of fault slips, the frequency contents of seismic energy radiated from them are fairly different. For example, slow earthquakes release energy over a period of seconds to years (Figure 2.1), significantly longer than that of seconds to minutes of ordinary earthquakes (Obara and Kato, 2016). Moreover, this type of earthquakes generates seismic waves inefficiently relative to ordinary earthquakes, especially at the high-frequency components (Figure 2.2) (Beroza and Ide, 2011). That is, they are characterized by low-frequency signals, and only high-sensitivity broadband seismometers and long-term geodetic/strain measurements can record these events (Beroza and Ide, 2011).



**Figure 2.1.** Waveforms of an ordinary earthquake and four types of slow earthquakes, i.e., low-frequency tremor, very low-frequency earthquake (VLFE), low-frequency earthquake (LFE), and slow slip event (SSE). Most of the slow earthquakes have a longer duration than the ordinary earthquake. (Modified from Figure 1 of Peng and Gonberg, 2010)



Figure 2.2. EW-component waveforms of a slow earthquake (upper) and an ordinary

earthquake (bottom) in the Cascadia subduction zone. The seismograms are filtered in 0.02-0.05 Hz (red) and 2-8 Hz (black), respectively. Waves from the slow earthquake are dominated by low-frequency signals and depleted in high-frequency components (From Figure 2 of Ghosh et al., 2015)

### 2.2 Development of slow earthquake research

Over the past 50 years, scientists have noted some seismic events that occurred much more slowly than regular earthquakes (Beroza and Ide, 2011). These anomalous events such as creeping tremors (e.g., Kanamori and Setwart, 1979), tsunami earthquakes (e.g., Kanamori, 1972; Kanamori and Kikuchi, 1993), and silent earthquakes (e.g., Beroza & Jordan 1990; Kawasaki et al., 1995) all have remarkably long durations and seismic waves of unusually long periods. At the early stage, silent earthquakes were considered to be the extreme case situated at the end of the seismic spectrum, in which they were the boundary of seismic events that could generate detectable seismic radiation (Beroza & Jordan 1990). This is the earliest stage of the slow earthquake research, but no detailed investigations could be done due to the limit of seismometer networks.

In the 1990s, with the development of the global positioning system (GPS), slow surface deformations after large earthquakes were determined as slow post-seismic slips (afterslips) (e.g., Heki et al., 1997; Heki and Tamura; 1997). Subsequently, more and more silent earthquakes/slips and slow crust movements were detected over the world by space geodesy (e.g., Hirose et al., 1999; Dragert et al., 2001; Ozawa et al., 2002, 2003; Kawasaki,

2004). These studies all demonstrate that slow aseismic slips are common phenomena on the Earth, not exceptional cases, and their results built essential foundations for further studies.

In the 21st Century, the slow earthquake research evolved into a new stage due to the improvement of observation instruments. Applying high-sensitive borehole and broadband seismometers, scientists discovered a series of slow earthquakes that had never been observed, such as low-frequency tremors (e.g., Obara, 2002), very low-frequency earthquakes (VLFEs) (e.g., Obara and Ito, 2005; Ito and Obara, 2006a), and low-frequency earthquakes (LFEs) (e.g., Katsumata and Kamaya, 2003). Moreover, the dense and continuous observations by Global Navigation Satellite System (GNSS) also provided abundant high-quality coordinate data of ground stations, which made significant advances in detection of slow crust movements. Hirose et al. (1999) first used the name "slow slip events (SSEs)" to signify anomalous crustal deformations that occurred on subduction plate boundaries but were not directly related to large earthquakes. Afterward, plenty of SSEs was detected in subduction zones worldwide (e.g., Dragert et al., 2001; Lowry et al., 2001; Douglas et al., 2005; Hirose and Obara, 2005; Heki and Kataoka, 2008) although sometimes they had different names, e.g., aseismic slips (Ozawa et al., 2002, 2004), silent slips (e.g., Shibazaki and Iio, 2003), and characteristic silent earthquakes (Ozawa et al., 2003). Furthermore, episodic tremor and slip (ETS) is another significant finding during this period. Rogers and Dragert (2003) first discovered that slow slips and low-frequency tremors at the same source depth in the Cascadia subduction zone coincided both temporally and spatially (Figure 2.3). The same phenomena were also found in the Nankai Trough, SW Japan (e.g.,

Obara et al., 2004a; Hirose and Obara, 2006), while their correlation extended from the slow slips and tremors to LFEs and VLFEs (e.g., Shelly et al., 2006; Ito et al., 2007).

At the later period of this stage, the direction of slow earthquake research started to shift from observations to the comparative analysis due to the accumulation of large amounts of seismic data. For example, Ide et al. (2007) compared characteristics of SSEs, VLFEs, LFEs, ETSs, and silent earthquakes detected over the world and found that their durations and seismic moments are proportional. This is entirely different from regular earthquakes (Figure 2.4). Shelly et al. (2006, 2007) also analyzed low-frequency tremors and LFEs in Shikoku area, SW Japan. They proposed that various slow seismic events are different manifestations of a single process, possibly related to the fluid on the plate boundary of subduction zones. Since then, slow earthquakes are believed to have similar seismogenic processes and belong to the same family independent from regular earthquakes.

During the last decade, slow earthquake research has been getting diverse. In addition to observational studies (e.g., Ando et al., 2012; Nishimura, 2014; Matsuzawa et al., 2015, Arai et al, 2016, Arisa and Heki, 2017), scientists pay much attention to particular subjects, such as the correlation between different types of slow earthquakes (e.g., Hirose et al., 2010; Nakamura and Sunagawa, 2015; Nakamura, 2017; Nakano et al., 2018), migration of the slow earthquakes (e.g., Asano at al., 2015; Yamashita at al., 2015; Ghosh et al., 2015; Nakamura, 2017), and tidal trigging (e.g., Thomas et al., 2012). Moreover, several comprehensive reviews have been published during this period (e.g., Peng and Gonberg, 2010; Beroza and Ide, 2011; Obara and Kato, 2016). Following the establishment of the
community of slow earthquake science in Japan in 2016, large integrated studies, i.e., those involving two or more disciplines (e.g., geophysics, geology, and physics), will become the mainstream of slow earthquake research in the future.



**Figure 2.3.** Synchronous activities of low-frequency tremors and slow slips in the Cascadia subduction zone. (From Figure 2 of Rogers and Dragert, 2003)



**Figure 2.4.** Seismic moments ( $M_0$ ) and durations of various slow earthquakes detected in the world. (From Figure 2 of Ide et al. 2007)

# 2.3 The slow earthquake family

As mentioned above, diverse types of slow earthquakes have been detected over the world, which reflects variety in fault slip phenomena controlled by different frictional properties (Asano et al., 2015). However, at the early stages, a slow seismic event sometimes had several names because scientists created new words for their observations. Until the 21 Century, the types/names of slow earthquakes were gradually unified. Ide et al. (2007) first proposed that slow earthquakes could be divided into five groups of LFEs, VLFEs, SSEs, ETSs, and silent earthquakes. Subsequently, Peng and Gonberg (2010) classified slow seismic events into the geodetic and seismic groups based on detecting instruments. Each group includes more than one type of slow earthquakes, i.e., the geodetic group comprises SSEs, and the seismic group consists of low-frequency tremors, VLFEs and LFEs (see Figure 2.1). Then, Beroza and Ide (2011) sorted out slow earthquakes and classified them into five main types based on their characteristics, i.e., LFEs, nonvolcanic tremor, SSEs, ETSs, and VLFEs. Recently, Obara and Kato (2016) followed the classification by Peng and Gonberg (2010) to divide slow earthquakes detected in the Nankai Trough into the geodetic and seismic groups, but they replaced LFEs with ETSs (see Figure 2.5). In this section, I adopt the viewpoints of Peng and Gonberg (2010) and Obara and Kato (2016) and propose that four significant relatives of the slow earthquake family should be SSEs, VLFEs, LFEs, and ETSs (Figure 2.6). Brief descriptions of these slow seismic events are given as follows.



**Figure 2.5.** Various types of slow earthquakes in the Nankai Trough (From Figure 1 of Obara and Kato, 2016)



Figure 2.6. Four major types of slow earthquakes proposed by this study.

#### 2.3.1 Slow slip events (SSEs)

The stress release in subduction zones can induce two types of anomalously slow crust deformations, i.e., afterslips of large earthquakes, which occur around asperities that ruptured in the main shock, and slow slip events (SSEs) that occur as slow ruptures at the plate interface (Heki and Kataoka, 2008). SSEs are the exclusive slow seismic event of the geodetic group (Figure 2.6). Because their fault slips are too slow to radiate detectable seismic waves, scientists have been able to detect them only by geodetic sensors such as Global Navigation Satellite System (GNSS) or borehole tiltmeters (Beroza and Ide, 2011). Moreover, based on their duration, these slow events can be further classified into the short-term SSEs lasting from days to weeks and the long-term SSEs from months to years (Figure 2.6).

The name "SSE" was proposed at the end of 20th Century (Hirose et al., 1999), but scientists have already known such anomalous slow crustal movements. For example, silent earthquakes (e.g., Beroza & Jordan 1990; Kawasaki et al., 1995) detected at the early stages may be some type of SSEs judging from little detectable seismic waves and unusually long duration. With the development of space geodesy, more and more SSEs were detected over the world, e.g., in Alaska (e.g., Ohta et al., 2006; Fu and Fremueller, 2013), Cascadia (e.g. Dragert et al., 2001), Mexico (e.g. Lowry et al., 2001, Kostoglodov et al., 2003; Vergnolle et al., 2010), Costa Rica (e.g. Jiang et al., 2012), Chile (e.g. Socquet et al., 2017), New Zealand (e.g., Douglas et al., 2005; Wallace et al., 2016), and Japan (e.g., Hirose et al., 1999; Ozawa et al., 2002, 2004; Hirose and Obara, 2006) (Figure 2.7). These SSEs often occur in subduction zones around the Pacific Ocean (Obara and Kato, 2016) and sometimes show

quasi-periodic recurrences (e.g., Heki and Kataoka, 2008; Hirose et al., 2012) and strong links with other slow seismic events (e.g., Hirose et al., 2010; Baba et al., 2018).

In Japan, the best study area to study SSEs, abundant SSEs have been detected in several subduction plate boundaries, such as the Nankai Trough (e.g., Hirose et al., 1999; 2010; Ozawa et al., 2004; Hirose and Obara, 2006; Kobayashi, 2014), the Japan Trench (e.g., the Boso Peninsula, Ozawa et al., 2003, 2007, 2014; Hirose et al., 2012; the Izu-Bonin Arc, Arisa and Heki, 2017), and the Ryukyu subduction zone (Heki and Kataoka, 2008; Nakamura, 2009; Nishimura, 2014; Tu and Heki, 2017; Kano et al., 2018). Additionally, some small SSEs that occurred in an inland plate boundary were also observed in Northen Hokkaido (Ozono et al., 2014; Ikeda et al., 2015).

## 2.3.2 Very low frequency earthquakes (VLFEs)

Very low-frequency earthquakes (VLFEs) are a type of slow seismic events dominated in the frequency band of 0.1-0.01 Hz with little or no high-frequency contents (Obara and Ito, 2005). These events have a typical duration of ~20s and consist mainly of long-period seismic waves (Ito et al., 2007; Beroza and Ito, 2011). Hence, only high-sensitivity broadband seismometers can detect these signals. Based on different seismogenic processes, VLFEs can be divided into the volcanic type and nonvolcanic type. The volcanic-type VLFEs are related to the fluid or magma transportation (e.g., Arciniega-Ceballos et al., 1999), and the nonvolcanic-type VLFEs are generated by the shear faulting of subduction zones (e.g., Obara et al., 2004b). For the nonvolcanic-type VLFEs,

scientists can further classify them into the shallow VLFEs in accretionary prisms near trench axes (e.g., Obara et al., 2004b; Obara and Ito, 2005; Ito and Obara, 2006a, 2006b; Ando et al., 2012; Nakamura and Sunagawa, 2015) and deep VLFEs at the downdip limit of the seismogenic zones that are often accompanied by ETSs, another kind of slow seismic events (e.g., Ito et al., 2007; Ghosh et al., 2015; Baba et al., 2018).

Obara and Ito (2005) first used "VLFEs" to express these anomalous seismic events recorded in broadband seismometers, whose frequency band is much lower than that of low-frequency earthquakes (LFEs). Subsequently, with the development of dense broadband seismic networks, scientists successfully observed plenty of VLFEs. However, unlike the SSEs, VLFEs have only been detected in a few subduction zones, such as the Nankai Trough (e.g., Obara and Ito, 2005; Ito and Obara, 2006a; Asano et al., 2008; Sugioka et al., 2012), the Japan Trench (e.g., Matsuzawa et al., 2015), the offshore of Hokkaido (e.g., Obara et al., 2004b; Asano et al., 2008), the Ryukyu Trench (Ando et al., 2012; Nakamura and Sunagawa, 2015), and the Cascadia subduction zone (e.g., Ghosh et al., 2015) (Figure 2.7).

### 2.3.3 Low-frequency earthquakes (LFEs)

Low-frequency earthquakes (LFEs) are another slow seismic event with a dominant frequency band of 2–8 Hz (Ide et al., 2007; Aso et al., 2013). Because these events radiate more high frequency seismic waves than VLFEs, scientists usually use short-period seismometers to detect these signals (Beroza and Ito, 2011). Based on their origins, LFEs can Chapter 2: Slow earthquakes

be assigned into three major types, i.e., tectonic LFEs on plate boundaries (e.g., Obara, 2002; Shelly et al. 2006), the volcanic LFEs by volcano activities (e.g., Lin et al., 2007), and the intraplate LFEs that are not related to either plate subduction or active volcanoes (e.g., Aso et al., 2013; Aso and Ide, 2014). For the tectonic LFEs, we can further divide them into the shallow LFEs located at the upper segment of subduction zones (e.g., Arai et al., 2016; Nakamura 2017) and deep LFEs at the downdip limit of the seismogenic zones that often synchronize with ETS activities (e.g., Shelly et al. 2006, 2007).

In the 1990s, the Japan Meteorological Agency (JMA) first observed tectonic LFEs from the routine hypocenter determination (Beroza and Ito, 2011). These anomalous seismic events did not have clear P waves and looked like the background noise due to their small amplitudes. Moreover, they appeared to be located in a belt-like region along the Nankai Trough, in which large interplate earthquakes ( $M_w > 8$ ) repeatedly occur (e.g., Ando, 1975). Soon after the 21<sup>st</sup> Century, JMA recognized these slow events as a new type of earthquakes and started to provide their catalog (e.g., Katsumata and Kamaya, 2003). Simultaneously, Obara (2002) detected abundant nonvolcanic tremors that have occurred in the same region by high-sensitive borehole seismic network (Hi-net) developed by National Research Institute for Earth Science and Disaster Prevention (NIED). At first, seismologists considered that these low-frequency tremors were another type of slow seismic events. However, Shelly et al. (2007) analyzed the characteristics of low-frequency tremors and LFEs in the Nankai Trough and proposed that low-frequency tremors are a swarm type of LFEs. Since then, the boundary between the two slow seismic events becomes vague, but there has been no consensus on this issue so far. This condition causes that some scientists adopt the

name "LFEs" (e.g., Brown et al. 2009, 2013), but other scientists call them as "tremors" or "low-frequency tremors" (e.g., Obana and Kodaira, 2009; Obara and Kato, 2016). Although it is still uncertain whether LFEs and tremors are the same slow seismic event or not, I decide to combine all literature of tremors and LFEs in this study. Based on these data, LFEs and low-frequency tremors have been occurred in several subduction plate boundaries, such as the Nankai Trough (e.g., Obara, 2002, Shelly et al. 2006, 2007; Ito et al., 2007; Obana and Kodaira, 2009; Yamashita et al., 2015), the Ryukyu Trench (e.g., Arai et al., 2016; Nakamura, 2017), the Cascadia subduction zone (e.g., Rogers and Dragart, 2003; Brown et al. 2009), the Aleutian subduction zone (e.g. Brown et al. 2013; Li and Ghosh, 2017), and Middle America (e.g., Brown et al. 2009).

#### 2.3.4 Episodic tremor and slip (ETS)

Episodic tremor and slip (ETS) is the phenomenon that low-frequency tremors and repeating SSEs at the downdip limit of the seismogenic zone are correlated temporally and spatially (see Figure 2.3). According to past studies, such a phenomenon has merely been observed in the Nankai Trough and the Cascadia subduction zone (e.g., Gogers and Dragert, 2003; Obara et al., 2004a). ETSs were discovered first in the Cascadia subduction zone (Gogers and Dragert, 2003). Subsequently, similar phenomena were detected in the Nankai Trough (e.g., Obara et al., 2004a and Hirose and Obara, 2006), but the correlation of slow seismic events extended from the simple case between slow slips and low-frequency tremors to a complicated one involving slow slips, low-frequency tremors, LFEs, and VLFEs. (e.g., Shelly et al., 2006; Ito et al., 2007). In recent years, Ghosh et al. (2015) confirmed that such an extended correlation has existed between VLFEs and low-frequency tremors in the Cascadia subduction zone. That is, the essential characteristic of ETS is that at least two types of slow seismic events occur simultaneously. Moreover, these slow seismic events sometimes exhibit significant source migrations (e.g., Ghosh et al., 2015; Baba et al., 2018).

## 2.4 Distribution of slow earthquakes

Considering that various slow seismic events are different manifestations of a single process (Shelly et al., 2007), Obara and Kato (2016) sorted out slow earthquakes detected in the world and plotted their locations. As described in Figure 2.7, slow earthquakes are distributed in subduction zones around the Pacific Ocean, such as Aleutian, Alaska, Cascadia, Mexico, Costa Rica, Chile, New Zealand, Taiwan, and Japan. Among them, the most remarkable area in the slow earthquake studies is the Nankai Trough since all types of slow earthquakes occur in this region (Figure 2.7). The Ryukyu Trench is located to the south of the Nankai Trough. Although the same plate (Philippine Sea Plate) subducts at these two subduction zones, there are significantly differences in the subduction processes due to the different ages of subducting plates (Figure 1.9) (Scholz and Campos, 2012). Likewise, several types of slow seismic events have been detected in the Ryukyu Trench (Figure 2.7). A concise description of the distribution of slow earthquakes in the Nankai Trough and the Ryukyu Trench is given in the following sections.



**Figure 2.7.** Global distribution of different types of slow earthquakes. (From Figure 3 of Obara and Kato, 2016)

## 2.4.1 Nankai Trough

For nearly two decades, scientists identified various types of slow seismic events in the Nankai Trough, such as long-term SSEs (e.g., Hirose et al., 1999, 2012; Ozawa et al., 2004; Kobayashi, 2010, 2014; Shuto and Ozawa, 2009), short-term SSEs (e.g., Obara et al., 2004a; Hirose and Obara, 2006, 2010), shallow VLFEs (e.g., Obara and Ito, 2005; Ito and Obara, 2006a, 2006b; Asano et al., 2008, 2015; Sugioka et al., 2012), deep VLFEs (e.g., Ito et al., 2007; Baba et al., 2017), shallow LFEs/low-frequency tremors (e.g., Obana and Kodaira, 2009; Yamashita et al., 2015), deep LFEs/low-frequency tremors (e.g., Obara, 2002; Shelly et al., 2006, 2007; Ito et al., 2007), and ETS (e.g., Obara et al., 2004a; Hirose and Obara, 2006, 2010; Ito et al., 2007; Baba et al., 2017; Shelly et al., 2006, 2007). As illustrated in Figure 2.8, the depth ranges of these slow seismic events, form the surface to depth, is shallow VLFEs and shallow LFEs/low-frequency tremors (depths < 10km), long-term SSEs (~30 km), and ETSs (including short-term SSEs, deep LFE/low-frequency tremors, and deep VLFEs) (~40 km). Notably, the asperities of large interplate (megathrust) earthquakes (i.e., locked zones) are coincidentally located in the space between shallow VLFEs and long-term SSEs at depths of ~20 km (Figure 2.8). Accordingly, Obara and Kato (2016) infer that the activity of slow earthquakes might influence the seismogenesis of large interplate earthquakes, and some mechanical links could exist between them.



**Figure 2.8.** Depth range of slow earthquakes and megathrust earthquakes in the Nankai Trough (From Figure 1 of Obara and Kato, 2016)

## 2.4.2 Ryukyu Trench

The development of slow earthquake research in the Ryukyu Trench started much later than the Nankai Trough because the seismic and geodetic observation stations are sparse here. In the past ten years, scientists strived to overcome this difficulty and successfully detected several types of slow seismic events in the Ryukyu subduction zone, such as long-term SSEs (e.g., Heki and Kataoka, 2008; Nakamura, 2009; Nishimura, 2014, Tu and Heki, 2017; Kano et al., 2018), short-term SSEs (e.g., Nishimura, 2014), shallow VLFEs (e.g., Ando et al., 2012; Nakamura and Sunagawa, 2015), and shallow LFEs (e.g., Arai et al., 2016; Nakamura, 2017). Recently, Arai et al. (2016) analyzed these slow earthquakes and seismic reflection images in this region. They proposed that the depth range of slow earthquakes in the SW Ryukyu Trench should be ~20 km for shallow VLFEs/LFEs and ~30 km for long-term SSEs (Figure 2.9). Notably, the fault zone of the 1771 Yaeyama earthquake, which causes a disastrous tsunami striking Ishigaki and surrounding islands (see detailed contents in Section 1.3.1), is located at the shallowest segment of the Ryukyu subduction zone (see Tsunamigenic zone in Figure 2.9). Moreover, ETSs and other deep slow seismic events have not been observed in this region. Such a distribution is significantly different from that of regular/slow earthquakes in the Nankai Trough. The diagram shown as Figure 2.9 offers a rough concept of slow earthquakes in the Ryukyu subduction zone. However, until now, the location of locked zones (seismogenic zones) and the correlation of these slow seismic events remain vague due to insufficient data of slow earthquakes there. Thus, a detailed and comprehensive study is urgently needed.



**Figure 2.9.** Depth range of slow earthquakes and tsunamifenic zone in the Ryukyu Trench (From Figure 4 of Arai et al., 2016)

## 2.5 Primary objectives of this study

In the Nankai Trough, the locked zones, in which large interplate earthquakes ( $M_w \ge 8$ ) recur regularly, are located in a zone between the shallow VLFEs and long-term SSEs (Figure 2.10) (Obara and Kato, 2016). This result suggests that if we can confirm the relative positions of VLFEs and SSEs, the location of locked zones in the Ryukyu Trench might be determined. Considering this point, I decided to focus on two types of slow seismic events, i.e., SSEs and VLFEs, in this thesis. Since the insufficient database is the fundamental problem for the slow earthquake research in the Ryukyu Trench, I attempted to expand the

time span covered by the data at least twice as long as previous studies. Furthermore, the properties, activities, and the correlations between the two types of slow seismic events are to be analyzed in detail. Finally, using the above data, I would discuss the interplate coupling of the Ryukyu subduction zone. I expect that the results of this thesis can help clarify the role of slow earthquakes played for the plate convergence in the Ryukyu Trench. Moreover, I also hope the database of slow earthquakes provided in this thesis can contribute to various kinds of future studies.



**Figure 2.10.** Distribution of slow earthquakes in the Nankai Trough. The locked zones (red polygon) are distributed in the region between shallow VLFEs (white circles) and long-term SSEs (yellow circles) (From Figure 2 of Obara and Kato, 2016)

Chapter 2: Slow earthquakes

# Chapter 3.

Slow Slip Events (SSEs)

The primary contents of this chapter have been published in *Geophysical Research Letters*, Tu, Y. and K. Heki (2017), Decadal modulation of repeating slow slip event activity in the southwestern Ryukyu Arc possibly driven by rifting episodes at the Okinawa Trough, *Geophys. Res. Lett.*, 44, 9308-9313, doi: 10.1002/2017GL074455.

# 3.1 Introduction

### 3.1.1 What are slow slip events (SSEs)?

Slow slip events (SSEs) are a type of slow earthquakes generated by slow fault ruptures at plate interfaces (Heki and Kataoka, 2008). From their durations, these events can be classified into short-term SSEs lasting from days to weeks and long-term SSEs from months to years (Obara and Kato, 2016). Since their fault slips are too slow to generate seismic waves, SSEs are known as geodesic slow earthquakes (Obara and Kato, 2016) and can only be detected by geodetic observations such as Global Navigation Satellite System (GNSS) and tiltmeters.

## 3.1.2 Where do SSEs occur?

SSEs have been observed in several subduction zones around Japan, such as the Nankai Trough, Southwest Japan (e.g. Hirose at al, 1999, 2010; Ozawa et al., 2002, 2017; Hirose and Obara, 2005, 2006), and the Boso Peninsula, Central Japan (e.g. Ozawa et al., 2003, 2007, 2014; Hirose et al., 2012) (Figure 3.1). In addition, they were also found in other areas over the world, e.g., the Cascadia subduction zone, western Canada (e.g. Dragert et al., 2001; Rogers and Deagert, 2003; Szeliga et al., 2008), Mexico (e.g. Lowry et al., 2001, Kostoglodov et al., 2003; Vergnolle et al., 2010) and New Zealand (e.g. Douglas et al., 2005; Wallace et al., 2016) (Figure 3.1). Since large thrust earthquakes occur repeatedly in these subduction zones, SSEs are considered to have mechanical links to large interplate earthquakes (Obara and Kato, 2016). On the other hand, a few investigations also found SSEs in weakly coupled

plate boundaries, such as the Izu-Bonin Arc (Arisa and Heki, 2016) and the Ryukyu subduction zone (Heki and Kataoka, 2008; Nakamura, 2009; Nushimura, 2014). Moreover, Ozono et al. (2014) and Ikeda et al. (2015) also studied small SSEs occurring in an inland convergent plate boundary running NS in Hokkaido, Japan.



**Figure 3.1.** Global distribution of slow slip events (SSEs). Most of SSEs occur in coupled plate boundaries around the Pacific Ocean. (Modified from Obara and Kato, 2016.)

## 3.1.3 SSEs in the Ryukyu Trench

The Ryukyu Trench differs from the Nankai Trough. It is a weakly coupled plate boundary (Uyeda and Kanamori, 1979), and few megathrust earthquakes ( $M_w > 8$ ) rarely occur there

(Ando et al., 2009; Scholz and Campos, 2012). Moreover, active back-arc spreading in the Okinawa Trough makes the Ryukyu Arc moves trench-ward (Figure 3.2a), which causes the fast convergence at the Ryukyu Trench of ~12.5 cm per year (Heki and Kataoka, 2008). In this segment of the Ryukyu Trench, a series of repeating SSEs were found and studied.

Heki and Kataoka (2008) detected SSEs beneath the Iriomote Island in the southwesternmost part of the Ryukyu Arc. These events occur approximately twice per year on the same fault patch. Subsequently, Nakamura (2009) detected a large scale afterslip of a M<sub>w</sub> 7.1 thrust earthquake off the eastern coast of Taiwan continuing for ~5 years. Recently, Nishimura (2014) identified ~130 short-term SSEs along the whole Ryukyu subduction zone using a new detection technique based on Akaike's Information Criterion (AIC). The positions of above SSEs are shown in Figure 3.2a.

## 3.1.4 Purposes of this study

Although Heki and Kataoka (2008) studied repeating SSEs beneath the Iriomote Island in detail, a discussion on the temporal variability of their slip accumulation rate has not been done. Here, I study these SSEs again using more accurate coordinate data with twice as long a time span as in the previous study and focus on the time-variable behavior of slip accumulation rate of SSEs. I expect that the results can clarify what controls the stability of the slip accumulation rate and understand the plate motion of the southwestern Ryukyu subduction zone.



**Figure 3.2. (a)** Plate tectonic map of the Ryukyu area. The Philippine Sea Plate is subducting beneath the Eurasian Plate along the Ryukyu Trench with a high convergence rate. The Okinawa Trough lie behind the Ryukyu Arc is an active back-arc spreading system. It causes the Ryukyu Arc moves trench-ward as demonstrated by the rapid southward velocities of the GNSS stations. The arrows represent velocities of GNSS stations relative to the Eurasian Plate for the period of 2000-2010. Red, yellow and purple rectangles indicate SSEs detected by Heki and Kataoka (2008), Nakamura (2009), and Nishimura (2014), respectively. **(b)** Distribution of the slow slip events (SSEs) (rectangle), earthquake swarms (gray circles), and six large earthquakes (EQ1-6; EQ1 is shown in 2a). The beach balls along the Ryukyu Trench show the locations and focal mechanisms of five large earthquakes (EQ1-4, and EQ6). The beach balls in the Okinawa Trough display the source mechanisms of two earthquake swarms (SW1 and SW2 including EQ5). The polygons (zone1 and zone2) show the geometric extents of earthquakes illustrated in the Figure 3.12a and 3.12b

# 3.2 Data and method

## **3.2.1 Detection of SSEs**

GNSS data obtained from 1997 to 2016 at six stations (Figure 3.3) of the GNSS Earth Observation Network System (GEONET) operated by the Geospatial Information Authority (GSI) of Japan were used in this study. I adopted their daily coordinates available as the GSI-F3 solution (Nakagawa et al., 2009), and selected the Miyako station (Figure 3.3) as the reference site based on its large distance from nearby large earthquakes or the Iriomote SSEs (Heki and Kataoka, 2008). These SSEs show the largest signal-to-noise ratio in the movement of the Hateruma station toward N20°W (Figure 3.4a), which is the direction of the Philippine Sea Plate subduction (Heki and Kataoka, 2008).

Offsets generated by antenna changes were removed in advance, and coseismic jumps by nearby earthquakes were marked with dashed lines (see Figures 3.4a and 3.4b). I detected 38 SSEs by visual inspection with assistance from  $-\Delta$ AIC (Akaike Information Criterion), which is an index showing statistical significance of the SSE onset signatures (Figure 3.4c) (Nishimura, 2014).



**Figure 3.3.** GEONET GNSS stations used in this study. The red circle displays the reference site of Miyako.



**Figure 3.4. (a, b)** The change in daily displacements of the Hateruma station relative to Miyako site in the N2OW and up directions. Solid vertical lines show the onset times of the 38 SSEs. Their numbers are marked at the top. Dashed lines indicate six large earthquakes (EQ1-6) during the studied period. Locations and focal mechanisms of these earthquakes are shown in Figure 3.2a, b. (c) The values of  $-\Delta$ AIC, which indicates the significance of the trend change (bending) of the N2OW component, or the onset of SSEs (Nishimura, 2014).

## 3.2.2 Model for the time series

To determine three-dimensional (EW, NS, and UD) displacement vectors associated with the SSEs, I used the model as Heki and Kataoka (2008) to estimate the changes of coordinate x in time t as:

$$x = at + b + \sum_{i=1}^{n} X_i \left[ 1 - \exp \frac{-(t - T_i)}{\tau_i} \right] \quad (T_1 < T_2 < \dots < T_n < t)$$
(1)

where *a* is the long-term background trend, and  $\hat{b}$  is the offset. The number of SSEs before the time *t* is *n*, and  $X_i$ ,  $T_i$  and  $\tau_i$  are the final displacement, the onset time, and the time constant of the *i*'th SSE, respectively. The values of  $T_i$  and  $\tau_i$  here are determined by minimizing the post-fit residual in the Hateruma N20W time series.

As suggested by Heki and Kataoka (2008), a relatively short interval might cause the magnification of the theoretical final displacement  $X_i$ . Accordingly, I used the actual final displacement  $X'_i$  to replace the theoretical final displacement  $X_i$ :

$$X'_{i} = X_{i} \left[ 1 - \exp \frac{-(T_{i+1} - T_{i})}{\tau_{i}} \right]$$
<sup>(2)</sup>

where  $X'_i$  is the cumulative displacement by the *i*'th event until the onset of the next event.

## 3.2.3 Estimation of fault parameters

After calculating the three-component displacement vectors at six GNSS stations in all the SSEs, I estimated the slips of the fault patch assuming homogeneous elastic half-space (Okada, 1992). Since these SSEs have similar displacement vectors, we adopted the same geometry of the fault patch as in Heki and Kataoka (2008), which was confirmed to have the smallest post-fit residuals of the displacement vectors. Moreover, the dislocation vectors of dip-slip and strike-slip components were also estimated through the least-squares method from the three-dimensional displacement data. The detailed source parameters of the 38

SSEs are given in Table 3-1.

**Table 3-1.** Occurrence times, locations, magnitudes and fault parameters of SSEs beneath

 the Iriomote Island

| No. | Date   | length<br>(km) | Slip<br>(m) | Moment<br>(e19N·m) | Mw   | No.    | Date   | length<br>(km) | Slip<br>(m) | Moment<br>(e19N·m) | Mw   |
|-----|--------|----------------|-------------|--------------------|------|--------|--------|----------------|-------------|--------------------|------|
| 1   | 1997.7 | 160            | 0.07        | 3.15               | 6.93 | <br>21 | 2007.7 | 94             | 0.041       | 1.03               | 6.61 |
| 2   | 1998.4 | 160            | 0.087       | 3.51               | 6.96 | 22     | 2008.3 | 94             | 0.054       | 1.34               | 6.68 |
| 3   | 1999.1 | 114            | 0.059       | 1.79               | 6.77 | 23     | 2008.7 | 160            | 0.013       | 0.58               | 6.44 |
| 4   | 1999.7 | 94             | 0.042       | 1.06               | 6.62 | 24     | 2008.9 | 94             | 0.025       | 0.63               | 6.46 |
| 5   | 2000.2 | 94             | 0.038       | 0.96               | 6.59 | 25     | 2009.5 | 94             | 0.019       | 0.48               | 6.39 |
| 6   | 2000.7 | 94             | 0.046       | 1.15               | 6.64 | 26     | 2009.9 | 94             | 0.026       | 0.67               | 6.48 |
| 7   | 2001.2 | 94             | 0.028       | 0.71               | 6.5  | 27     | 2010.5 | 94             | 0.033       | 0.83               | 6.54 |
| 8   | 2001.7 | 94             | 0.041       | 1.75               | 6.76 | 28     | 2011.1 | 94             | 0.052       | 1.3                | 6.68 |
| 9   | 2002.2 | 160            | 0.044       | 1.88               | 6.78 | 29     | 2011.7 | 94             | 0.034       | 0.85               | 6.55 |
| 10  | 2002.7 | 160            | 0.075       | 3.19               | 6.94 | 30     | 2012.3 | 94             | 0.048       | 1.21               | 6.65 |
| 11  | 2003.2 | 114            | 0.050       | 1.53               | 6.72 | 31     | 2012.9 | 94             | 0.048       | 1.2                | 6.65 |
| 12  | 2003.7 | 94             | 0.059       | 1.79               | 6.77 | 32     | 2013.5 | 114            | 0.050       | 1.52               | 6.73 |
| 13  | 2004.3 | 94             | 0.074       | 2.24               | 6.83 | 33     | 2014.0 | 114            | 0.071       | 2.15               | 6.82 |
| 14  | 2004.8 | 114            | 0.045       | 1.12               | 6.63 | 34     | 2014.6 | 114            | 0.064       | 1.93               | 6.79 |
| 15  | 2005.3 | 94             | 0.028       | 0.71               | 6.50 | 35     | 2015.2 | 114            | 0.042       | 1.27               | 6.67 |
| 16  | 2005.6 | 94             | 0.043       | 1.07               | 6.62 | 36     | 2015.7 | 114            | 0.039       | 1.47               | 6.71 |
| 17  | 2006.0 | 94             | 0.045       | 1.12               | 6.63 | 37     | 2016.1 | 114            | 0.049       | 1.46               | 6.71 |
| 18  | 2006.5 | 94             | 0.036       | 0.91               | 6.57 | <br>38 | 2016.7 | 96             | 0.054       | 1.36               | 6.69 |
| 19  | 2007.0 | 94             | 0.013       | 0.34               | 6.29 |        |        |                |             |                    |      |
| 20  | 2007.1 | 94             | 0.033       | 0.82               | 6.54 |        |        |                |             |                    |      |

\* Location of the center of the SSE fault patch: 24.5°N, 123.8°E, depth 32 km.

\*\* Fault width is 66 km for all SSEs.

\*\*\* Strike, Dip, Rake of the fault: 250°, 15° NNE, 116°

# 3.3 Results

## 3.3.1 Characteristics of SSEs

The 38 SSEs from 1997 to 2016 occurred regularly with an average interval of ~6 months (Figure 3.5a). Although the recurrent intervals show a strong pick (Figure 3.5a), the occurrence season looks random (Figure 3.5b), which indicates that these SSEs are not controlled by seasonal forcing. The average magnitude (M<sub>w</sub>) of these events is ~6.7 (Figure 3.5c). The time constant of ~0.10 years implies that these SSEs just lie on the boundary between the short- and long-term SSEs as defined by Obara and Kato (2016) (Figure 3.5d). These properties are all consistent with Heki and Kataoka (2008).



Figure 3.5. (a) The recurrence intervals of the 38 SEEs. The average interval is 6.3 months with the standard deviation of 1.7 months. (b) Occurrence months of the SSEs. The

distribution indicates that SSEs are not seasonal. (c) The distribution of  $M_w$  of the SSEs. Their average is  $M_w$  6.7. (d) Time constants of these SSEs.

#### 3.3.2 Fault Parameters of the SSEs

I estimated the fault slip parameters of the 38 SSEs employing the program to calculate surface displacement due to the fault dislocation developed by Okada (1992). Figure 3.6 shows the dislocation vectors and fault parameters estimated for the SSE #18 in July 2006. The fault patch of this event is ~100 km away from the Ryukyu Trench axis and probably lie on the upper surface of the Philippine Sea Plate. Its center is located at ~24.5°N, ~123.8°E at a depth of ~30 km, and the depth of its upper and lower edges are ~20 and ~40 km, respectively. The dimensions of this fault patch are ~90 km in length and ~70 km in width. It strikes in N70E and dips 15 degrees toward NNE.

The 38 SSEs have quite similar horizontal dislocation vectors, which suggests that these ruptures should occur at similar fault patches (Figure 3.7). However, some of them still have slight differences. For example, SSE #1, 2, and 10 display larger horizontal displacements in the Yonaguni Island, which indicates that their fault patches may extend more westward. As suggested by Heki and Kataoka (2008), I assumed two longer fault geometries for these events. Their fault lengths were extended by 20 or 40 km toward the WSW direction to realize better fits to observe displacements. The numbers of SSEs for the three different fault lengths, i.e., long (~160 km in length), middle (~110 km), and short (~90 km) are 6, 10 and 22, respectively. Such differences between SSEs are probably related to the change of fluid distribution or fault friction (Kano et al., 2018), similar to SSEs in the Bungo (e.g.,

Ozawa et al., 2007b) and Boso areas (Fukuda, 2018).



**Figure 3.6. (a, b)** The estimated fault parameters for the SSE #18 using the observed horizontal (green arrows in (a)) and vertical (red arrows in (b)) displacements. Dotted-line contours show surface depths of the Philippine Sea Plate slab. Blue arrows in (a) and (b) indicate displacements calculated using the fault slips shown by the thick arrows. **(c)** and **(d)** show calculated horizontal and vertical displacements at grid points, respectively.



assumed three different fault lengths, i.e., long (e.g. #1, 2, 9, and 10), middle (e.g. #3, 11, and 14), and short (e.g. #4, 5, 6, and 7). The last seven events (Nos. 32-38) were assumed to have middle or short fault length due to the lack of GNSS data of the Yonaguni station caused by Figure 3.7. Horizontal dislocation vectors (blue/green arrows) and estimated fault slips (black arrows) for the 38 SSEs. Error ellipses show 26. I the pillar replacement.

## 3.3.3 Time-predictable recurrence

Heki and Kataoka (2008) inferred that recurrences of SSEs near Iriomote Island were time-predictable from the observation that the lower right corners of the slip accumulation diagram align (Figure 3.8). With the present dataset of the 38 SSEs, such time-predictability seems to hold (Figure 3.9a). To future confirm this, I compared the correlations between slips and recurrence intervals following or preceding the events. The correlation coefficients (0.57 and 0.38) indicate that the slips have a stronger correlation with the intervals following the events. It means that time-predictable recurrence is more likely.



**Figure 3.8. (a)** Time-predictable recurrences. The lower right corners of the slip accumulation diagram line up. In this case, a stronger correlation exists between slips and recurrence intervals following the events. **(b)** Slip-predictable recurrences. The upper left corners align, and a stronger correlation is expected to exist between slips and recurrence intervals preceding the events. (modified from Heki and Kataoka, 2008.)

Chapter 3: SSEs

#### 3.3.4 Fluctuations of slip accumulation rate

The overall slip accumulation rate (cumulative slip/lapse time) of SSEs from 1997 to 2016 is ~8.6 cm/year, which is significantly lower than ~11 cm/year in 1997-2007 reported by Heki and Kataoka (2008). In addition, the rate fluctuates in time and is hard to fit a single line into the whole time series (Figure 3.9a). The trends during the four periods of 1997-2001, 2003-2007, 2007-2013, and 2013-2016 (slip accumulation is largely linear within these periods) are 9.3 cm/year, 10.9 cm/year, 6.3 cm/year, and 10.2 cm/year, respectively (Figure 3.9a). The detrended cumulative slip provided on Figure 3.9a also clearly indicates two distinct increases in 2002 and 2013 and one gradual slowdown around 2007.

Moreover, I also tried to fit a polynomial into the lower right corners of the slip accumulation diagram (Figure 3.9a). I calculated RMS of each polynomial and found that the degree-6 polynomial is the most appropriate (Figure 3.10). The time derivative of this polynomial was used to represent slopes of the slip accumulation curve in this study (Figure 3.11). Next, I compared the correlation between slopes and two quantities: amount of slips (Figure 3.9b) and recurrence intervals (Figure 3.9c). It is interesting to see a stronger correlation (CC = 0.52) for the slips, which suggests that increased slips cause the rise of the slip accumulation rate rather than decreased recurrence intervals.



**Figure 3.9.** (a) Slip accumulation diagram of the 38 SSEs from 1997 to 2016. The upper diagram is fit by four lines with different trends and time periods. It is also modeled with the degree-6 polynomial, whose time derivative f'(t) is shown in Figure 3.11. At the bottom of the diagram, the detrended cumulative slip is displayed, which clearly indicates the changes of the trend. Vertical positions of the three curves are arbitrary. Dashed lines and dotted lines with triangles indicate occurrences of large earthquakes (EQ1-6) and earthquake swarms (SW1-2), respectively. The two orange belts in the illustration represent the epochs of the slip accumulation rate increase. (b) The scatter diagram between the slips and f'(t) at the SSE onset times. Its correlation coefficient is 0.52, which suggests that the two variables are positively correlated. (c) However, the correlation between the recurrence intervals and f'(t) is small. The correlation coefficient is only 0.08.



**Figure 3.10.** The L-curve test was used to determine the most appropriate degree of polynomial to fit the slip accumulation curve of the SSEs. Based on the fast drop of RMS value up to degree 6. Hence, the degree-6 polynomial is inferred to be the most appropriate.



**Figure 3.11.** The time derivative of the degree-6 polynomial used to model the SSE slip accumulation curve. The time series of f'(t) represents slopes of the slip accumulation curve.

# 3.4 Discussion

### 3.4.1 Mechanisms of time-variable slip accumulation

Since SSEs release accumulated strain like regular earthquakes, stress disturbances caused by external forces (e.g. large earthquakes) may change their occurrences. Heki and Kataoka (2008) studied the possibility that the static stress perturbation by EQ2-4 (Figure 3.2b) in 2001 and 2002 might have disturbed the regular occurrence of SSEs. However, they considered it unlikely by comparing the stress drop of the average SSE and the Coulomb Failure Stress change ( $\Delta$ CFS) by EQ2-4 at the SSE fault. Later, Nakamura (2009) proposed the afterslip of EQ4, i.e., the 2002 Hualien earthquake ( $M_w$ 7.1) east of Taiwan (Figure 3.2b), lasted for 5 years and probably caused the increase of slip accumulation rate. However, no large earthquakes occurred around the second increase of the slip accumulation rate in 2013. Moreover, the activities of small earthquakes ( $M_w$ > 3) along the Ryukyu Trench did not show significant changes, either (Figure 3.12a). Here, I propose a new mechanism that may ecplain the two increases of the slip accumulation rate, in addition to the afterslip of EQ4 (Nakamura, 2009).

Okinawa Trough, an active back-arc spreading system, is located ~70 km north of the SSE fault patch. During the study period, two earthquake swarms (SW1 and SW2) occurred (Figure 3.12b), possibly suggesting the occurrences of rifting episodes at the trough axis. The first event was active about two days (Oct. 24-25, 2002) and showed a definite stop. The second one started on Apr. 15, 2013 and is followed by a long-duration high seismic activity at the trough. Notably, their occurrences roughly coincide with the increases of the slip

accumulation rate in 2002 and 2013 (Figure 3.9a).

Ando et al. (2015) inferred that the SW2 reflects a dike intrusion with the volume of ~0.4 km<sup>3</sup>. If I assume a 2-meter tensile opening of a vertical plane with the width 10 km and the length 20 km, a positive  $\Delta$ CFS of ~9 kPa occurs at the SSE fault. It would be a significant stress change amounting to ~40 % of the stress drop of an SSE but still inadequate to explain the observed increase in the slip accumulation rate from 6.3 cm/year to 10.2 cm/year lasting for several years.



**Figure 3.12.** (a) Seismicity along the southwestern Ryukyu Trench from 1997 to 2016. Open circles indicate large earthquakes ( $M_w > 6$ ). The gray curve displays the number of small earthquake ( $M_w > 3$ ), whose unit is given on the right axis. Gray shaded rectangles represent two epochs when the slip accumulation increased. (b) Earthquake activity ( $M_w > 3$ ) within the Okinawa Trough. Two triangles indicate earthquake swarms in 2002 and 2013, and EQ5 ( $M_w 6.1$ ) belongs to the SW2. Geometric ranges of earthquakes shown in (a) and (b) are given in Figure 3.2b.

Chapter 3: SSEs

Iriomote Islands is located above the SSE fault patch in the southwestern Ryukyu Arc (Figure 3.2b). I found that the southward motion of the GNSS station on this island accelerated from 1.4 mm/year to 6.6 mm/year, and from 0.8 mm/year to 10.3 mm/year, when SW1 and SW2 occurred, respectively (Figure 3.13a). Based on the long duration of accelerated periods, I speculate that the two rifting episodes may have been followed by years of post-rifting stress diffusion as seen in NE Iceland after the 1975 Krafla rifting episode (e.g. Foulger et al., 1992). They might have let the block between the Okinawa Trough and the Ryukyu Trench move faster southward over several years after SW1 and SW2, and then have caused the positive trend changes of the slip accumulation curve. The enhanced convergence by SW1 seems to decay in four years or so (Figure 3.13a). It is shorter than the accelerated period lasting over ten years in NE Iceland (Heki et al., 1993). The decay of the second episode is still not obvious at present (Figure 3.13a). In addition to the post-rifting stress diffusion, I consider that the afterslip of EQ4 also has contributed to the increased slip accumulation rate in 2002 as suggested by Nakamura (2009).

Except for the increases mentioned above, one gradual slowdown of the slip accumulation rate is seen around 2007 (Figure 3.9a). Since this event is not accompanied by any corresponding event, I suspect that it reflects the natural decay of the increase that started in 2002. Based on this, another slowdown of the slip rate would appear in the coming years, which is due to the decay of the second acceleration episode in 2013.


**Figure 3.13.** (a) Daily north coordinate of the Iriomote station. Southward movements of this island accelerated significantly after SW1 and SW2. Gray shaded rectangles represent two epochs, when the slip accumulation increased. (b) and (c) Enlarge segments of (a) around SW1 and SW2.

#### 3.4.2 Stress increases and the enhancement of slips

In general, transient stress increases caused by external forces would enhance amount of slips and/or the event rate. For example, in the Boso area, Central Japan, the transient stress increase caused by the 2011 Tohoku-oki earthquake encouraged the earlier recurrence of the next SSEs (Hirose et al., 2012). However, in the southwestern Ryukyu Arc, the transient stress increase seems to enhance only amount of slips without making the recurrence intervals shorter (see Figure 3.8b and 3.8c). It is contrary to what I expect that the increased loading would cause the increased event rate. At present, I do not have a reasonable interpretation on this phenomenon, and future studies are necessary.

## 3.4.3 Coupling ratio of the SSE fault patches

Heki and Kataoka (2008) suggested that SSEs in the SW Ryukyu Arc accommodate most of the plate convergence in the Ryukyu Trench, i.e., the slip accumulation rate of the repeating SSEs was comparable to the plate convergence rate. Hence, there were no long-term stress accumulations that could lead to large interplate earthquakes in the SW Ryukyu subduction zone. With the present dataset, I recalculated the coupling ratio of the SSE fault patch. Considering the average slip for the SSEs of 4.5 cm and the average recurrence interval of six months, I obtain the average slip accumulation rate of ~9 cm/year. It is about 72 % of the plate convergence of 12.5 cm/year in the SW Ryukyu Trench (Heki and Kataoka, 2008). That is, small earthquakes and the stable slips surrounding the SSE fault patches probably contain the rest (~28 %) of the plate convergence.

#### 3.4.4 Comparison with other SSEs

In addition to the SW Ryukyu, SSEs were observed in several regions of Japan, such as the Bungo channel (e.g., Hirose et al., 1999; 2010; Hirose and Obara, 2005), the Kii channel (e.g., Kobayashi, 2014), the Tokai area (e.g., Ozawa et al., 2002; Hirose and Obara, 2006), and the Boso Peninsula (e.g., Ozawa et al., 2003, 2007, 2014; Hirose et al., 2012). Although these SSEs have similar source mechanisms (Beroza and Ito, 2011), they show diverse characteristics. Here, I study properties of series SSEs in different regions and compare them with the Iriomote SSEs. The detail information is provided in Table 3.2.

The Bungo channel separates the Japan islands of Kyushu and Shikoku, SW Japan (Figure

Chapter 3: SSEs

3.14). There the Philippines Sea Plate is subducting beneath SW Japan along the Nankai Trough (Figure 3.14), both long- and short-term SSEs are detected there (e.g., Hirose et al., 1999; Hirose and Obara, 2005). The magnitude ( $M_w \sim 6.8$ ) and depth ( $\sim 30$  km) of the Bungo long-term SSEs are similar to those beneath the Iriomote SSEs, although their time constant ( $\sim 1$  year) and the recurrence interval ( $\sim 6$  years) are much longer than the Inriomote events (Hirose and Obara, 2005; Hirose et al., 2012). On the other hand, the short-term SSEs found in the Bungo channel have smaller magnitudes ( $M_w \sim 6.0$ ) and shorter durations (< 10 days) (Hirose and Obara, 2005). Their source depths are between 20-45 km (Table 3-2), and fault patches extend northeastward to the Shikoku (Hirose and Obara, 2005).

In the Shikoku region, short-term SSEs possess similar properties to the short-term events in the Bungo channel (Obara et al., 2004; Hirose and Obara, 2005). The fault patches of these short-term SSEs are distributed on a belt-like zone extending more than 600 km (Figure 3.14). Notably, they all have a strong link with deep low-frequency tremor, deep very low frequency earthquakes (VLFEs), and low frequency earthquakes (LFEs) that occurred on the down-dip side of long-term SSE source regions (Obara et al., 2004; Hirose et al., 2010; Hirose and Obara, 2010). The coincidence of these low frequency events is referred to as episodic tremor and slip (ETS)(Hirose and Obara, 2010). Long-term SSEs are rare in Shikoku and distributed beneath the western Shikoku (Figure 3.14). Their magnitudes (Mw~6.5) are smaller than those of the Iriomote SSEs, but they have longer durations up to several months (Kobayashi, 2010; 2014). However, the recurrence intervals of these events are not well understood uncertain because of the small number of the long-term SSEs.

The Kii channel separates the Shikoku Island from the Kii Peninsula of the Kinki District,

Honshu (Figure 3.14). It is different from the Bungo channel; short-term SSEs completely disappear in this region, and only one long-term SSE has been observed (Kobayashi, 2014). The magnitude of this event ( $M_w$  6.7) is comparable to that of the Iriomote SSEs, but its duration (1-1.5 years) is much longer (Kobayashi, 2014).

Tokai area is close to the northeastern end of the Nankai Trough, Central Japan (Figure 3.14). Both long-term and short-term SSEs are active in this region (Ozawa et al., 2002; Hirose and Obara, 2006; Suito and Ozawa, 2009). The Tokai long-term SSEs have the largest magnitudes (Mw ~7.0) and long durations (~5 years) and recurrence interval (~ 10 years) among various repeating SSEs in Japan (Suito and Ozawa, 2009). On the other hand, the Tokai short-term SSEs have smaller magnitudes (Mw ~6.0) and shorter durations (2-3 days) (Hirose and Obara, 2006). Their recurrence intervals of ~ 6 months are comparable to the Iriomote events (Hirose and Obara, 2006).

The Boso Peninsula is located in the Kanto District, Central Japan. Its tectonic setting is complicated, i.e. there the Philippines Sea Plate and the Pacific Plate subduct underneath the SW and NE Japan along the Sagami Trough and Japan Trench, respectively (Figure 3.14). Long-term SSEs do not occur in this region; only short-term SSEs have been detected (Ozawa et al., 2003, 2007, 2014; Hirose et al., 2012). The magnitudes of the Boso short-term events ( $M_w ~ 6.6$ ) are comparable to those of the Iriomote SSEs, but their recurrence intervals (5-7 years) are much longer (Ozawa et al., 2007; Hirose et al., 2012). A unique point of these repeating short-term SSEs is their relatively short duration, less than 10 days, for their magnitudes (Hirose et al., 2012).

Comparing the long-term SSEs in Japan, I find that the Iriomote SSEs have a short

recurrence interval (6 months) and time constants (~0.1 years)(Table 3-2). This may reflect the high plate convergent rate of the SW Ryukyu Trench (Heki and Kataoka, 2008). Their average magnitude (Mw ~6.7) just falls in the middle value, and the source depth of ~30 km is similar to other long-term SSEs (Table 3-2).



**Figure 3.14** Distribution of slow earthquakes and megathrust earthquakes in southwestern Japan. Green zones display the locations of deep low-frequency tremor. Yellow and blue circles are the long-term SSEs and shallow VLFEs, respectively. The regions outlined in red denote seismogenic zones for future megathrust earthquakes. (Modified from Obara and Kato, 2016)

|                   | SW Ryukyu                   | N Ryukyu        | Bungo channel                                     | Shikoku                              | Kii channel     | Tokai                                   | Boso                                        |
|-------------------|-----------------------------|-----------------|---------------------------------------------------|--------------------------------------|-----------------|-----------------------------------------|---------------------------------------------|
| Type              | Long-term                   |                 | Long-term                                         | Long-term                            | Long-term       | Long-term                               |                                             |
|                   |                             | Short-term      | Short-term (ETS)                                  | Short-term (ETS)                     |                 | Short-term                              | Short-term                                  |
| Magnitude         | (L) ~6.7                    |                 | (L) ~6.8                                          | (L) ~6.5                             | (L) 6.7         | (L) ~7.1                                |                                             |
| (M <sub>w</sub> ) |                             | (S) 5.6-6.8     | (S) 5.8-6.2                                       | (S) ~6.0                             |                 | (S)~6.0                                 | (S) ~6.6                                    |
| Recurrence        | (L) ~6 mos.                 |                 | (L) ~6 yrs.                                       |                                      |                 | (L) ~10 yrs.                            |                                             |
| Interval          |                             |                 |                                                   | (S) ~6 mos.                          |                 | (S) ~6 mos.                             | (S) 5-7 yrs.                                |
| Time constant     | (L) ~0.1 yrs.               |                 | (L) 3 mos-1 yrs.                                  | (L) several mos.                     | (L) 1-1.5 yrs.  | (L) ~5 yrs.                             |                                             |
| /duration         |                             | (S) ~2          | (S) <10 days                                      | (S) ~1 week                          |                 | (S) 2-3 days                            | (S) 10 days                                 |
|                   |                             | weeks           |                                                   |                                      |                 |                                         |                                             |
| Depth             | (L) ~30                     |                 | (L) ~30                                           |                                      | (L) 20-30       | (L) 20-30                               |                                             |
| (km)              |                             | (S) 10-60       | (S) 20-45                                         | (S) 30-45                            |                 | (S) ~35                                 | (S) ~15                                     |
| Link with other   | VLFEs                       |                 | Shallow VLFEs                                     | Deep tremor,                         |                 |                                         | EQ swarms                                   |
| seismic activates |                             |                 | and deep tremor                                   | DVLFE, LFE                           |                 | (S) tremors                             |                                             |
| Reference         | Heki & Kataoka,<br>2008     | Nishimura, 2014 | Hirose et al., 1999; 2010<br>Hirose & Ohara, 2005 | Obara et al., 2004<br>Kobarachi 2010 | Kobayashi, 2014 | Ozawa et al., 2002;<br>Hiroce and Ohara | Ozawa et al., 2003,<br>2007–2014: Hirosa at |
|                   | <u>-</u><br>Ти & Heki, 2017 |                 |                                                   | Hirose & Obara, 2010                 |                 | 2006; Suito and                         | al., 2012                                   |
|                   |                             |                 |                                                   |                                      |                 | Ozawa, 2009                             |                                             |

Table 3-2. The properties of SSEs in different regions of Japan, and their relationships with other seismic activities.

(L) Long-term SSE (S) Short-term SSE

## 3.5 Summary

- From 1997 to 2016, I identified 38 SSEs repeating biannually beneath the Iriomote Island in the southwestern Ryukyu Arc. These events occurred at the same fault patch as those reported by Heki and Kataoka (2008).
- The slip accumulation rate of these SSEs significantly increases in 2002 and 2013, which is consistent with the activations of the back-arc spreading indicated by the earthquakes swarms in the Okinawa Trough.
- The accelerated southward movement of the block between the Okinawa Trough and the Ryukyu Trench caused by post-rifting stress diffusion might induce the increase of the slip accumulation rate of the SSEs.
- The repeating SSEs accommodate about 72% of the plate convergence in the SW Ryukyu subduction zone.

Chapter 3: SSEs

# Chapter 4.

Very Low Frequency Earthquakes (VLFEs)

# 4.1 Introduction

#### 4.1.1 What is a very low frequency earthquake (VLFE)?

Very low-frequency earthquakes (VLFEs) belong to the category of slow earthquakes dominated by the low frequency energy of 0.1-0.01 Hz with little or no high frequency content (Obara and Ito, 2005). In comparison with ordinary (or regular) earthquakes, these events have a longer duration (~20 s) and consist predominantly of long-period waves (Beroza and Ito, 2011). Hence, only high sensitivity broadband seismometers can record such low-frequency signals. Furthermore, VLFEs can be classified into two groups, the volcanic VLFEs related to the fluid or magma transportation (e.g., Arciniega-Ceballos et al., 1999) and the nonvolcanic VLFEs generated by the shear faulting of subduction zones (e.g., Obara et al., 2004b). For the nonvolcanic VLFEs, we still can divide them into shallow VLFEs in accretionary prisms near trench axes (e.g., Obara and Ito, 2005; Ito and Obara, 2006a) and deep VLFEs that occur at the downdip limit of the seismogenic zones often associate with episodic tremor and slips (ETSs, Ito et al., 2007; Ghosh et al., 2015; Baba et al., 2018).

#### 4.1.2 Where do VLFEs occur?

Unlike worldwide distribution of SSEs (Figure 3.1), VLFEs have been observed in a few subduction zones, such as the Nankai Trough (e.g., Obara and Ito, 2005; Ito and Obara, 2006a; Asano et al., 2008), the Japan Trench (e.g., Matsuzawa et al., 2015), the offshore of Hokkaido (e.g., Obara et al., 2004b; Asano et al., 2008), and the Cascadia Subduction Zone (e.g., Ghosh et al., 2015) (Figure 4.1). Because large interplate earthquakes often occur in

these subduction zones, VLFEs, like other slow earthquakes, are considered to link with megathrust earthquakes (Obara and Kato, 2016). However, at present, some studies also found that VLFEs occur in weakly coupled plate boundaries, such as the Ryukyu subduction zone (Ando et al., 2012; Nakamura and Sunagawa, 2015) (Figure 4.1).



**Figure 4.1.** Global distribution of nonvolcanic very low frequency earthquakes (VLFEs). (Modified from Obara and Kato, 2016.)

## 4.1.3 VLFEs in the Ryukyu Trench

Several studies indicated that the Ryukyu subduction zone is a decoupled or weakly coupled plate boundary (e.g., Peterson and Seno, 1984; Scholz and Campos, 2012), but a number of VLFEs were detected in this subduction zone (Ando et al., 2012; Nakamura and Sunagawa, 2015). These VLFEs occurred at depths of < 60km along the Ryukyu trench axis

with a thrust fault mechanism. Ando et al. (2012) thus inferred that the VLFEs are distributed within an accretionary prism or on the shallow plate interface of the Ryukyu Subduction Zone. Moreover, Nakamura and Sunagawa (2015) hypothesized that the VLFEs in the southwestern segment of the Ryukyu Subduction zone probably have been activated via repeating SSEs beneath Iriomote Island (Heki and Kataoka, 2008).

## 4.1.4 Purposes of this study

Ando et al. (2012) studied the properties of VLFEs along the Ryukyu Trench, but their activities are still not clear due to the short span of data sampling (one year). Subsequently, Nakamura and Sunagawa (2015) analyzed long-term (12 years) activities of VLFEs in Ryukyu. However, their study provides neither focal mechanism, nor accurate hypocenters because of unclear onset of long-period first-motion waveform data recorded at sparse seismic stations. To overcome these predicaments, I extend the time span of data sampling to eight years and determine the locations and source mechanisms of VLFEs using a waveform inversion technique (Nakano et al., 2008). In this chapter, I focus on the spatiotemporal variations and characteristic behaviors of VLFEs and try to clarify the relationships between SSEs and VLFEs in the Ryukyu area. I expect that the results can help us understand the generation of slow earthquakes and various slip phenomena on the plate boundaries during the subduction processes. Moreover, I attempt to propose a subduction model for the Ryukyu Trench to compare with the model for the Nankai Trough.

## 4.2 Data and method

#### 4.2.1 Detection of VLFEs

I analyzed vertical component seismograms in 2005-2012 obtained from ten broadband seismic stations of the F-net by National Research Institute for Earth Science and Disaster Resilience (NIED) of Japan and BATS by Institute of Earth Science (IES) of Taiwan (Figure 4.2). Because the short-period (0.2–1 Hz) noise level is too high to detect VLFE signals, all raw seismic data were bandpass-filtered at 0.02–0.06 Hz (Figure 4.3). After detecting low-frequency signals from the filtered seismograms, I removed teleseismic and local earthquakes referring to earthquake catalogs of Preliminary Determination of earthquakes (PDE, USGS), Japan Meteorological Agency (JMA), and Taiwan Central Weather Bureau (CWB). A few un-cataloged microearthquakes (< M<sub>w</sub> 2.5) were also found among the signals, and I deleted them via 1.0 Hz high-pass filtered seismograms. Through these steps, I identified 29,841 VLFEs in the Ryukyu area, whose seismic waves arrived first at one of the seven F-net stations.

Figure 4.4 shows a typical sequence of VLFE activities in Ryukyu recorded at both F-net and BATS broadband seismic stations. Their first arrival times indicate that these events occurred around IGK and YNG stations (Figure 4.2). Moreover, the sequence of VLFEs lasted several hours like an earthquake swarm, which is a primary form of VLFE activities in the Ryukyu area.



**Figure 4.2.** Index map of the Ryukyu area. Area U represents the geometric extent of the grid search for the waveform inversion analysis, and the rectangles of S, O, A and K indicate the four sub-areas of Sakishima, Okinawa, Amami, and southern Kyushu, respectively. The blue squares show ten broadband seismic stations of F-net (dark blue) and BATS (light blue) used in this study. The black arrow shows the average convergence rate of ~8 cm/y between the Philippine Sea Plate and Eurasian Plate (Nakamura, 2009). Kyushu-Palau Ridge near the southern Kyushu area (K) is the boundary between the Ryukyu Trench (black solid line) and the Nankai Trough (black dash line). The West Philippine Basin is located at the northwestern Philippine Sea Plate, which is subducting along the Ryukyu trench over 1200 km-long segment bounded by the Kyushu-Palau Ridge in the east and the Gagua Ridge in the west. The West Philippine Basin has a smoothed seafloor around the Sakishima (S) and Okinawa (O) areas, but it becomes uneven in the Amami area (A) where several old oceanic ridges (Oki-Daito Ridge, Daito Ridge, and Amami Plateau) lie or partly subduct at the trench.



**Figure 4.3.** Vertical component seismograms of a sequence of VLFEs for a period of 4000s recorded at IGK, SW Ryukyu. The top and bottom diagrams show the raw and bandpass filtered (0.02-0.06 Hz) broadband seismograms, respectively. Three VLFEs are seen at approximately 1300s, 1650s, and 2700s in the filtered seismogram but cannot be identified in the raw seismogram.



**Figure 4.4.** Three-hour vertical component seismograms of a sequence of VLFEs obtained from broadband seismic stations of F-net and BATS (diamonds in the right diagram). The bandpass filtered (0.02-0.06 Hz) seismograms are arranged, from top to bottom, based on increasing distance northward from 120°E–20°N (they correspond to the stations shown in the map to the right). The origin time is comparable to (UT) 20:55:00, on Nov. 9, 2007.

#### 4.2.2 Determination of hypocenters and mechanisms

To determine source locations and mechanisms of VLFEs in Ryukyu, I adopted a grid-search moment-tensor inversion program (Nakano et al., 2008). This program can provide a stable solution of hypocenter and focal mechanism using data from a small number of stations. Assuming a double-couple source model, this inversion program locates a target earthquake at a spatial grid point and determines its strike, dip, and rake of the earthquake fault using a 1-D seismic velocity model (AK135, Kennett et al., 1995).

First, I calculated the Green's functions of full waves at each grid point with a horizontal interval of 0.5° and a vertical interval of 10 km in the area U (22°N-33°N and 120°E-133°E). For the waveform inversion analysis, I selected 1,504 VLFEs with a maximum velocity amplitude of > 10 nm/s and a low ambient noise level. After obtaining approximate hypocenters of VLFEs, I reduced the horizontal spacing to 0.2° for estimating more accurate hypocenters in the Sakishima, Okinawa, Amami, and southern Kyushu areas (Figure 4.2). Here, I selected at least two seismic stations for each area to let the epicentral distance of every event < 300 km, i.e., YNG and IGK for the Sakishima area, ZMM and KGM for the Okinawa area, AMM, KGM, and KYK for the Amami area, and KYK and TAS for the S. Kyushu area (Figure 4.2). Such setting of seismic stations is appropriate for the inversion analysis of this study.

Figure 4.5 shows an example for the inversion result of a VLFE on Mar 6, 2005, at  $125.4^{\circ}E-23.8^{\circ}N$  with a depth of 30 km. Its moment magnitude ( $M_{w}$ ) is 4.0. The best-fit model is a reverse faulting mechanism with a slight strike-slip component. Three-component (EW, NS, and Z) seismograms of YNG and IGK stations were used for the

inversion analysis of waveform data of this event.



**Figure 4.5.** (a) The source location (star) of VLFE #30 (see Supplement 1). The contours display the residuals between synthetic and observed waveforms obtained from the hypocenter and CMT grid search. (b) The CMT solution of the VLFE #30. The beach ball at the top shows the best-fit focal mechanism. The obtained waveform at the source is shown at the top right corner. The bottom displays the three-component waveforms of the synthetic (red lines) and observed (black lines) seismograms. The dashed rectangles in green indicate three categories of the residual (Res), waveform at the source (Wave), and shape of residual contours (Cont) for evaluating the reliability of the inversion results. According to Table 4-1 and 4-2, the quality value of this event is 9 and is defined as rank *A*.

## 4.2.3 Reliability of inversions

After obtaining locations and centroid moment tensor (CMT) solutions of the VLFEs, I evaluated the reliability of inversion results using quality ranks A (good), B (fair), and C (poor)

based on three categories, that is, the residual (Res), waveform at the source (Wave), and shape of residual contours (Cont) (Table 4-1; Figure 4.5). I assigned three grades (good=3, fair=2, poor=1) for each category. If the sum of grades is  $\geq$  8, the inversion results will be defined as rank *A*. However, if the sum falls into 5-7, they will be assigned as rank *B*, and if the sum  $\leq$  4, assigned as rank *C* (Table 4-2). For example, the VLFE #30 (Figure 4.5) has values of Res=3, Wave=3, and Cont=3, and defined as rank *A* (i.e., Res + Wave + Cont).

Table 4-1. Evaluation points for the inversion results

| Point    | (1)                         | (2)              | (3)                   |
|----------|-----------------------------|------------------|-----------------------|
|          | <b>Residual of waveform</b> | Waveform at the  | Shape of residual     |
|          | matching                    | source           | contours              |
| 3 (good) | <0.2                        | Simple and clear | Circular              |
| 2 (fair) | 0.2-0.3                     | Slight noisy     | Elliptical            |
| 1 (poor) | >0.3                        | Very noisy       | Elongated or unclosed |

Table 4-2. The quality ranks of inversion results based on the quality value

|               | Rank A (good) | Rank B (fair) | Rank C (poor) |
|---------------|---------------|---------------|---------------|
| Quality value | 9, 8          | 7, 6, 5       | 4, 3          |

## 4.3 Results

#### 4.3.1 Waveform characteristics

I observed 29,841 VLFEs in the Ryukyu area during 2005–2012. To understand differences in waveform characteristics between VLFEs and ordinary earthquakes, I arbitrarily selected a VLFE and an ordinary earthquake that have the same magnitude (M<sub>w</sub> 4.6) and are located within a distance of 50 km from each other. Vertical-component seismograms of the two earthquakes were processed with two filters: a band-pass filter of 0.02-0.06 Hz and a high-pass filter of 1 Hz. The bandpass-filtered waveforms of the ordinary earthquake and the VLFE both have low-frequency components (Figure 4.6). However, the high-pass-filtered waveform is ample in the ordinary earthquake but is absent from the VLFE. Moreover, the spectrograms of VLFEs and ordinary earthquakes also display a spectrum swell between 0.03 and 0.15 Hz, whereas another swell of >1 Hz only exists in the ordinary earthquakes (Figure 4.7). It suggests that the VLFEs predominantly consist of long-period waves (0.03-0.15 Hz) without high-frequency content (>1 Hz).



Figure 4.6. Vertical-component waveforms of an ordinary earthquake (upper) and a VLFE

(lower) recorded at IGK. Highpass filtered waveforms at 1 Hz (black) and bandpass filtered waveforms in 0.02-0.06 Hz (red) are shown in the same diagram. The units for the black and red waveforms are given on the left and right axes (nm/s), respectively. The origin time, location, and magnitude ( $M_w$ ) of the two events are provided at the upper left of each diagram.



**Figure 4.7.** Spectra of three-hour vertical-component seismograms of VLFEs (black) depicted in Figure 4.4, an ordinary earthquake (blue), and background noise (green) at IGK station. The two dashed lines define the dominant frequency range (0.03-0.15 Hz) of the VLFEs. The spectrum swell between 0.03 and 0.15 Hz appears in the spectra of VLFEs and ordinary earthquakes, but the other swell of >1 Hz only exists in the spectrum of ordinary earthquakes. Vertical positions of these spectra are arbitrary.

Chapter 4: VLFEs

#### 4.3.2 VLFE activities

To analyze activities of the VLFEs, I divided all 29,841 events into four sub-areas of Sakishima, Okinawa, Amami, and southern Kyushu (Figure 4.2) based on the first arrivals of waveforms. For example, if seismic waves of a VLFE arrive first at IGK, this event will be grouped into the Sakishima area. Here, I assigned one or two seismic stations for each area in the present study, i.e., YNG and IGK to Sakishima, ZMM and KGM to Okinawa, AMM to Amami, and KYK and TAS to southern Kyushu (see Figure 4.2).

Figure 4.8 shows the VLFE time series of the four areas. Notably, M<sub>JMA</sub> 5-7 earthquakes sometimes activate VLFEs or occur together with VLFE activities. For instance, a sequence of VLFEs started one day after an M<sub>JMA</sub> 5.0 earthquake (see EQ-I in Figure 4.8) on 2 Apr 2006, ~90 km south of IGK in the Sakishima area. Likewise, during an active period of VLFEs on Dec. 2-7 2006, an M<sub>JMA</sub> 5.0 earthquake (see EQ-II in Figure 4.8) occurred ~100 km southeast of KGM in the Okinawa area. However, every M<sub>JMA</sub> 5-7-class earthquake not necessarily linked with a VLFE activity. The M<sub>JMA</sub> 7.2 earthquake (see EQ-III in Figure 4.8) in 2010 is a typical example. This earthquake occurred near the Okinawa Island but did not activate any VLFEs around it. Table 4.3 provides the detail information of ordinary earthquakes that activated VLFEs in the Ryukyu region.

A few teleseismic events can induce VLFEs. For instance, 11 hours after the Sichuan earthquake on May 12, 2008 (M<sub>w</sub> 7.9) (see Sichuan in Figure 4.8), VLFEs in southern Kyushu became active and lasted 10 days (May. 12-21, 2008). Similar activations were also seen after the Kuril earthquake of Nov. 15, 2006 (M<sub>w</sub> 8.3), and the Tohoku-Oki earthquake of Mar. 11, 2011 (M<sub>w</sub> 9.1) (see Kuril and Tohoku in Figure 4.8). However, such a phenomenon has

occurred only in southern Kyushu but has never seen in the other areas (Sakishima, Okinawa, and Amami). Supplement 1-F1 provides 24-hour seismograms recorded at all F-net stations after the M<sub>w</sub> 8.3 Kuril earthquake occurrence, which displays a typical VLFE activation in the southern Kyushu area.

Figure 4.9 shows the cumulative number of VLFEs for the four areas. I noted that the cumulative curves of the Sakishima, Okinawa and Amami areas increased linearly with time, but that of Southern Kyushu showed a step-like shape, i.e., having relatively quiescent epochs between two active periods. This suggests that the VLFE behaviors of the two groups are probably different. To compare the temporal change of VLFE activities in the four areas, I normalized yearly VLFE counts with the maximum number of each area (Figure 4.10). From 2005 to 2009, the normalized curves of Sakishima, Okinawa, and Amami are quite alike but significantly different from that of Southern Kyushu (Figure 4.10). It means that VLFE activity of the southern Kyushu is distinct from the three other areas. Nevertheless, from 2010 to 2012, the four curves seem to show a similar tendency, which may have occurred coincidentally or due to some unknown reasons. These observations indicate that VLFE activities in the three areas of Sakishima, Okinawa, and Amami along the Ryukyu Trench are somehow tectonically linked but detached from the southern Kyushu area.



**Figure 4.8.** Time series of VLFE activities in the Sakishima, Okinawa, Amami, and southern Kyushu areas. Solid bars show the daily count of VLFEs. The blue arrows indicate ordinary earthquakes ( $M_{JMA} \ge 5$ ) that triggered VLFEs, and green diamonds mark local earthquakes that occurred concurrently with VLFE activity. The grey arrow shows an  $M_{JMA}$  7.2 earthquake that did not trigger any VLFEs. The three red inverse triangles indicate teleseismic events that triggered VLFEs in the southern Kyushu area. The source information of 14 local earthquakes (blue arrows) and 3 teleseismic earthquakes (red inverse triangles) are given in Table 4.3



**Figure 4.9.** Cumulative number of VLFEs for the Sakishima (blue line), Okinawa (green line), Amami (yellow line), and southern Kyushu (purple line) areas.



**Figure 4.10.** Smoothed yearly count of VLFEs normalized by the count (max – min) for each of the Sakishima (blue line), Okinawa (green line), Amami (yellow line), and southern Kyushu (purple line) areas.

| Туре        | Area      | Time (UT)      | Lon<br>(°E) | Lat<br>(°N) | Depth<br>(km) | M <sub>JMA</sub> /M <sub>w</sub> | Epicentral distance<br>(km)* |
|-------------|-----------|----------------|-------------|-------------|---------------|----------------------------------|------------------------------|
| Local       | Sakishima | 20060402050830 | 123.91      | 23.48       | 36            | 5.0                              | 70                           |
| Local       | Sakishima | 20070116031035 | 122.44      | 23.99       | 28            | 5.5                              | 90                           |
| Local       | Sakishima | 20070307225717 | 122.42      | 24.03       | 19            | 5.5                              | 90                           |
| Local       | Sakishima | 20080427173208 | 125.07      | 24.86       | 32            | 5.2                              | 200                          |
| Local       | Sakishima | 20080510194200 | 122.43      | 23.95       | 32            | 5.9                              | 90                           |
| Local       | Sakishima | 20101004132838 | 125.33      | 24.21       | 53            | 6.4                              | 200                          |
| Local       | Sakishima | 20120227011146 | 123.36      | 23.83       | 30            | 5.5                              | 10                           |
| Local       | Okinawa   | 20090322144546 | 128.66      | 26.02       | 50            | 5.3                              | 90                           |
| Local       | Okinawa   | 20120307061808 | 127.28      | 25.53       | 47            | 5.2                              | 60                           |
| Local       | Amami     | 20060812183917 | 130.17      | 28.69       | 55            | 5.3                              | 110                          |
| Local       | Amami     | 20061117180312 | 130.15      | 28.51       | 30            | 6.0                              | 90                           |
| Local       | S-Kyushu  | 20090405093626 | 131.89      | 31.92       | 28            | 5.6                              | 160                          |
| Local       | S-Kyushu  | 20100125071509 | 131.15      | 30.87       | 49            | 5.4                              | 180                          |
| Local       | S-Kyushu  | 20110409125749 | 131.83      | 30.01       | 61            | 5.8                              | 150                          |
| Teleseismic | Kuril     | 20061115111413 | 153.26      | 46.59       | 10            | M <sub>w</sub> 8.3               | 2500                         |
| Teleseismic | Sichuan   | 20080512062801 | 103.32      | 31.00       | 19            | M <sub>w</sub> 7.9               | 2700                         |
| Teleseismic | Tohoku    | 20110311054624 | 142.37      | 38.29       | 29            | M <sub>w</sub> 9.1               | 1200                         |

Table 4-3. Source information of the 17 earthquakes that triggered VLFEs.

\* The epicentral distance from the causative earthquake to the triggered VLFEs

#### 4.3.3 Hypocenters

From 2005 to 2012, I detected a total of 29,841 VLFEs in the Ryukyu area, but only 1,504 events with large amplitudes and low ambient noise levels were applicable for the waveform inversion analysis. Using the moment tensor inversion developed by Nakano et al. (2008), I obtained the locations and CMT solutions of the 1,504 VLFEs. The detailed source parameters of these VLFEs are provided in Supplement 1. The numbers of the VLFEs assigned to ranks *A*, *B*, and *C* are 299, 751, and 454, respectively. However, I deleted 454 events due to their low-quality solutions (quality rank *C* in Table 4.2). Figure 4.11 shows the distribution of the rest 1,050 VLFEs, whose quality ranks are *A* or *B*. These VLFEs are all located along the Ryukyu Trench axis with source depths of 5-60 km (Figure 4.11; Supplement 1). Notably, the VLFEs near YNG and IGK stations (Sakishima area) and those

near ZMM and KGM stations (Okinawa area) appear to have well concentrated, while the VLFEs around the AMM station (Amami area) are scattered over the entire area in the fore-arc side bounded by the Ryukyu Trench axis and Okinawa Trough (Figure 4.10). Considering these solutions all have high quality, the scattered distribution in the Amami area is probably related to the location of operational seismic stations, but not caused by low-quality data.

To examine above speculation and clarify the reliability of VLFE locations determined by the waveform inversion method of this study, I attempted to compare hypocenters of ordinary earthquakes determined by F-net and those solved by my approach. For this analysis, I applied the same inversion method to 31 ordinary earthquakes with  $M_{JMA} > 4$ , which were selected arbitrarily from the Ryukyu region (Figure 4.12). The seismic network, stations, and filter-band used in this analysis were the same as those used for the VLFEs mentioned above. Figure 4.12 displays hypocenters of these ordinary earthquakes obtained from my inversion method and those imported from the F-net earthquake catalog (http://www.fnet.bosai.go.jp/event/joho.php?LANG=ja, accessed on 25 Jan., 2018). As described on the website, the epicenters of the F-net catalog are the same as those of JMA, but the depths, magnitudes, and CMT solutions are determined by the inversion method of F-net. Because JMA has 2-5 times more operational seismic stations than those belonging to F-net, i.e., having a better azimuthal coverage, their hypocenter locations are more reliable in general.

The average differences between the two results for the four areas are summarized in Table 4-4a-c. It is obvious that the differences between my method and the F-net results in

Chapter 4: VLFEs

the Sakishima and Okinawa areas are:  $0.03^{\circ} \pm 0.11^{\circ}$  in longitude,  $0.06^{\circ} \pm 0.13^{\circ}$  in latitude, and -6 km ± 12 km in depth, respectively (Table 4-4a). These differences are as small as ~10 km, suggesting that the hypocenters of VLFEs obtained from my inversion method are sufficiently accurate and reliable in these two areas. In contrary, the differences in Amami (Table 4-4b) and southern Kyushu (Table 4-4c) are 2-5 times larger than those of the Sakishima and Okinawa. Some events have significant discrepancies in the longitudinal direction (~1°), especially around the AMM station (Table 4-4b, Figure 4.12). However, the location errors near the trench axis are relatively small, almost comparable to those in the Sakishima and Okinawa areas (Figure 4.12). These results suggest that the hypocenters of VLFEs in the Amami area are perhaps unstable and need to be dealt carefully as described in the following sections.

## 4.3.4 Focal mechanisms

The CMT solutions of the 1,050 VLFEs are mostly thrust faults (Supplement 1). In this section, I discuss focal mechanisms of 21 selected VLFEs, whose quality value is 9 (rank is *A*). Despite a limited number of waveforms (two or three seismic stations) used for the inversion analysis, these source mechanisms with rank A are much more reliable than other events due to their highest quality data. As illustrated in Figure 4.11, 85% of the CMT solutions show the thrust faulting mechanisms, and some of them have a little strike-slip component. It suggests that these events are caused by the compressional stresses due to the plate convergence. Since these VLFEs have shallow source depths and thrust-fault

mechanisms, they probably occur on splay faults in the accretionary prism or on the plate interface of the Ryukyu subduction zone, which is similar to those observed in the Nankai Trough (Obara and Ito, 2005).

However, three strike-slip faulting mechanisms are also seen south of YNG and ZMM (Figure 4.11). Because several ordinary earthquakes in the two areas all have similar strike-slip mechanisms (Kubo and Fukuyama, 2003; Wu et al., 2010), I infer that these strike-slip VLFEs are one of the typical mechanisms in there. Additionally, these strike-slip events may relate to interactions between the back-arc spreading (Okinawa Trough) and subduction zone system (Ryukyu Trench) (Kubo and Fukuyama, 2003; Wu et al., 2010).



Figure 4.11. Locations and focal mechanisms of the VLFEs in the Ryukyu region. The red

circles depict the epicenter of VLFEs, whose quality ranks are A or B. The beach balls show the CMT solutions of 21 events possessing the highest quality value 9. The dashed contours display the upper depth of the Philippine Sea Plate (unit in km). The gray dots indicate the epicenters of ordinary earthquakes ( $M_{JMA} \ge 3$ ) in 2000-2015 reported by JMA. The blue squares with a station name aside are the F-net and BATS broadband stations used in the study.



**Figure 4.12.** Epicenters of the 31 ordinary earthquakes obtained from the inversion method of this study (red circles) and those from the F-net earthquake catalog (blue triangles). The two epicenters (red circles and blue triangles) of the same earthquake are linked with a line. These earthquakes are selected arbitrarily from the four areas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K). The differences between the two results are negligibly small in the Sakishima and Okinawa areas. However, some events in the Amami and southern Kyushu areas have large discrepancies, especially around AMM.

Table 4-3a. Comparisons of hypocenters and moment magnitudes of 16 ordinary earthquakes in the Sakishima and Okinawa areas determined

by F-net and this study.

| i          | 100      |        | F-n(  | et            |     |       | This st | udy           |         | Differ | ence (This | study – F-     | net) |
|------------|----------|--------|-------|---------------|-----|-------|---------|---------------|---------|--------|------------|----------------|------|
| Iime       | - (TSL)  | Lon    | Lat   | Depth<br>(km) | ۸   | Lon   | Lat     | Depth<br>(km) | ž       | ΔLon   | ΔLat       | ΔDepth<br>(km) | ΔM   |
| 2004/04/28 | 13:54:22 | 125.18 | 24.20 | 35            | 4.4 | 125.2 | 24.4    | 20            | 4.0     | 0.02   | 0.20       | -15            | -0.4 |
| 2004/07/22 | 18:45:13 | 129.03 | 26.43 | 23            | 6.1 | 129.2 | 26.4    | ŋ             | 5.8     | 0.17   | -0.03      | -18            | -0.3 |
| 2007/03/07 | 01:30:58 | 123.38 | 23.84 | 20            | 4.3 | 123.4 | 24.0    | 20            | 4.1     | 0.02   | 0.16       | 0              | -0.2 |
| 2007/05/03 | 05:31:43 | 125.35 | 23.81 | 17            | 4.3 | 125.4 | 24.2    | 30            | 4.2     | 0.05   | 0.39       | 13             | -0.1 |
| 2007/05/06 | 12:45:28 | 123.36 | 23.85 | 20            | 4.6 | 123.4 | 24.0    | 20            | 4.4     | 0.04   | 0.15       | 0              | -0.2 |
| 2009/08/05 | 09:17:58 | 125.26 | 24.17 | 35            | 6.1 | 125.2 | 24.2    | 10            | 6.0     | -0.06  | 0.03       | -25            | -0.1 |
| 2009/08/05 | 20:26:47 | 125.21 | 24.16 | 35            | 4.6 | 125.2 | 24.2    | 10            | 4.4     | -0.01  | 0.04       | -25            | -0.2 |
| 2010/01/17 | 07:04:52 | 125.10 | 23.90 | 44            | 4.6 | 125.2 | 23.8    | 50            | 4.4     | 0.10   | -0.10      | 9              | -0.2 |
| 2010/02/27 | 05:31:25 | 128.68 | 25.91 | 32            | 7.0 | 128.8 | 26.0    | 20            | 6.8     | 0.12   | 0.09       | -12            | -0.2 |
| 2010/04/26 | 05:43:58 | 125.01 | 24.78 | 44            | 4.6 | 125.2 | 24.8    | 50            | 4.6     | 0.19   | 0.02       | 9              | 0.0  |
| 2010/10/04 | 22:28:38 | 125.33 | 24.21 | 38            | 6.2 | 125.2 | 24.2    | 20            | 6.0     | -0.13  | -0.01      | -18            | -0.2 |
| 2012/02/28 | 04:31:49 | 127.25 | 25.50 | 20            | 5.4 | 127.0 | 25.4    | 30            | 5.2     | -0.25  | -0.10      | 10             | -0.2 |
| 2013/05/06 | 06:17:02 | 125.16 | 24.72 | 20            | 4.4 | 125.2 | 24.8    | 20            | 4.2     | 0.04   | 0.08       | 0              | -0.2 |
| 2013/06/13 | 22:24:45 | 128.98 | 26.47 | 20            | 5.6 | 129.2 | 26.4    | ŋ             | 5.5     | 0.22   | -0.07      | -15            | -0.1 |
| 2014/02/19 | 19:29:53 | 128.38 | 26.22 | 23            | 4.5 | 128.4 | 26.2    | 20            | 4.4     | 0.02   | -0.02      | 'n             | -0.1 |
| 2014/09/18 | 08:18:55 | 125.39 | 24.82 | 47            | 5.1 | 125.4 | 25.0    | 40            | 4.7     | 0.01   | 0.18       | -7             | -0.4 |
|            |          |        |       |               |     |       |         |               | Average | 0.03   | 0.06       | 9-             | -0.2 |

0.1

12

0.12

0.11

std dev.

Table 4-3b. Comparisons of hypocenters and moment magnitudes of 10 ordinary earthquakes in the Amami area determined by F-net and this

study.

| i                   |        | F-ne  | L.            |     |       | This stu | γþ            |         | Differe | ence (This | study –F       | -net)              |
|---------------------|--------|-------|---------------|-----|-------|----------|---------------|---------|---------|------------|----------------|--------------------|
| Time (JST)          | Lon    | Lat   | Depth<br>(km) | M   | Lon   | Lat      | Depth<br>(km) | M       | ΔLon    | ΔLat       | ΔDepth<br>(km) | $\Delta M_{\rm w}$ |
| 2003/04/05 16:49:37 | 130.99 | 29.76 | 26            | 4.7 | 131.0 | 29.8     | 20            | 4.7     | 0.01    | 0.04       | 9-             | 0                  |
| 2003/08/07 12:57:00 | 130.38 | 28.18 | 23            | 4.8 | 131.0 | 27.2     | ß             | 4.6     | 0.62    | -0.98      | -18            | -0.2               |
| 2004/12/29 22:20:25 | 130.75 | 28.89 | 20            | 5.6 | 130.4 | 29.0     | 10            | 5.6     | -0.35   | 0.11       | -10            | 0                  |
| 2006/09/01 07:58:24 | 130.23 | 28.69 | 35            | 5.5 | 129.0 | 29.0     | 10            | 5.4     | -1.23   | 0.31       | -25            | -0.1               |
| 2006/11/18 03:03:12 | 130.15 | 28.51 | 35            | 6.1 | 129.4 | 28.6     | 10            | 5.9     | -0.75   | 0.09       | -25            | -0.2               |
| 2007/11/22 04:28:42 | 131.05 | 28.98 | ∞             | 4.4 | 131.0 | 29.0     | ß             | 4.2     | -0.05   | 0.02       | 'n             | -0.2               |
| 2009/04/15 13:59:35 | 131.75 | 29.13 | ß             | 4.4 | 132.0 | 29.2     | 10            | 4.3     | 0.25    | 0.07       | ъ              | -0.1               |
| 2010/06/26 00:23:16 | 131.38 | 29.15 | 47            | 4.8 | 131.6 | 29.2     | 40            | 5.0     | 0.22    | 0.05       | -۲             | 0.2                |
| 2011/12/11 10:22:43 | 129.54 | 28.13 | 29            | 5.6 | 130.6 | 28.2     | 50            | 6.0     | 1.06    | 0.07       | 21             | 0.4                |
| 2012/08/06 12:28:21 | 130.69 | 29.47 | 23            | 5.4 | 130.4 | 29.6     | 10            | 5.3     | -0.29   | 0.13       | -13            | -0.1               |
|                     |        |       |               |     |       |          |               | Average | -0.05   | -0.01      | 8-             | -0.03              |
|                     |        |       |               |     |       |          |               | std dev | 0.62    | 0.33       | 13             | 0.18               |

Table 4-3c. Comparisons of hypocenters and moment magnitudes of 5 ordinary earthquakes in the southern Kyushu area determined by F-net

and this study

| i          | į        |        | F-net |               |     |       | This stu | dy            |         | Differe | nce (This | study –F-      | net)            |
|------------|----------|--------|-------|---------------|-----|-------|----------|---------------|---------|---------|-----------|----------------|-----------------|
| Time (J    | SI)      | Lon    | Lat   | Depth<br>(km) | M   | Lon   | Lat      | Depth<br>(km) | M       | ΔLon    | ΔLat      | ADepth<br>(km) | ΔM <sub>w</sub> |
| 2004/04/21 | 12:20:53 | 131.84 | 31.56 | 29            | 5.1 | 131.4 | 31.6     | S             | 4.8     | -0.44   | 0.04      | -24            | -0.3            |
| 2005/05/31 | 11:04:14 | 131.54 | 31.30 | 32            | 5.7 | 131.4 | 31.4     | 30            | 5.5     | -0.14   | 0.10      | -2             | -0.2            |
| 2009/04/05 | 18:36:26 | 131.89 | 31.92 | 32            | 5.8 | 131.6 | 32.0     | Ŋ             | 5.4     | -0.29   | 0.08      | -27            | -0.4            |
| 2013/03/11 | 18:34:49 | 131.85 | 31.57 | 35            | 5.5 | 131.0 | 32.0     | 40            | 5.2     | -0.85   | 0.43      | ъ              | -0.3            |
| 2014/08/29 | 04:14:35 | 132.14 | 32.14 | 17            | 5.8 | 131.8 | 32.8     | 10            | 5.9     | -0.34   | 0.66      | -۲             | 0.1             |
|            |          |        |       |               |     |       |          | *             | Average | -0.41   | 0.26      | -11            | -0.22           |

0.17

12

0.24

0.24

std dev

Chapter 4: VLFEs

#### 4.3.5 *b*-values

The moment magnitudes (M<sub>w</sub>) of the 1,050 VLFEs determined by this study are between 3.2 and 4.7 (Supplement 1). This range is comparable to that of M<sub>w</sub> 3.6-4.4 for VLFEs in the Nankai Trough (Ito and Obara, 2006) but slightly larger than M<sub>w</sub> 3.4-3.6 for LVFEs in the Japan Trench (Matsuzawa et al., 2015). I calculated *b*-values of VLFEs in the Ryukyu region based on the M<sub>w</sub> data. For this estimation, I first divided the 1,050 events into four areas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K) (Figure 4.13). Subsequently, I adopted the maximum-likelihood method proposed by Utsu (1964) and Aki (1965),

$$b = \log e / (M_{mean} - M_c) \tag{4.1},$$

where  $M_{mean}$  and  $M_c$  are the mean magnitude and the cut-off magnitude of the given sample, respectively. For the Sakishima area (S), I determined the  $M_c$  = 3.8 via the cumulative frequency curve of VLFEs (Figure 4.14a). Next, I calculated the average magnitude ( $M_{mean}$ ) between the maximum magnitude ( $M_w$  4.7) and the  $M_c$  ( $M_w$  3.8). Finally, using (4.1), I obtained the *b*-value of 2.3 for the VLFEs in this area. Under this premise, I also estimated the cumulative number of VLFE as 0.4 for  $M_w \ge 5.0$  over an eight-year timescale, which suggests that large VLFEs hardly occur in this area or probably the maximum size of VLFE faults is equivalent to  $M_w$  4.8 only. Related parameters for this calculation and *b*-values of the four areas are all provided in Table 4-4.

The *b*-values of VLFEs in the Ryukyu region range from 2.3 to 5.0 (Table 4-4), significantly larger than *b*-values of ordinary earthquakes in tectonic regions (e.g., 0.7-1.1, Utsu, 2001) and for earthquakes swarms in volcanic areas (e.g., 1.5-2.0, McNutt, 2005). To confirm the rationality of high *b*-values of VLFEs in Ryukyu, I estimated *b*-values for ordinary

earthquakes of the four areas in 2005-2012 and found that these values all fall in 0.9-1.2 (Table 4-4), comparable to the global average for ordinary earthquakes. Namely, the b-values of VLFEs in the Ryukyu area are intrinsically larger than those of ordinary earthquakes even if they occur in the same tectonic region.

Because the *b*-value reflects the heterogeneity of material (Mogi, 1962; Scholz, 1968), such high b-values of VLFEs in Ryukyu suggest that highly heterogeneous materials may present in the accretionary prism or on subduction plate-boundary interface. Another possible reason for the high *b*-value is the existence of high pore pressure fluid in the VLFE source region (McNutt, 2002; Nakamura and Sunagawa, 2015). In addition to the Ryukyu area, similar anomalously high *b*-values were also seen in the seamount subduction area of southernmost Nicoya, Costa Rica (Ghosh et al., 2008). This phenomenon was interpreted regarding the presence of massive fractured materials or high fluid pressure in the seismic source region (Wang and Bilek, 2014).

#### 4.3.6 Amplitude-magnitude (A-M) relation

Based on the obtained magnitude data, I estimated an empirical relation between amplitudes and moment magnitudes of VLFEs for each area (A-M relation, Table 4-4). This method can help us estimate moment magnitudes for smaller events because only 5% of VLFEs are suitable for my waveform inversion analysis. The CMT solutions of the rest 95% of VLFEs cannot be determined because of their weak and unclear waveforms. For VLFEs in the Sakishima area (S), I obtained the following A-M relation (Figure 4.14b)

$$M_w = 0.42\log A + 3.4 \tag{4.2},$$

where *A* is the maximum velocity amplitude (nm/s) at the first arrival station. Applying (4.2), the moment magnitudes of all VLFEs in this area can be determined. The A-M relations for another three areas are also provided in Table 4-4. In this calculation, I did not consider traveling effect on seismic wave amplitudes because epicentral distances between VLFEs and seismic stations are all shorter than 2-6 wavelengths (Ando et al., 2012). These empirical relations will be helpful for further VLFE studies, e.g., the triggering caused by tide or tectonic stress changes as observed in ordinary earthquakes (e.g., Thomas et al., 2012; Ide et al., 2016; Scholz, C. H., 2015).

**Table 4-4.** *b*-values of VLFEs and ordinary earthquakes, and amplitude-magnitude (A-M) relations for the four areas

|                          | VLFE<br>Counts <sup>1</sup> | M <sub>w</sub> | $\mathbf{M}_{mean}^2$ | M <sub>c</sub> <sup>3</sup> | <b>b-value</b><br>(VLFEs) | <b>b-value</b><br>(Ordinary earthquakes) | A-M relation <sup>4</sup>      |
|--------------------------|-----------------------------|----------------|-----------------------|-----------------------------|---------------------------|------------------------------------------|--------------------------------|
| Sakishima<br>(Zone S)    | 463                         | 3.4-4.7        | 4.0                   | 3.8                         | 2.3                       | 0.9                                      | M <sub>w</sub> = 0.42log A+3.4 |
| Okinawa<br>(Zone O)      | 280                         | 3.2-4.4        | 4.1                   | 4.0                         | 5.0                       | 1.1                                      | M <sub>w</sub> = 0.34log A+3.5 |
| <b>Amami</b><br>(Zone A) | 165                         | 3.3-4.6        | 3.9                   | 3.7                         | 2.4                       | 1.1                                      | M <sub>w</sub> = 0.72log A+3.0 |
| S-Kyushu<br>(Zone K)     | 142                         | 3.5-4.6        | 4.1                   | 3.9                         | 2.5                       | 1.2                                      | M <sub>w</sub> = 0.45log A+3.3 |

1, the number of VLFEs used for the estimation of *b*-value.

2, the mean  $M_w$  used in the estimation of *b*-value.

3, the minimum  $M_w$ .

4, the amplitude unit is nm/s.



**Figure 4.13.** Distribution of the 1,050 VLFEs (red circles) detected by the waveform inversion method in the sub-areas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K).



**Figure 4.14.** (a) Cumulative frequency distribution of VLFEs in the Sakishima area. The total number of VLFEs used for this calculation is 463. This diagram shows that  $M_c$  (cut-off magnitude) equals 3.8. (b) The log-amplitude and magnitude relation for VLFEs in the Sakishima area. The maximum amplitude (0.02-0.06 Hz bandpass filtered) of each VLFE recorded at YNG or IGK is plotted in this diagram.
# 4.4 Discussions

Various slow earthquakes detected on the subduction plate interfaces are considered to have a similar source mechanism (Beroza and Ide, 2011). Hence, different types of slow earthquakes sometimes appear remarkable correlations with each other (Obara and Kato, 2016). For example, in the Bungo Strait, southwest of the Nankai Trough, long-term SSEs activated shallow VLFEs and deep episodic tremor (Hirose et al., 2010; Asano et al., 2015). Likewise, VLFEs triggered by SSEs were also seen in the Ryukyu Trench. Nakamura and Sunagawa (2015) reported that the SSEs near Iriomote Island (hereafter call "Iriomote SSEs") activated VLFEs around the Ishigaki and Yonaguni Islands in 10-20 days and attributed it to the Coulomb failure stress change ( $\Delta$ CFS) by the SSEs. However, the relations of the two types of slow earthquakes in the Okinawa and Amami areas have not been clear so far.

# 4.4.1 Correlations in activity between VLFEs and SSEs

To understand temporal correlations between SSEs and VLFEs in Ryukyu, I used the 29,841 VLFEs and 16 long-term Iriomote SSEs during the period of 2005-2012. Moreover, I adopted short-term SSEs identified by Nishimura (2014) to assist the analysis of the Okinawa and Amami areas. I first divided these selected slow earthquakes into the four areas: Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K) as illustrated in Figure 4.15. Next, I compared the occurrence times of SSEs with those of VLFEs within these areas.



**Figure 4.15.** Tectonic map in the Ryukyu area and locations of VLFEs (red circles), SSEs (rectangles), and ordinary large (M-8 class) earthquakes (yellow ellipses) in the four areas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K). The green and blue rectangles are the fault patches of SSEs detected by this study and Nishimura (2014), respectively.

### 4.4.1.1 Sakishima area

For this area, I selected 3,541 VLFEs whose seismic waves arrive first at IGK, and 16 Iriomote SSEs that were detected in the Sakishima area in this study (Figure 4.15). I analyzed the time series of the two types of slow earthquakes. As described in Figure 4.16, VLFEs occurred actively during the SSEs in progress (e.g., SSEs#15, #16, and #23), but some SSEs were not accompanied by VLFEs (e.g., SSEs#27, #28, and #30). To clarify the puzzling correlations and highlight the VLFE activation, I first separated VLFEs based on the time

periods of the 16 SSEs (Figure 4.17). Then, I stacked these SSEs with respect to their onset times. Figure 4.18a displays a stacked count of VLFEs within each of the 16 SSEs. Three significant peaks are seen at 5-30, 60-75, and 120-125 days after the SSE onsets. The first activation of 5-30 days is consistent with the duration of the Iriomote SSEs (0.1-0.15 years, see details in Section 3.3.1). Namely, the VLFEs become more active in general after the SSEs start. In contrast, the peaks of 60-75 and 120-125 days may have occurred coincidentally or be triggered by ordinary earthquakes (Figure 4.17). Moreover, I also noted that the level of VLFE activity was low before the SSEs (Figure 4.18b).







**Figure 4.17.** The 5-day count of VLFEs within the 16 Iriomote SSEs. The time span of each diagram is from SSEs to their consecutive events. The event numbers at the top right corner refer to the SSEs in Table 3-1. The blue arrows in #17, #27 and #30 indicate VLFEs triggered by local ordinary earthquakes.



**Figure 4.18.** (a) Stacked number of VLFEs after the SSEs. The time span is from SSEs to consecutive events, same as Figure 4.17. The red bars, the 5-day count of VLFEs; the blue

bars, the average number of VLFEs with a 5-day interval expected when VLFE occurrences are random; the yellow triangle marks, the onset time of SSEs. The first peak of 5-30 days highlighted by the dashed red rectangle is evidence of the SSE activations. (b) Same as (a), but the time span is 100 days before and after the SSE onsets (yellow triangle). Lower and higher VLFE activity periods are marked by the dashed red and green rectangles, respectively.

#### 4.4.1.2 Okinawa and Amami areas

I applied the same method as used for the Sakishima area to analyze correlations of activities between VLFEs and SSEs in Okinawa and Amami. For the Okinawa area, I compared the occurrence times of 4,480 VLFEs identified in this study and 28 short-term SSEs detected geodetically by Nishimura (2014) (Figure 4.15). As illustrated in Figure 4.19, one significant peak is seen at 0-15 days, which is shorter than that (5-30 days) of the Sakishima area (see Figure 4.18a). One possibility for the short delay time is that the SSE fault patches in the Okinawa area are much closer to the VLFE source region than in the Sakishima area, resulting in higher  $\Delta$ CFS and triggering VLFEs more quickly.

Likewise, I compared 7,647 VLFEs and 19 short-term SSEs in the Amami area. There are five peaks at 0-5, 75-85, 100-105, 210-220, and 370-375 days (Figure 4.20). The first peak at 0-5 days is probably related to the SSE activation, but other peaks show VLFE activities that may occur coincidentally or be triggered by earthquakes. The reaction time (0-5 days) of VLFE activities here is similar to that in Okinawa but is shorter than that in the Sakishima area. Such short activation time may have been enabled by the shorter distance between SSE faults and VLFE source regions in the both Okinawa and Amami areas than the Sakishima area.



**Figure 4.19.** Stacked number of VLFEs after the SSE occurrences in the Okinawa area. The green bars display the 5-day counts of VLFEs, and the grey bars show the numbers of VLFEs expected by random occurrences with a 5-day interval. The peak of 0-15 days marked with the red dashed rectangle is related to the activation by SSEs. It is significantly faster than the VLFE activation in the Sakishima area (5-30 days).



**Figure 4.20.** Stacked number of VLFEs after the SSEs in the Amami area. The blue bars display the 5-day counts of VLFEs, and the grey bars show the numbers of VLFEs expected by random occurrences with a 5-day interval. Five peaks are seen in this diagram. The first peak marked with a red dashed rectangle is related to the SSE activation, and others are caused by VLFE sequences triggered coincidentally.

#### 4.4.1.3 Southern Kyushu area

The southern Kyushu area differs from the Ryukyu region; it has much more complicated geological structures than other three areas (Figure 4.15). These two subduction systems are bounded via the Kyushu-Palau Ridge, a 2000-km-long remnant of an ancient island arc (Figure 4.15) (Okino et al., 1998; Nishizawa et al., 2017). Across this ridge, the age of the subducting Philippine Sea Plate changes suddenly from 60-70 Ma (Ryukyu Trench) to 15-25 Ma (Nankai Trough) (Figure 4.28) (Okino et al., 1998). This causes that the two adjacent subduction zones have very different subduction processes (Scholz and Campos 2012).

According to previous studies, long-term and short-term SSEs both were detected in this area (e.g., Hirose, et al., 1999; Ozawa et al., 2004; Nishimura, 2014). These SSEs can be divided generally into the Bungo, Hyuga-nada, and Tanega-shima clusters based on their locations (Figure 4.21c). Several studies have mentioned that the Bungo SSEs could activate nearby VLFEs (Hirose et al., 2010; Asano et al., 2015; Baba et al., 2018) and earthquake tremors (Yamashita et al., 2017), but the correlations between VLFEs and the Hyuga-nada and Tanega-shima SSEs are still unknown. Here, I used the same methods as those for the Ryukyu area to analyze the relations among these slow earthquakes.

The Bungo SSEs has moment magnitudes ( $M_w \sim 6.8$ ) and source depths (~30 km) similar to the Iriomote SSEs of the Sakishima area, but their duration (~1 year) and the recurrence interval (~6 years) are much longer (Hirose and Obara, 2005; Hirose et al., 2012) (see detail in Table 3-2). From 1996 to 2014, three Bungo SSEs were detected around 1996, 2004, and 2010 (Hirose et al., 1999; Ozawa et al., 2004; Hirose et al., 2010) (Figure 4.21a). Among them, I used the 2010 Bungo SSE for this analysis because it overlaps with my database

period from 2005 to 2012. Figure 4.21b displays the time series of VLFEs in the southern Kyushu area and its cumulative curve. It is noted that the VLFEs became very active after the 2010 Bungo SSE. Moreover, the delay time of VLFE activations is about 20-40 days (Figure 4.22a), which is longer than that of the Sakishima area and probably due to a longer distance from the Bungo SSE fault to the VLFE sources.

The Hyuga-nada and Tanega-shima SSEs both are short-term SSEs with an average magnitude (M<sub>w</sub>) of ~6.1. From 2005 to 2012, a total of nine events were detected (Nishimura, 2014) (Figure 4.21b). As illustrated in Figure 4.21b, VLFE activity is well correlated with the Tanega-shima SSEs, but the correlation between the VLFEs and Hyuga-nada SSE is not obvious due to the infrequent occurrence of the latter. Figure 4.22b shows the stacked numbers of VLFE time-series with respect to the onset of the nine SSEs. It suggests that these short-term SSEs can activate VLFEs in 0-10 days, which is comparable to the activation period of VLFEs in the Okinawa and Amami areas (Figure 4.19 and 4.20).

Moreover, it is interesting that the activation period (~20 days) of VLFEs caused by the Bungo SSEs is much longer than ~10 days found for the Hyuga-nada and Tanega-shima SSEs (Figure 4.22). Such phenomenon was also seen in the Ryukyu region. In the Sakishima area, the activation period of VLFEs caused by the Iriomote SSEs is ~25 days (Figure 4.18a), which is longer than that in the Okinawa (~15 days) and Amami (~5 days) areas (Figure 4.19 and 4.20). Because the Bungo and Iriomote SSEs both are long-term SSEs having large moment magnitudes (Table 4-5), I suspect that such difference of VLFE activation periods may relate to the size of SSEs. Furthermore, considering that the seismic moment and duration of slow earthquakes are nearly proportional (Ide et al., 2007), the duration of SSEs would also

govern the periods of VLFE activities.



**Figure 4.21.** (a) Daily position of the Otsuki station (the pink triangle in Figure 4.21c) relative to Tsushima (the green triangle in Figure 4.21c) in the N135E direction. The grey belts show the active time of the three Bungo SSEs. The yellow dashed arrows indicate the occurrence time of three teleseismic events (the 2006 M<sub>w</sub>8.3 Kuril, 2008 M<sub>w</sub>7.9 Sichuan earthquakes and 2011 M<sub>w</sub>9.1 Tohoku-oki earthquakes) that activated VLFEs in the southern Kyushu area. The detail information on these teleseismic earthquakes is given in Table 4.3. (b) The daily (black bars) and cumulated (red line) numbers of VLFEs. Their units are given in right and left axes, respectively. Green and blue vertical lines display the occurring times of Tanega-shima and Hyuga-nada SSEs, respectively (Figure 4.21c). (c) Tectonic map of the Kyushu area and locations of VLFEs (red dashed circle), and SSEs faults of Bungo (grey rectangle), Hyuga-nada (blue rectangle), and Tanega-shima (green rectangle).



**Figure 4.22.** Stacked numbers of VLFEs in the southern Kyushu area after (a) the Bungo SSEs and (b) the Tanega-shima and Hyuga-nada SSEs. The color bars display the 5-day counts, and grey bars show the average numbers of VLFEs with a 5-day interval expected assuming their random occurrences. A significant peak appears in 20-40 days in (a), and 0-10 days in (b).

| Type of<br>SSE | Location       | Area            | M <sub>w</sub>     | Duration of<br>SSE | VLFE activation<br>periods |
|----------------|----------------|-----------------|--------------------|--------------------|----------------------------|
| Long-term      | Bungo          | Southern Kyushu | M <sub>w</sub> 6.8 | ~1 year            | ~20 days                   |
| Long-term      | Iriomote       | Sakishima       | M <sub>w</sub> 6.6 | 1-1.5 mons         | ~25 days                   |
| Short-term     | Okinawa        | Okinawa         | M <sub>w</sub> 6.0 | Several days       | ~15 days                   |
| Short-term     | Tanega-shima / | Southern Kyushu | M <sub>w</sub> 6.1 | Several days       | ~10 days                   |
|                | Hyuga-nada     |                 |                    |                    |                            |
| Short-term     | Amami          | Amami           | M <sub>w</sub> 6.1 | Several days       | ~5 days                    |

Figure 4-5. VLFE activation periods and related SSE parameters.

# 4.4.2. Spatial correlations of VLFEs, SSEs, and large (M-8 class) ordinary earthquakes

For the Ryukyu Trench, the most critical issue is whether the locked zones, in which megathrust earthquakes often occur, exist along this subduction zone. Although most studies suggest that no known megathrust earthquakes have occurred there (e.g., Peterson and Seno, 1984; Scholz and Campos 2012), two large earthquakes with  $M_w \ge 8$  occurred along the Ryukyu subduction zone in the historical time, i.e., the 1771 Yaeyama earthquake and the 1911 Kikai earthquake (Figure 4.23).

The 1771 Yaeyama earthquake occurred near the Ishigaki Island, southwestern Ryukyu Arc (Figure 4.23). This event accompanied a disastrous tsunami that struck Ishigaki and surrounding islands with the maximum run-up height about 30 meters and caused fatalities of one-third of the populations on the Ishigaki Island (Goto et al., 2012). Although the mechanism of this earthquake is still uncertain, Nakamura (2009b) proposed the event to be an M<sub>w</sub> 8.0 tsunami (slow) earthquake occurred near the Ryukyu Trench. Recently, Ando et al., (2018) investigated paleotsunami deposits on the Ishigaki Island and proposed that the 1771 earthquake was an ordinary (not slow) subduction thrust earthquake of M<sub>w</sub> > 8.0 based on earthquake-induced ground cracks.

The 1911 Kikai earthquake occurred near Amami Island and was felt as far as in Tokyo (> 1000 km) (Usami, 1988) (Figure 4.23). This earthquake generated strong ground shaking that destroyed approximately 400 houses on Kikai Island as well as a tsunami (< 3m) with slight damage to the surrounding islands (Hatori, 1988; Goto, 2013). Several studies considered that the Kikai earthquake was an intraplate earthquake at a depth of  $\geq$  100 km

 $(M_w \ge 8)$  (e.g., Utsu, 1982; Abe and Kanamori, 1979). However, Goto (2013) relocated its hypocenter using old smoked seismograms and proposed that this event was more likely a great shallow interplate earthquake near the Ryukyu Trench axis.

To understand the positions of the locked zone for megathrust earthquakes in the Ryukyu region, I plotted VLFEs, SSEs, ordinary earthquakes ( $M_{JMA} > 3$ ), and the two possible megathrust events in Figure 4.23. In addition, I drew profiles of all these events along SS', OO', and AA' perpendicular to the trench axis (Figure 4.23). A detail discussion about the spatial correlation of these events is given below.





#### 4.4.2.1 Sakishima area

In this area, the seismic events of the 1771 earthquake, VLFEs, and SSEs are distributed in order from the Ryukyu trench to the Okinawa Trough (Figure 4.23). These three types of earthquakes are adjoining but not overlap each other. Figure 4.24 shows the profile of SS', which indicates that the 1771 earthquake fault is located in the shallowest segment of the Ryukyu subduction zone. The VLFEs are concentrated within the area between the 1771 earthquake fault and the Iriomote SSE fault patch. Notably, the updip limit of the Iriomote SSE fault keeps a distance from the trough-ward border of VLFEs (Figure 4.24). This distance may be related to the delayed timing of VLFE activations after the start of SSE. In the Sakishima area, the delay of activated VLFEs is 5-30 days (Figure 4.18), while the delay is only 0-5 days in the Okinawa area (Figure 4.19) and 0-15 days in the Amami area (Figure 4.20) where VLFEs and SSEs are distributed closely or overlapped with each other. It means that the distance between the VLFE and SSE areas may govern the delay of VLFE activities after the SSE onsets.

The locked zones of the Nankai Trough, where megathrust earthquakes repeatedly occur, are located in a particular space between shallow VLFEs and long-term SSEs (Obara and Kato, 2016) (Figure 3.14). However, in the Sakishima area, the space between the VLFEs and SSEs is too narrow to accumulate stress for preparing megathrust earthquakes (Figure 4.24). Accordingly, the locked zone of the Ryukyu subduction zone here should be located between the SSE-VLFE zone and the trench axis, i.e., the location of the 1771 earthquake fault. Such observation is consonant with results raised by Arai et al. (2016) and Nakamura (2017) but significantly different from the seismic distribution in the Nankai Trough.



**Figure 4.24.** Cross-section of profile SS' perpendicular to the trench axis in the Sakishima area. Its geometric extent is shown in Figure 4.23. The red circles are VLFEs detected in this study. The gray circles are small ordinary earthquakes ( $M_{JMA} \ge 3$ ) recorded by JMA. The green rectangle displays the fault patch of long-term SSEs beneath Iriomote Island detected by this study. The yellow rectangle shows the fault zone of the 1771 earthquake estimated by Nakamura (2009b). The black dashed line is the subduction plate boundary between the Philippine Sea Plate and the Eurasian Plate. The solid arrows on the top mark the relative positions of the Ryukyu Arc, Ryukyu Trench, and Okinawa Trough.

### 4.4.2.2 Okinawa area

Okinawa Island has been the political and cultural center of the Ryukyu Islands over its historical time, but it is remarkable that large earthquakes (M<sub>w</sub> >8.0) or tsunamis (>5-10m) had not been recorded in historical documents after the establishment of the Ryukyu Kingdom (15<sup>th</sup> century). Nevertheless, authentic historical documents of the Kingdom (e.g., "Kyuyo") had recorded details of the 1771 earthquake in Sakishima, 400 km away from Okinawa Island, and several other earthquakes (M < 8) in the Ryukyu region (Usami, 2003;

M. Nakamura, Ryukyu University, http://seis.sci.u-ryukyu.ac.jp/hazard/large-eq/history.html). It means that earthquake phenomena had been a focus of concern and not ignored intentionally in these historical documents. Moreover, geological data also provide another evidence for the lack of large earthquakes (tsunamis) in the Okinawa area. Goto et al. (2010) proposed that tsunami boulders carried by large paleotsunamis during the past 2,300 years have not been found in and around Okinawa Island. Based on the absence of tsunami boulders and historical records on large earthquakes and tsunamis, I suspect that megathrust subduction earthquakes rarely occurred here.

Except for large ordinary earthquakes, both VLFEs and SSEs have been detected in the Okinawa area. The profile of OO' shows the NW-SE section of these earthquakes (Figure 4.25). I found that the VLFEs occur in the shallowest part of the Ryukyu subduction zone close to the trench axis (Figure 4.25). In addition, the SSE fault patch overlaps partly with the VLFE source region (Figure 4.25). This is the reason why the VLFEs in the Okinawa area can be activated immediately after the SSE starts. Due to limited space between the SSE-VLFE zone and the trench axis (Figure 4.25), I infer that the locked zone of the Ryukyu subduction zone in the Okinawa area may be narrow or nearly absent. However, it may be premature to conclude that the Ryukyu Trench is a decoupled plate boundary. For example, Kawana (1990) reported that the coastal terraces on Okinawa Island facing the Pacific Ocean side exhibit the significant landward tilting, which suggests the existence of inter-plate coupling as seen in the Nankai Trough (Ando, 1975). Moreover, Nakamura (2013) reexamined two historical tsunamis of 1768 and 1791 in the Okinawa Island using numerical simulations of

tsunami and earthquake shaking. His results also indicated that both events were probably due to M>8 interplate earthquakes near the Ryukyu Trench axis. Namely, further studies are necessary to clarify the coupling in the Okinawa area of the Ryukyu subduction zone.



**Figure 4.25.** Cross-section of the profile OO' in the Okinawa area (Figure 4.23). The red and gray circles are VLFEs and ordinary earthquakes ( $M_{JMA}$ >3), respectively. The blue rectangle displays the fault patch of short-term SSEs detected by Nishimura (2014). The black dashed line shows the subduction plate boundary between the Philippine Sea Plate and the Eurasian Plate. The solid arrows on the top mark the relative positions of the Ryukyu Arc, Ryukyu Trench, and Okinawa Trough.

#### 4.4.2.3 Amami area

Slow earthquakes (SSEs and VLFEs) and large ordinary earthquakes (the 1911 Kikai earthquake) both occurred in the Amami area. Notably, the distribution of these earthquakes seems to overlap with each other without a clear boundary (Figure 4.23), which is significantly different from that in the Sakishima and Okinawa areas. The profile AA'

indicates that the fault zone of the 1911 earthquake, VLFE source region, and SSE faults are all located in the same area (Figure 4.26). This may be the reason why the SSEs can immediately activate VLFEs. If the SSE and VLFE zones overlap, there is no space between them to accummodate a locked zone for large interplate earthquakes. However, the 1911 Kikai earthquake, possible an interplate megathrust event, is located precisely in this place (Figure 4.23; Figure 4.26).

Although the location and mechanism of the 1911 Kikai earthquake have not been well constrained, I propose two possibilities for its mechanism. If the 1911 earthquake is a megathrust earthquake, the fault zone should be much closer to the trench axis, i.e., it is probably between the SSE-VLFE zone and the Ryukyu trench axis, similar to the 1771 earthquake in the Sakishima area. In contrast, if the location of the 1911 earthquake shown in Figure 4.23 is correct, this event should be an intraplate earthquake, just like an M<sub>w</sub> 7.1 (USGS) earthquake that occurred 50 km east of Amami Island at a depth of 20 km on 18 Oct. 1995 (Arai et al., 2017). The 1995 earthquake was determined as a high-dip-angle normal fault in the slab, and it also generated a tsunami (<3m), slightly affecting Amami and Kikai Islands (Satake and Tanioka, 1997; Yamada et al., 1997).

Because the locations of VLFEs in the Amami area have a lower accuracy (see Section 4.3.3), and the sea-mountain (e.g., Daito Ridge and Amami Plateau) subducting also causes complex tectonics here, it is difficult to determine whether or where the locked zone exists in this area. Accordingly, further studies are still necessary.



**Figure 4.26.** Cross-section of profile AA' in the Amami area. Its geometric extent is shown in Figure 4.23. The red and gray circles are VLFEs and ordinary earthquakes ( $M_{JMA} > 3$ ), respectively. The blue rectangle displays the fault patch of short-term SSEs detected by Nishimura (2014). The yellow rectangle describes the fault zone of the 1911 earthquakes suggested by Hatori (1988) and Goto (2013). The black dashed line shows the subduction plate boundary between the Philippine Sea Plate and the Eurasian Plate. Solid arrows on the top mark the relative positions of the Ryukyu Arc, Ryukyu Trench, and Okinawa Trough.

## 4.4.3 Along-strike variation of earthquake distribution

Based on above discussions, I propose that the Ryukyu subduction zone is coupled at least in the Sakishima area but probably absent in Okinawa. However, it is still uncertain whether the locked zone is present in the Amami area (Figure 4.27). The distribution of seismic events from the surface to depth in Sakishaima is: the megathrust earthquake zone (locked zone, ~10 km), VLFE zone (~20 km), and SSE zone (~30 km), and in Okinawa is: VLFE zone (~20 km) and SSE zone (~30 km) but without locked zones here (Figure 4.27). Notably, such distribution significantly differs from that of the Nankai Trough proposed by Obara and Kato (2016). In the Nankai Trough, the sequence of seismic distribution is: VLFE zone (>10

km), megathrust earthquake zone (10-20 km), SSE zone (~30 km), and episodic tremors and slip (ETS) zone (~40 km)(Figure 3.14). These observations suggest that the two subduction zones have different characteristics although they are related to the Philippine Sea Plate subduction.

For the difference of the seismic distributions between the Sakishima and Okinawa areas and the Nankai Trough, I propose that it may relate to the dip angle of subduction slabs. In the Ryukyu Trench, the age of the Philippine Sea Plate ranges in 50-60 Ma (Muller et al., 2008) (Figure 4.28), and its dip angle is ~20° (Kubo and Fukuyama, 2003; Nishizawa et al., 2017). However, the age and dip angle of the Philippine Sea Plate in the Nankai Trough is 20-30 Ma (Muller et al., 2008) (Figure 4.27) and 10° (Kodaira et al., 2000), respectively. According to a classical model of subduction zones by Uyeda and Kanamori (1979), an old and thick oceanic plate subducts into the mantle with a higher dip angle due to its gravitational force, resulting in a decoupled or weakly coupled plate boundary. In this case, the locked zone becomes narrower and shifts shallower toward the trench axis. This hypothesis is consonant with the narrow locked zone in Sakishima (30 km, Nakamura, 2009) relative to the Nankai Trough (70-100 km, Sagiya and Thatcher, 1999). Similarly, the difference in the seafloor age may cause the diversity of seismic pattern between the Sakishama (50-60 Ma) and Okinawa (60-70 Ma) areas (Figure 4.28). Such a slight difference probably affects stress balance of the upper and lower slab interactions and frictional conditions, causing the absence (Okinawa) or presence (Sakishima) of the locked zone (Figure 4.27).



**Figure 4.27.** The distribution of three seismic zones (Locked, VLFE, and SSEs) in the Sakishima, Okinawa, and Amami areas along the Ryukyu subduction zone. Their scales are arbitrary.



**Figure 4.28.** The seafloor age of the Philippine Sea Plate and Pacific Plates around Japan. The age data are from Muller et al. (2008). Area U is the extent of this study, and the

rectangles of S, O, A and K indicate the four sub-areas of Sakishima, Okinawa, Amami, and southern Kyushu, respectively.

## 4.4.4 Migration of VLFE activities

Migration activity is a significant characteristic of slow earthquakes and has been discussed in several studies (e.g., Deep VLFEs, Ghosh et al., 2015; Shallow VLFEs, Asano et al., 2015; Shallow Tremors, Yamashita et al., 2015; ETSs, Hirose and Obara, 2010). In the Ryukyu region, such a phenomenon has been observed in low frequency earthquakes (LFEs) having dominated frequency range of 2-8 Hz (Nakamura, 2017) but has never been reported for VLFEs. To understand the migration activity of VLFEs in Ryukyu, I analyzed the spatiotemporal distribution of the 1,050 VLFEs for the four sub-areas (Figure 4.29a). It is interesting to note that VLFE activities in the Sakishima and southern Kyushu areas occasionally form clusters in time and space, but those in Okinawa and Amami are much scattered and form a random distribution (Figure 4.29b). Because these clustering activities all lasted several days and extended over a distance about 60-100 km, I infer that they are probably the migration of VLFE activities.

To determine the migrating clusters of VLFEs, I assumed that each clustering activity should consist of at least three VLFEs and migrate in one direction to two or more neighboring grid points (> 40 km). Based on this definition, I identified 6 and 3 migrating clusters in the Sakishima and southern Kyushu areas, respectively (Table 4-6 Figure 4.29b). For the Sakishima area, five of the six clusters (S2-S6) migrated westward; only one cluster

(S1) moved from west to east (Table 4-6; Figure 4.30). The migration speeds of these clusters are between 20 and 90 km/day (Table 4-6; Figure 4.30), which are comparable to or higher than those for the Nankai Trough (8-18 km/day, Obara, 2011; 15-20 km/day, Asano et al., 2015) and the Cascadia subduction zone (10-20 km/day, Houston et al., 2011). Notably, these migration clusters all started around the Iriomote SSE fault patches (Figure 4.31), which imply that the Iriomote SSEs may trigger these VLFE migrations.

Sequentially, I compared the occurring times of these six migrating clusters with those of the Iriomote SSEs to examine the above hypothesis. As illustrated in Figure 4.32, the sequences of S1, S3, and S4 just occurred after the SSE onsets and are consistent with the duration of SSE #15, #25, and #29, respectively. It suggests that the Iriomote SSEs triggered these VLFE migrations, similar to the condition between the Bungo SSEs and shallow VLFEs in the Hyuga-nada region (Asano et al., 2015). However, other three sequences (S2, S5, and S6) started before the SSEs (Figure 4.32), i.e., their occurrences may correlate with other external forces, not the Iriomote SSEs. Here, I propose that the migrating cluster of S5 is related to a M<sub>jma</sub> 5.5 local earthquake because it triggered this VLFE sequence (Figure 4.32), but the causes for the migration clusters of S2 and S6 are still unknown.

For the southern Kyushu area, I detected three migrating clusters of VLFEs in space-time diagram (Figure 4.29b). The detailed information of these VLFE migrations such as the origin time, duration, direction and speed are all provided in Table 4-6. The migrating sequence of K1 lasted about four hours and moved from south to north with an extremely high speed of 240 km/day (see K1 in Figure 4.33). This migrating cluster seems to be isolated from the Bungo, Tanega-shima, and Hyuga-nada SSEs and without any correlations with local or

teleseismic earthquakes (Figure 4.34). The sequence of K2 is a VLFE cluster triggered by the 2008 Sichuan earthquake of  $M_w$  7.9, China (Figure 4.34). It started with several VLFEs that occurred simultaneously and then migrated toward the south at a speed of ~20 km/day (see K2 in Figure 4.33). Its duration and travel distance is ~4 days and ~100 km, respectively (Figure 4.33).

The sequence of K3 is the most remarkable cluster, which has a large scale (distance > 200 km) and long duration (~35 days). This migration activity started on 25 Jan 2010 and significantly correlated with the 2010 Bungo SSE (Figure 4.34). These VLFEs first propagated northward gradually with a speed of ~5 km/day (see the 1<sup>st</sup> migration of K3 in Figure 4.33), but it turned sharply south with a higher speed of ~15 km/day since March (see the 2<sup>nd</sup> migration of K3 in Figure 4.33). Such a change in the migrating direction was also seen in the shallow low-frequency tremors around the Hyuga-nada area and may be related to nearby un-detected short-term SSEs (Yamashita et al., 2015). Moreover, I also found another short duration sub-migration within the 1<sup>st</sup> migrating period (see sub-migration of K3 in Figure 4.33), whose VLFEs propagated in the same direction (northward) but with a much higher speed. This phenomenon is comparable to the rapid tremor reversal (RTR) observed in the tremor migration activity near the Hyuga-nada area (Yamashita et al., 2015).



**Figure 4.29.** (a) Distribution of the 1,050 VLFEs (red circles) in the sub-areas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K). The green rectangle is the fault patches of Iriomote SSEs detected by this study. (b) Time-space diagram of the 1,050 VLFEs along line X-Y in Figure 4.29a. Red circles mark the migrating clusters of VLFEs detected in this study.



Figure 4.30. Time-space diagrams of six migrating VLFE clusters (S1-S6) in the Sakishima

area along line a-b in Figure 4.29a. The red circles are VLFEs; the black arrows indicate the migrating direction of VLFEs. The migration speed of each case is giving in the diagram.



**Figure 4.31.** Space-time plot of VLFE migrations along the meridian in the Sakishima area. The arrows indicate the location and direction (eastward or westward) for the VLFE migrations. The blue and gray arrows represent VLFE migrations, which are synchronized and unsynchronized with SSEs, respectively. The thick green bar at the top represents an approximate location of the Iriomote SSE fault patch.



**Figure 4.32.** (a) The daily GNSS coordinates of the Hateruma site relative to the Miyako site in the N20W direction. The gray belts show the active times of the 16 SSEs with a number below corresponding to the SSEs in Table 3-1. (b) Time-space diagram of VLFEs in the Sakishima area along line X-Y in Figure 4.29a. Dashed red ellipses display the VLFE migrating clusters (S1-S6) detected in this study. The migrating clusters of S1, S3, and S4 are consistent with the activity of SSE#15, #25, and #29, but the clusters of S2, S5, and S6 started before the SSEs. (c) Daily counts (solid bars) of VLFEs for the Sakishima area. The blue arrow indicates an  $M_{JMA}$  5.5 earthquake that probably caused the VLFE migrating cluster of S5. Gray arrows show other local earthquakes ( $M_{JMA} \ge 5$ ) that activated VLFE activities but were not related to the migrations of VLFEs. The diamonds mark local earthquakes that occurred concurrently with VLFE activity.



**Figure 4.33** Time-space diagrams of three migrating VLFE clusters (K1-K3) in the southern Kyushu area along line c-d in Figure 4.29a. The red circles show VLFEs of these migrating clusters. The solid arrows indicate the migrating VLFE direction. The gray dashed arrows mark the direction of sub-migrations. The migration speed of each case is shown in the diagram.



Figure 4.34. (a) Time-space plot of VLFEs in the southern Kyushu area along line X-Y in

Figure 4.29a. Red dashed circles display the VLFE migrating clusters (K1-K3) detected in this study. (b) The daily (black bars) numbers of VLFEs in the southern Kyushu area. Green and blue vertical lines display the occurring times of Tanega-shima and Hyuga-nada SSEs (see their locations in Figure 4.21c). The grey belt shows the active time of the 2010 Bungo SSEs. The dashed yellow arrows indicate the occurrence time of three teleseismic events (the 2006  $M_w$ -8.3 Kuril, 2008  $M_w$ -7.9 Sichuan earthquakes and 2011  $M_w$ -9.1 Tohoku-oki earthquakes) that activated VLFEs in the southern Kyushu area. The blue arrows represent three local earthquakes ( $M_{JMA}$  >5) that triggered VLFE activities. The detailed information on these local and teleseismic earthquakes is given in Table 4.3.

| southern Kyushu areas. |           |            |                   |                   |            |                               |  |  |
|------------------------|-----------|------------|-------------------|-------------------|------------|-------------------------------|--|--|
| No                     | Area      | VLFE start | Speed<br>(km/day) | Duration<br>(day) | Direction  | Correlative<br>external force |  |  |
| S1                     | Sakishima | 2005/05/30 | 90                | 2                 | W→E        | Iriomote SSE#15               |  |  |
| S2                     | Sakishima | 2005/12/14 | 60                | 2                 | E→W        | ?                             |  |  |
| <b>S</b> 3             | Sakishima | 2009/08/15 | 25                | 4                 | E→W        | Iriomote SSE#25               |  |  |
| S4                     | Sakishima | 2011/10/16 | 20                | 6                 | E→W        | Iriomote SSE#29               |  |  |
| <b>S</b> 5             | Sakishima | 2012/02/25 | 20                | 7                 | E→W        | Local earthquake              |  |  |
| S6                     | Sakishima | 2012/10/25 | 20                | 6                 | E→W        | ?                             |  |  |
| К1                     | S. Kyushu | 2006/04/22 | 240               | 4hr               | s→n        | ?                             |  |  |
| К2                     | S. Kyushu | 2008/05/12 | 20                | 4                 | N→S        | Sichuan earthquake            |  |  |
| К3                     | S. Kyushu | 2010/01/25 | 5-20              | 35                | s→n<br>N→s | 2010 Bungo SSE                |  |  |

 Table 4-6. Information of the nine migrating clusters of VLFEs detected in the Sakishima and
 southern Kyushu areas

# 4.5 Summary

- From 2005 to 2012, a total of 29,841 VLFEs were identified in the Ryukyu Subduction Zone. Their dominant frequency range is 0.03-0.15 Hz and lack high-frequency content.
- Based on the locations, source depths, and focal mechanisms, these VLFEs are considered as thrust faults that probably occurred along the splay faults in the accretional prism or on the shallow plate interface of the Ryukyu subduction zone.
- High b-values (2.3-5.0) of VLFEs in the Ryukyu region suggest that materials in the VLFE source area are highly heterogeneous.
- The VLFEs in Sakishima, Okinawa, and Amami can be activated in 5-30 days, 0-15 days, and 0-5 days, respectively, after the start of nearby SSE activity. Moreover, the VLFE activity in the southern Kyushu is triggered or activated by the Bungo long-tern SSEs, Hyuga-nada and Tanega-shima short-term SSEs, and some large teleseismic earthquakes (e.g., 2006 Kuril earthquake, 2008 Sichuan earthquake, and 2011 Tohoku-Oki earthquake).
- The sources of (slow) earthquakes in Ryukyu Trench are distributed as follows, in Sakishaima: the megathrust earthquakes (locked zone, ~10 km), VLFEs (~20 km), and SSEs (~30 km), and in Okinawa: VLFEs (~20 km) and SSEs (~30 km). However, their distribution in the Amami area is still uncertain due to the complex tectonic setting and inaccurate hypocenters of large earthquakes and VLFEs.

# Chapter 5.

Repeating Very Low Frequency Earthquakes (RVLFEs)

# 5.1 Introduction

# 5.1.1 Repeating earthquakes (REs)

Repeating earthquakes (REs) are a sequence of earthquakes having similar waveforms, sizes, locations, and focal mechanisms (Rau et al., 2007). These earthquakes maintain their similarity by repeatedly slips at the same fault patch and sometimes possess a reasonably regular interval (Kimura et al., 2006; Tamaribuchi et al., 2010). REs have been documented within the creeping zone of strike-slip plate boundaries, such as the San Andreas Fault, USA (Nadeau et al., 1995) and the Longitudinal Valley Fault, Taiwan (Chen et al., 2009). Moreover, they were also observed in some subduction zones, e.g., the Japan Trench, NE Japan (Matsuzawa et al., 2002), Sagami Trough (Kimura et al., 2006), and the Ryukyu Trench, SW Japan (Tamaribuchi et al., 2010), and might be related to small asperities on the plate interface (Igarashi et al., 2003; Uchida et al., 2003).

Based on the activities and recurrence intervals, Igarashi et al., (2003) classified REs into the continuous type and the burst type. The continuous type events have a constant interval. Large earthquakes rarely disturb their activities, i.e., they directly reflect the stress release of the slab interfaces (Igarashi et al., 2003; Uchida and Matsuzawa, 2013). In contrary, the burst-type events, like earthquake swarms, occur shortly after a large earthquake. Because the source regions of REs are adjoining to the fault patches of megathrust earthquakes, several investigations also used them to determine the extent of locked zones on the slab interface (e.g., Igarashi et al., 2003; Uchida et al., 2003).

## 5.1.2 Very low frequency earthquakes (VLFEs)

Very low frequency earthquakes (VLFEs) are a type of slow earthquakes dominated in the frequency band of 0.1-0.01 Hz with a little or no high frequency content (Obara and Ito, 2005). In comparison with ordinary earthquakes, VLFEs usually have a longer duration (~20 s) and consist predominantly of long-period waves (Beroza and Ito, 2011). Accordingly, they only can be recorded by high-sensitivity broadband seismometers. Based on the source mechanisms, VLFEs can be divided into the volcanic type and the nonvolcanic type. The volcanic-type VLFEs are related to the fluid or magma transportation caused by volcano activities (e.g., Arciniega-Ceballos et al., 1999), while the nonvolcanic-type VLFEs are generated by the shear faulting of subduction zones (e.g., Obara et al., 2004b).

For the nonvolcanic VLFEs, they usually occur in seismically active plate boundaries, such as the Nankai Trough (e.g., Obara and Ito, 2005) and the Cascadia subduction zone (e.g., Ghosh et al., 2015) (Figure 4.1). Because large interplate earthquakes repeatedly occur there (e.g., Ando, 1975), VLFEs are considered to have certain links to megathrust earthquakes (Obara and Kato, 2016). However, the Ryukyu Trench is different from the subduction zones mentioned above; it is a weakly coupled plate boundary, and probably no megathrust earthquakes have occurred (Peterson and Seno, 1984; Lallemand et al., 2005; Scholz and Campos, 2012). However, some studies reported observations of VLFEs at this trench (Ando et al., 2012; Nakamura and Sunagawa, 2015).

To understand the VLFEs in the Ryukyu area, I followed the study of Ando et al. (2012) to detect 29,841 VLFEs using 8-year broadband seismic data. Furthermore, I analyzed the locations and CMT solutions of 1,504 events obtained from the waveform inversion analysis.

As mentioned in Chapter 4, these VLFEs are all located along the Ryukyu Trench axis with depths of < 60 km, and their focal mechanisms are mostly thrust faults (Figure 4.11; Supplement 1). Hence, these VLFEs might have occurred on the shallow slab interface or in accretionary prisms of the Ryukyu subduction zone (see detail in Section 4.3.3-4.3.4).

# 5.1.3 Repeating VLFEs (RVLFEs)

In addition to the location and source mechanism, I also investigated the activity of VLFEs for the four subareas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K) (Figure 5.1a). The related contents and results are provided in Chapter 4. Notably, I found an interesting cluster of VLFEs, south of the Miyako Island (Figure 5.1b). These events are similar to each other in the waveform, location, magnitude, and focal mechanism, and recur in a limited area (approximately 30 km x 10 km) with a roughly regular interval. So far, no similar phenomena have been reported for VLFEs in any subduction zones. Because the characters of these VLFEs are same as those of REs mentioned above, I decided to name the new type of VLFEs as repeating very-low-frequency earthquakes (RVLFEs) to distinguish them from the regular VLFEs described in Chapter 4.

## 5.1.4 Purposes of this study

Ando et al. (2012) has briefly mentioned this new type of VLFEs, but their properties have been unknown due to the lack of a detailed study. In this chapter, I analyzed their waveform similarities, locations, source mechanisms, and recurrence intervals. Moreover, I discussed the correlations between the RVLFEs and slow slip events (SSEs) and nearby

repeating seismic events. I expect that these results can help clarify the mechanism of slow earthquakes and the plate motion of the southwestern Ryukyu subduction zone.



**Figure 5.1.** (a) Tectonic map in the Ryukyu region and the distribution of VLFEs (red circles) for the four subareas of Sakishima (S), Okinawa (O), Amami (A), and southern Kyushu (K). The blue squares show ten broadband seismic stations of F-net and BATS used for the detection of VLFEs. The Philippine Sea Plate is subducting beneath the Eurasian Plate along the Ryukyu Trench with the average convergence of 8 cm/y (Nakamura, 2009). The Kyushu-Palau Ridge in the southern Kyushu area (K) separates the Ryukyu Trench (black solid line) and the Nankai Trough (black dash line). (b) Seismic distribution of the Sakishima area (S) in Figure 5.1a. Red open circles display the regular VLFEs described in Chapter 4, and red solid circles indicate a new type of VLFEs (hereafter call RVLFEs) detected in this study. Gray dots are ordinary earthquakes ( $M_{JMA} \ge 3$ ) from 2000 to 2015 recorded by JMA. Dashed line contours show the upper surface of the Philippine Sea Plate.

# 5.2 Data and method

# 5.2.1 Detections of VLFEs

In this study, I first detected regular VLFEs in the Ryukyu region. I analyzed vertical component seismograms in 2005-2012 recorded at ten broadband seismic stations of the F-net by National Research Institute for Earth Science and Disaster Resilience (NIED) of Japan and BATS (Broadband Array in Taiwan for Seismology) by Institute of Earth Science (IES) of Taiwan (Figure 5.1a). Then, I filtered all seismic data using a bandpass filter of 0.02–0.06 Hz since the short-period (0.2–1 Hz) noise level is too high to identify VLFEs (Beroza and Ide, 2011; Ando et al., 2012). After obtaining low-frequency signals from the filtered seismograms, I deleted local and teleseismic earthquakes based on earthquake catalogs of Preliminary Determination of earthquakes (PDE, USGS), Japan Meteorological Agency (JMA), and Central Weather Bureau (CWB) of Taiwan. Moreover, some un-cataloged microearthquakes (< Mw 2.5) were removed via the 1.0 Hz high-pass filtered seismograms. The above process is same as those used for regular VLFEs described in Section 4.2.1.

# 5.2.2 Observations of RVLFEs

From 2005 to 2012, a total of 7,546 VLFEs were detected within the Sakishima area, whose seismic waves arriving first at the YNG or IGK stations (Figure 5.1). Among these VLFEs, 97 events were determined as RVLFEs considering their peculiar behaviors and comparable waveforms. Figure 5.2 displays a series of RVLFE activities recorded at broadband seismic stations of F-net and BATS. The first arrival times indicate that these
events should occur between IGK and ZMM stations. Unlike the regular VLFEs lasting several hours like earthquake swarms (Figure 4.4), a typical sequence of RVLFE activities contains two or three events within three hours. Sometimes one extra follows but it do not show a regular interval (Figure 5.2). Notably, these events all have similar waveforms and amplitudes (Figure 5.3), and their signals are much more evident than those of regular VLFEs (Ando et al., 2012).



**Figure 5.2.** Three-hour vertical-component seismograms for four RVLFEs recorded at 14 broadband seismic stations of F-net and BATS (diamonds in the right map). These seismograms, filtered at 0.02-0.06 Hz, are arranged from top to bottom based on increasing distance with a reference point of 120°E–20°N. Each seismogram corresponds to one station shown in the map. This sequence consists of four RVLFEs. Three of the four events occurred sequentially within an hour, and the other one followed 40 minutes later. The origin time of these seismograms is comparable to (UT) 09:00:00, on Mar. 6, 2005.



**Figure 5.3.** Vertical-component waveforms recorded at IGK for eight RVLFEs. The bandpass filtered (0.02-0.06 Hz) seismograms display 300 s-long waveforms starting 50 s before the origin times of these RVLFEs. These events occurred in different time periods but have similar waveforms and amplitudes. The numbers beside the waveforms correspond to the RVLFEs in Supplement 2. Their cross-correlation coefficients ( $\gamma$ ) with respect to the master event of No. 84 are also exhibited aside.

# 5.2.3 Determinations of hypocenters and source mechanisms

I employed the grid-search moment-tension inversion method developed by Nakano et al. (2008) to determine the hypocenters and source mechanisms of RVLFEs. This program locates a target earthquake at a spatial grid point and estimates the strike, dip, and rake of the earthquake fault using a 1-D seismic velocity model (AK135, Kennett et al., 1995). For this analysis, I first calculated the Green's functions of the full waves at each grid point with horizontal and vertical intervals of 0.2° and 10 km, respectively, as shown in Zone S (Figure 5.4a). After obtaining approximate hypocenters, I reduced the horizontal spacing to 0.1° to attain more accurate source locations for the area of 23.2° N-24.6° N and 124.8° E-125.8° E (see Zone M in Figure 5.4a), in which the 97 RVLFEs are concentrated. Figure 5.4 shows one example of the inversion results of an RVLFE (No.84 in Supplement 2). This event is located at a grid of 125.3° E-23.9° N, about 60 km north of the Ryukyu Trench. Its source depth and moment magnitude (M<sub>w</sub>) is 20 km and 4.0, respectively. Moreover, the best-estimated model is a thrust fault. The three-component (NS, EW, and Z) seismograms of YNG and IGK were used for the analysis of this event.



**Figure 5.4.** (a) The hypocenter (red star) of an RVLFE (No. 84 in Supplement 2) and its residual contours in Zone M. YNG and IGK (grey squares) are the seismic stations of F-net used for the waveform inversion of this event. The grid search of this inversion is performed at the dots with an interval of 0.2° in Zone S and 0.1° in Zone M. The contours within Zone M display the residuals between synthetic and observed waveforms obtained from the hypocenter and CMT grid search. The blue dashed curves show the upper depth of the Philippine Sea Plate (unit of km). (b) The CMT solution of the No. 84 RVLFE. The beach ball displays the best-fit focal mechanism. The obtained waveform (blue curve) at the hypocenter is shown in the top right corner. The bottom displays the three-component waveforms of the synthetic (red curve) and observed (black curve) seismograms. The green dashed rectangles indicate three categories of residual (Res), waveform at the source (Wave), and shape of residual contours (Cont) for evaluating the reliability of the inversion results. The quality value of this event is 8 (see Supplement 2) and is defined as rank *A* based on the criteria described in Table 5-1 and 5-2.

#### 5.2.4 Evaluations of the reliability of the waveform inversion

After obtaining the locations and CMT solutions, I used quality ranks A (good), B (fair),

and C (poor) to evaluate the reliability of inversion results based on three criteria, including residual (Res), waveform at the source (Wave), and shape of residual contours (Cont) (Table 5-1; Figure 5.4). Likewise, three grades (good=3, fair=2, poor=1) were assigned to each category. If the grade sum is  $\geq$  8, the results are defined as rank *A*. If the sum ranges in 5-7, they are assigned to rank *B*, but if the sum  $\leq$  4, defined as rank *C* (Table 5-2). For instance, the RVLFE of No. 84 (Figure 5.4) has grades of Res=2, Wave=3, and Cont=3. This event is assigned to rank *A* because its grade sum is 8 (i.e., Res + Wave + Cont). This method is same as the one used for the regular VLFEs mentioned in Section 4.2.3, but I adopted a stricter standard on residual here (see Table 5-1) because RVLFEs usually have lower residual values than the regular VLFEs.

Table 5-1. Evaluation points for the inversion results

| Point    | (1)<br>Residual of waveform<br>matching | (2)<br>Waveform at the<br>source | (3)<br>Shape of residual<br>contours |
|----------|-----------------------------------------|----------------------------------|--------------------------------------|
| 3 (good) | < 0.13                                  | Simple and clear                 | Circular                             |
| 2 (fair) | 0.13-0.16                               | Slight noisy                     | Elliptical                           |
| 1 (poor) | > 0.16                                  | Very noisy                       | Elongated or unclosed                |

Table 5-2. The quality ranks of inversion results based on the quality value

|               | Rank A (good) | Rank B (fair) | Rank C (poor) |
|---------------|---------------|---------------|---------------|
| Quality value | 9, 8          | 7, 6, 5       | 4, 3          |

# 5.3 Results

# 5.3.1 Waveform similarity

I observed 97 RVLFEs in 2005-2012 along the southwestern Ryukyu Trench (Figure 5.1b). These events have particular activities and sequences (Figure 5.2), but their dominant frequency range (0.03-0.15 Hz) is same as the regular VLFEs (Figure 5.5). The most remarkable characteristic of RVLFEs is similar waveforms and amplitudes (Figure 5.3). Accordingly, in this section, I attempted to calculate cross-correlation coefficients ( $\gamma$ ) for the 97 events to verify their waveform similarity. For this analysis, I first selected the RVLFE of No. 84 as the master event due to its high signal-to-noise ratio. Then, I estimated  $\gamma$  of other 96 RVLFEs with respect to the master event. It is interesting to note that 93 % of RVLFEs (89 events) has  $\gamma \ge 0.9$  (Supplement 2), which suggests that these RVLFEs possess high waveform similarity. The remaining seven events, whose  $\gamma < 0.9$ , are probably related to the higher background noise in waveforms since most of them concurrently have a low-quality rank (Supplement 2).

Nevertheless, a narrow band-pass filter (0.02-0.06 Hz) may have cause the high  $\gamma$  of RVLFEs due to the lack of high-frequency components. To examine this possibility, I extended the upper limit of the band-pass filter from 0.06 to 0.1 Hz and recalculated  $\gamma$  of all RVLFEs. Although high-frequency noise caused by the wider bandpass filter remarkably contaminates the RVLFE signals, I still obtained 70 % of RVLFEs (65 events) having  $\gamma \ge 0.9$ . It suggests that the high waveform similarity of RVLFEs here is not due to the narrow bandwidth of this filter.

To understand the waveform similarity between RVLFEs and other seismic events, I arbitrarily selected two cases on each regular VLFE, ordinary earthquake, and RVLFE in the Sakishima area (Figure 5.6a). Detailed source parameters of the six events are provided in Table 5-3. Similarly, I calculated the  $\gamma$  for these selected events with respect to the RVLFE of No. 84. The  $\gamma$  values of the two regular VLFEs (see V77 and V1141 in Figure 5.6a) are 0.6 and 0.8, respectively (Table 5-3), significantly lower than the average  $\gamma$  value (0.96) of RVLFEs. It means that the waveforms of RVLFEs are similar to each other but different from those of regular VLFEs even in the same frequency band (Figure 5.6b). Moreover, the  $\gamma$  values of the two ordinary earthquakes (see E1 and E2 in Figure 5.6a) are all < 0.6 as expected (Table 5-3).



**Figure 5.5.** Spectra of three-hour vertical-component seismograms of RVLFEs (black line) and regular VLFEs (gray line) recorded at IGK. Their waveforms are shown in Figure 5.2 and Figures 4.4, respectively. The two dashed lines define the dominant frequency range

(0.03-0.15 Hz) of RVLFEs, which is same as that of the regular VLFEs. Vertical positions of these two spectra are arbitrary.



**Figure 5.6.** (a) Location of the six selected events including two RVLFEs (red stars), two regular VLFEs (yellow stars), and two ordinary earthquakes (green stars) for the comparison of waveform similarity. Their waveforms and source parameters are shown in Figures 5.6b and Table 5-3, respectively. The numbers beside the stars correspond to the events in Table 5-3. The red open circles are regular VLFEs detected in Chapter 4; the red solid circles are RVLFEs observed in this study. The gray dots indicate ordinary earthquakes ( $M_{JMA} \ge 3$ ) recorded by JMA. The two blue squares are the broadband seismic stations (YNG and IGK) of F-net in the Sakishima area. Dashed line contours display the upper depth of the Philippine Sea Plate (unit in km). (b) Vertical-component waveforms of the two selected events on each cluster of RVLFEs (red curves), regular VLFEs (yellow curves), and ordinary earthquakes (green curves) recorded at IGK. The bandpass-filtered seismograms (0.02-0.06 Hz) display 300 s-long waveforms starting 50 s before the origin times of these events. The  $\gamma$  below the event number shows the cross-correlation coefficient of this event with respect to the RVLFE of No. 84.

| Туре   | Event<br>No. | Time (UT)      | Log<br>(°E) | Lat<br>(°N) | Depth<br>(km) | M <sub>w</sub> | Strike<br>1 | Dip<br>1 | Rake<br>1 | Strike<br>2 | Dip<br>2 | Rake<br>2 | <b>CCC</b><br>(γ) |
|--------|--------------|----------------|-------------|-------------|---------------|----------------|-------------|----------|-----------|-------------|----------|-----------|-------------------|
| *RVLFE | 84           | 20111012161427 | 125.3       | 23.9        | 20            | 4.0            | 20          | 60       | 70        | 236         | 36       | 121       |                   |
| RVLFE  | 91           | 20120511083028 | 125.3       | 23.9        | 20            | 4.0            | 20          | 60       | 70        | 236         | 36       | 121       | 1.0               |
| VLFE   | 77           | 20050601115254 | 123.6       | 23.4        | 50            | 4.7            | 200         | 80       | -30       | 296         | 61       | -168      | 0.60              |
| VLFE   | 1141         | 20101008163910 | 123.6       | 23.6        | 40            | 4.6            | 38          | 84       | 50        | 300         | 40       | 170       | 0.80              |
| EQ     | 1            | 20090805001758 | 125.3       | 24.2        | 22            | 6.5            | 31          | 82       | 76        | 272         | 16       | 151       | 0.57              |
| EQ     | 2            | 20090808054414 | 125.2       | 24.2        | 22            | 5.0            | 51          | 75       | 78        | 271         | 19       | 128       | 0.58              |

**Table 5-3.** Source information of the six selected seismic events for the waveform similarity comparison.

\* The master event for the calculation of cross-correlation coefficients ( $\gamma$ )

# 5.3.2 Hypocenters and focal mechanisms

I obtained the locations and CMT solutions of the 97 RVLFEs using the moment tensor inversion program developed by Nakano et al. (2008). The number of these RVLFEs assigned to quality ranks *A*, *B*, and *C* is 28, 53, and 16, respectively. Detailed source parameters and quality rank of each event are provided in Supplement 2. Figure 5.7a shows the distribution of the 97 RVLFEs. These events are all located in an isolated area (23.6° N–24.0° N and 125.0° E–125.4° E) about 90 km south of the Miyako Island. Their source depths are within 10-30 km (Figure 5.7b), and the moment magnitudes (M<sub>w</sub>) range in 3.8-4.2 (Supplement 2). The CMT solutions of all RVLFEs are thrust faults except for one event (Supplement 2). Here, I exhibited source mechanisms of 13 selected RVLFEs, whose quality value is 9 and defined as rank *A*. As illustrated in Figure 5.7a, their CMT solutions all display thrust faulting mechanisms with a slight strike-slip component, which suggests that the occurrence of these RVLFEs may relate to the plate converge of the Ryukyu subduction zone.

Because these RVLFEs have shallow source depths (~20 km) and thrust-fault

mechanisms, I suspect that they probably have been occurred in the accretionary prism or on the plate interface of the subduction zone, similar to the regular VLFEs detected along the Ryukyu Trench (see Chapter 4) or shallow VLFEs observed in the Nankai Trough (e.g., Obara and Ito, 2005). The source region of RVLFEs seems to fall precisely on the slab interface of the Ryukyu subduction zone (Figure 5.7b). However, if I assume the shallower dip nodal planes as slip planes (Supplement 2), the average dip angle will be 37°. It is significantly higher than the subduction slope (~20°) of the Philippine Sea Plate in the Ryukyu area (Kubo and Fukuyama, 2003; Nishizawa et al., 2017). Namely, the RVLFEs more likely occur in the accretionary prism rather than on the slab interface of the Ryukyu subduction zone.



**Figure 5.7.** (a) Locations and focal mechanisms of RVLFEs. The red solid circles depict the epicenter of the 97 RVLFEs. Beach balls display the CMT solutions of 13 selected events

whose quality value of 9 (rank A). Red open circles indicate the regular VLFEs detected in Chapter 4. The grey dots show the epicenters of ordinary earthquakes with  $M_{JMA} \ge 3$  in 2000-2015 reported by JMA. Dashed line contours (unit in km) display the surface depth of the Philippine Sea Plate. The green area shows the geometric extent of profile RR', whose cross-section is displayed in Figure 5.7b. (b) The cross-section of profile RR' in Figure 5.7a. The red solid circles are RVLFEs detected in this study. The black dotted line shows the subduction plate boundary between the Philippine Sea Plate and Eurasian Plate. The solid arrows in the left mark the relative positions of the Ryukyu Trench and the Ryukyu Arc.

#### 5.3.3 Location errors

To examine the reliability of RVLFE hypocenter locations estimated by the waveform inversion of this study, I compared hypocenters of ordinary earthquakes determined by F-net and those solved by my method. For this analysis, I applied the same inversion method to six ordinary earthquakes with  $M_{JMA} > 4$ , which were selected arbitrarily from Zone M (Figure 5.8). The seismic network, stations, and filter-band used in this analysis were same as those adopted for the RVLFEs mentioned in Section 5.2.3. Figure 5.8 illustrates epicenters of the six ordinary earthquakes obtained from my inversion method and those given in the F-net earthquake catalog. As mentioned in Chapter 4, the earthquake epicenters of F-net catalog are the same as those of JMA, while their depths, magnitudes, and CMT solutions are determined by the own inversion method of F-net. In general, the epicenters of JMA are more reliable than those of F-net because JMA has more seismic stations (2-5 times) with a better azimuthal converge for the hypocenter positioning. The average differences of the two results between the F-net and my inversion method are  $0.09^{\circ} \pm 0.10^{\circ}$  in longitude,  $0.09^{\circ} \pm 0.10^{\circ}$  in latitude, and -9 km ± 15 km in depth (Table 5-4). It

is evident that these differences are all smaller than 0.1° (i.e., 10 km), suggesting that the hypocenters of RVLFEs estimated by this study are accurate and reliable.



**Figure 5.8.** Epicenters of the 6 ordinary earthquakes ( $M_{JMA} \ge 4$ ) obtained from the inversion method of this study (red circles) and those from the F-net earthquake catalog (blue triangles). The two epicenters (red circles and blue triangles) of the same earthquake are linked with a line. These earthquakes are arbitrarily selected from Zone M. The source information of the six earthquakes and the differences between the two results are given in Table 5-4.

Table 5-4. Comparison of hypocenters and moment magnitudes of 6 ordinary earthquakes south of the Miyako Island determined by F-net and

| •          |
|------------|
| ~          |
| _          |
| σ          |
| _          |
| _          |
| _          |
| Ś          |
| <u>s</u> . |
| _          |
| Ŧ          |
| Ē          |

| i          | Ĩ        |        | F-n   | let           |     |       | This s | tudy          |          | Differ | ence (This | s study – F-   | net)            |
|------------|----------|--------|-------|---------------|-----|-------|--------|---------------|----------|--------|------------|----------------|-----------------|
| lime       | (150     | Lon    | Lat   | Depth<br>(km) | Š   | Lon   | Lat    | Depth<br>(km) | A        | ΔLon   | ΔLat       | ΔDepth<br>(km) | ΔM <sub>w</sub> |
| 2004/04/28 | 13:54:22 | 125.18 | 24.20 | 35            | 4.4 | 125.3 | 24.3   | 20            | 4.1      | 0.12   | 0.1        | -15            | -0.3            |
| 2007/05/03 | 05:31:43 | 125.35 | 23.81 | 17            | 4.3 | 125.6 | 24.1   | 30            | 4.2      | 0.25   | 0.29       | 13             | -0.1            |
| 2009/08/05 | 09:17:58 | 125.26 | 24.17 | 35            | 6.1 | 125.2 | 24.3   | 10            | 5.9      | -0.06  | 0.13       | -25            | -0.2            |
| 2009/08/05 | 20:26:47 | 125.21 | 24.16 | 35            | 4.6 | 125.2 | 24.2   | 10            | 4.4      | -0.01  | 0.04       | -25            | -0.2            |
| 2010/01/17 | 07:04:52 | 125.10 | 23.90 | 44            | 4.6 | 125.2 | 23.9   | 50            | 4.3      | 0.10   | 0          | 9              | -0.3            |
| 2010/10/04 | 22:28:38 | 125.33 | 24.21 | 38            | 6.2 | 125.5 | 24.2   | 30            | 5.9      | 0.17   | -0.01      | 8-             | -0.3            |
|            |          |        |       |               |     |       |        |               | Average  | 0.09   | 60.0       | 6-             | -0.2            |
|            |          |        |       |               |     |       |        |               | std dev. | 0.10   | 0.10       | 14             | 0.07            |

# 5.3.4 Recurrence intervals

A remarkable feature of RVLFEs is the time interval (t) between two successive events. As illustrated in Figure 5.9, the recurrence intervals of the 97 events display a tri-modal (or bimodal) distribution, which consists of an exponential distribution for t < 10 days (Type-1), a dome-like distribution (Type-2) for t = 10-100 days, and a pulse-like distribution (Type-3) for t > 100 days. The Type-1 cluster includes 52 intervals (53 RVLFEs) and exhibits an exponential attenuation with time (Figure 5.9). More than 77 % intervals (40 intervals) are less than one day (Figure 5.9), which suggests that these RVLFEs occurred intensively as a series within a short period. Because a typical sequence of VLFEs is usually composed of two or three events that occur within three hours (see Figure 5.2), these 52 intervals of the Type-1 may reflect the time spacing of each RVLFE in the same sequences.

The Type-2 cluster, made up of 37 intervals, displays a normal distribution with a mean of 50 ± 20 days (Figure 5.9). Unlike the Type-1 cluster, these intervals of the Type-2 exhibit the recurrence interval of the RVLFE sequences. It means that the RVLFEs recur approximately every two months, but their durations are less than ten days in general. Although several statistical models, such as Weibull, gamma, lognormal, and Brown Passage Time distributions, have been proposed for earthquake intervals (e.g., Utsu, 2003), it is still difficult to obtain a best-fit model for the Type-2 cluster at this stage due to the insufficient number of RVLFEs. However, I infer that the distribution of the Type-2 intervals may be close to the lognormal model, similar to repeating micro-earthquakes in the San Andreas Fault because both of them possess identical characteristics including both short- and long-term recurrences (Nadeau et al., 1995).

The Type-3 cluster contains seven intervals whose t >100 days (Figure 5.9). These intervals are different from Type-1 and Type-2; they exhibit the quiescent epochs of RVLFE activities, i.e., the RVLFEs cannot be detected during these periods. The absence of seismic data, overlapping signals by teleseismic waves, and the variation of creeping rate around the RVLFE fault all have potentials of generating such unusual long-term quiescence. However, until now, the causes of the long-term quiescence are uncertain, and further studies are necessary.





# 5.3.5 Mainshock-aftershock relations

Because the within-sequence recurrence intervals of RVLFEs show significant exponential attenuation with time (see Type-1 in Figure 5.9), some primary-secondary relations may exist between RVLFEs in the same sequences. To examine this hypothesis, I divided the 97 RVLFEs into 45 sequences and assigned the numbers (from 1<sup>st</sup> to 4<sup>th</sup> events) for RVLFEs in each sequence (Supplement 2). For this analysis, the 1<sup>st</sup> event was defined as having no any other events that occur within the previous ten days, and the 2<sup>nd</sup> event should occur following the 1<sup>st</sup> event within ten days. Likewise, the 3<sup>rd</sup> and 4<sup>th</sup> events needed to occur within ten days after the previous one. The number of 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> events here is 45, 31, 16, and 5, respectively.

Based on this data, I found that the average  $M_w$  of the 1<sup>st</sup> events was slightly larger than that of the 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> events (Table 5-5) with the average difference ( $\Delta M_w$ ) of -0.05 ± 0.13 (Figure 5.10). Moreover, the average intervals between the 1<sup>st</sup> and 2<sup>nd</sup> events and between the 2<sup>nd</sup> and 3<sup>rd</sup> events were 0.2 ± 0.4 h and 1.5 ± 3.0 h, respectively. These observations suggest that the 1<sup>st</sup> events have larger sizes and shorter recurrence intervals than other subsequent events, i.e., the mainshock-aftershock relation may exist within these RVLFEs.

**Table 5-5.** The average magnitudes ( $M_w$ ) of the 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> RVLFE events in the same sequences.

|               | 1 <sup>st</sup> events | 2 <sup>nd</sup> events | 3 <sup>rd</sup> events | 4 <sup>th</sup> events |
|---------------|------------------------|------------------------|------------------------|------------------------|
| Average $M_w$ | 4.02                   | 4.00                   | 3.95                   | 3.96                   |



**Figure 5.10.** The magnitude difference ( $\Delta M_w$ ) between the 1<sup>st</sup> RVLFEs and subsequence RVLFEs within the same sequence.

# 5.3.6 *b*-values

The moment magnitudes ( $M_w$ ) of RVLFEs determined by this study range from 3.8 to 4.2 (Supplement 2), which is much more centralized than those of  $M_w$  3.4-4.7 of regular VLFEs in the Sakishima area (Table 4-4). It means that the RVLFEs have comparable sizes in addition to similar waveforms. To calculate the *b*-value of RVLFEs, I substituted the  $M_w$  data into the maximum-likelihood method proposed by Utsu (1965) and Aki (1965),

$$b = \log e / (M_{mean} - M_c) \tag{5.1},$$

where  $M_{\text{mean}}$  and  $M_{\text{c}}$  are the mean magnitude and the cut-off magnitude for the given sample, respectively. For this estimation, I first determined the  $M_c$  = 3.8 by the cumulative frequency curve of RVLFEs (Figure 5.11). Then, I calculated the average magnitude ( $M_{mean}$ ) between the maximum value ( $M_w$  4.2) and the  $M_c$  ( $M_w$  3.8). Finally, through (5.1), I obtained the *b*-value of 2.2 for the RVLFEs south of Miyako Island. Related parameters for this calculation are provided in Table 5-6.

As mentioned in Section 4.3.5, the *b*-value of regular VLFEs and ordinary earthquakes in the Sakishima area is 2.3 and 0.9, respectively. It is interesting to note that the *b*-value of RVLFEs is comparable to that of regular VLFEs but significantly higher than the *b*-value of ordinary earthquakes even in the same tectonic region (Table 5-6). Since the *b*-value is deemed to be an indicator of the heterogeneity of material (Mogi, 1962; Scholz, 1968), the high *b*-values of RVLFEs and VLFEs suggest that highly heterogeneous materials may exist in their source regions. In addition, the presence of high pore pressure fluid is another possibility for such high *b*-values (McNutt, 2002; Nakamura and Sunagawa, 2015).



**Figure 5.11.** Cumulative frequency distribution of RVLFEs. The total number of RVLFEs used for this calculation is 97. This diagram shows that  $M_c$  (cut-off magnitude) equals 3.8.

**Table 5-6.** Parameters for the calculation and *b*-values of RVLFEs, regular VLFEs, and ordinary earthquakes within the Sakishima area.

|       | Counts <sup>1</sup> | M <sub>w</sub> | $M_{mean}^2$ | M <sub>c</sub> <sup>3</sup> | <b>b-value</b><br>(RVLFEs) | <b>b-value</b><br>(Regular VLFEs) | <i>b</i> -value<br>(Ordinary earthquakes) |
|-------|---------------------|----------------|--------------|-----------------------------|----------------------------|-----------------------------------|-------------------------------------------|
| RVLFE | 97                  | 3.8-4.2        | 4.0          | 3.8                         | 2.2                        | 2.3                               | 0.9                                       |

1, the number of RVLFEs

2, the mean  $M_w$  used in the estimation of *b*-value.

3, the minimum  $M_w$ .

# 5.4 Discussions

# 5.4.1 Spatial correlations between RVLFEs and other repeating seismic events

From 2005 to 2012, I detected a total of 97 RVLFEs south of the Miyako Island. These events have similar waveforms ( $\gamma > 0.9$ ) (Figure 5.3), magnitudes (M<sub>w</sub> 3.8–4.2) (Supplement 2), and source mechanisms (thrust fault) (Figure 5.7) and recur in a limited area (23.6° N–24.0° N and 125.0° E–125.4° E) (Figure 5.1b) with an average interval of ~50 days (Figure 5.9). Because their characteristics are the same as those of repeating ordinary earthquakes (REs) in the creeping zone of plate boundaries (e.g., Nadeau et al., 1995; Matsuzawa et al., 2002), I infer that these RVLFEs may be a type of REs but possess different frequency contents. Namely, it is likely that RVLFEs are due to regular ruptures on the same fault patch.

Figure 5.12a shows the distribution of RVLFEs and other seismic events in the Sakishima area, southwestern Ryukyu Trench. It is interesting to note that several repeating seismic events exist together in this region. For example, slow slip events (SSEs) beneath the Iriomote Island detected in Chapter 3 are located approximately 150 km northwest of the RVLFEs. These SSEs occur at the same fault patch with an average interval of ~6 months. According to Heki and Kataoka (2008), the Iriomote SSEs are probably related to an ex-asperity on the plate interface, where the coupling between the upper and lower slabs is stronger than the surrounding area. Moreover, Tamaribuchi et al. (2010) identified two clusters of REs near the Miyako Island (see RE-1 and RE-2 in Figure 5.12a). The RE-1 sequence is located about 15 km north of RVLFEs, which consists of M6-class earthquakes

with an average interval of ~22 years. The RE-2 sequence is composed of M5-class earthquakes north of the Miyako Island repeating in 6-year intervals. Because the source depths of the two RE sequences fall precisely on the upper surface of the Philippine Sea Plate (Figure 5.12b), Tamaribuchi et al. (2010) considered that these REs have occurred on the subduction plate interface. That is, they are similar to REs observed in the Japan Trench (e.g., Matsuzawa et al., 2002) or in the Sagami Trough (Kimura et al., 2006), generated by repeating ruptures of small asperities on the plate boundary (Igarashi et al., 2003) (Figure 5.13).

In addition to the repeating seismic events mentioned above, the 1771 Yaeyama earthquake also occurred within the Sakishima area (Figure 5.12a). This earthquake was accompanied by a destructive tsunami that struck Ishigaki and surrounding islands with the maximum run-up height of 30 m and caused fatalities of one-third of the populations on the Ishigaki Island (Goto et al., 2012). For the mechanism of this event, Imamura et al. (2001; 2008) suggested an extensive submarine landslide triggered by an M7-class intraplate earthquake, but Nakamura (2009b) inferred it to be an M<sub>w</sub> 8.0 tsunami (slow) earthquake near the Ryukyu Trench axis (Figure 5.12a). Lately, Ando et al. (2018) studied paleotsunami deposits on Ishigaki Island and proposed that this earthquake might be an ordinary subduction thrust earthquake of  $M_w > 8.0$  based on earthquake-induced ground cracks observed in the soil bed underlying the Yaeyama tsunami sediments. This result indicates that the 1771 earthquake is probably a megathrust earthquake ( $M_w \ge 8.0$ ) generated by slips of large asperities on the subduction plate interface in the southwestern Ryukyu Trench (Figure 5.13).

The 1771 earthquake, RVLFEs, and REs are distributed in order from the Ryukyu Trench to the Okinawa Trough (Figure 5.12a). To understand their spatial relations, I drew a cross-section for these seismic events along the profile RR' in Figure 5.12a. As displayed in Figure 5.12b, the fault zone of the 1771 earthquake estimated by Nakamura (2009b) is located at the shallowest segment of the Ryukyu subduction zone close to the trench axis. Notably, its downdip edge is adjoining the trench-ward border of RVLFEs, and the two RE clusters are also located outside the 1771 earthquake fault (Figure 5.12b). This phenomenon suggests that repeating seismic events do not occur within large asperities, in which megathrust earthquakes have occurred, but often appear at their periphery. Such a spatial correlation is consistent with that of REs in the Japan Trench (e.g., Igarashi et al., 2003; Uchida et al., 2003; Matsuzawa et al., 2004) and can be used for the determination of the range of locked zones (Igarashi et al., 2003).

In the Nankai Trough, the locked zone is located within a particular space between the shallow VLFEs and long-term SSEs (Obara and Kato, 2016) (Figure 3.14). However, in the Sakishima area, southwestern Ryukyu Trench, the space between the regular VLFEs and the Iriomote SSEs is too small to accumulate stress for megathrust earthquakes (Figure 5.12b). Accordingly, the locked zone here should be placed between the regular VLFEs and the Ryukyu Trench axis, i.e., the location of the 1771 earthquake fault (Figure 5.13). The above hypothesis is described in detail in Section 4.4.2.1, but it cannot tell if the locked zones exist around the Miyako Island because of the lack of long-term SSEs in this region (Figure 5.12a). To clarify this issue, I reexamined the possible positions of locked zones near the Miyako Island by the spatial correlation between RVLFEs, REs, and the 1771 earthquake determined

in this chapter. I note that the RE clusters are all distributed in the downdip area of RVLFE sources (Figure 5.12), which suggests that the locked zones may not exist within this space because the fault patches of REs should be surrounded by stable slide areas to maintain their sizes and intervals (Igarashi et al., 2003). It means that the locked zone in the Miyako area should be located between the RVLFEs and the trench axis, i.e., the source region of the 1771 earthquake (Figure 5.13), similar to the locked zone in the Ishigaki area.



**Figure 5.12.** (a) Distribution of RVLFEs (red solid circles), regular VLFEs (red open circles), ordinary earthquakes ( $M_{JMA} \ge 3$ ; grey dots), REs (blue dashed circles), Iriomote SSEs (green rectangle), and the fault zone of the 1771 Yaeyama earthquake (yellow ellipse) in the Sakishima area. The sources of REs and the fault patch of the 1771 earthquake are depicted based on the results of Tamaribuchi et al. (2010) and Nakamura (2009b), respectively. The black circles show epicenters of two earthquakes ( $M_w > 6$ ) that occurred during the time window of this study. Their focal mechanisms are expressed with the beach balls. (b) The cross-section of profile RR' in (a). Its geometric extent is 124.5°E–126.0°E and 23.5°N–25.5°N. The black dotted line shows the subduction plate boundary between the Philippine Sea

Plate and Eurasian Plate. The red circles display RVLFEs, and yellow rectangle shows the fault zone of the 1771 earthquake estimated by Nakamura (2009b). The gray and black circles are small ordinary earthquakes ( $M_{JMA} \ge 3$ ) recorded by JMA and two M6-class earthquakes, respectively. The blue dashed circles are two REs sequences determined by Tamaribuchi et al. (2010). Solid arrows in the left exhibit the relative positions of the Ryukyu Trench and the Ryukyu Arc.



**Figure 5.13.** Schematic diagram showing the distribution of asperities for the 1771 earthquake, RVLFEs, SSEs, and REs on the subduction plate interface along the SW Ryukyu Trench. The sizes of asperities are arbitrary.

# 5.4.2 Activity correlations between RVLFEs and SSEs

Different types of slow earthquakes sometimes exhibit remarkable correlations between their activities (Obara and Kato, 2016). For example, in the Bungo Strait, southwestern Japan, long-term SSEs significantly activated VLFEs (e.g., Asano et al., 2015; Baba et al., 2018) and low-frequency tremors (e.g., Hirose et al., 2010; Yamashita et al., 2015). Similarly, VLFEs triggered by SSEs were also seen in the Ryukyu area. Nakamura and Sunagawa (2015) first mentioned that SSEs beneath Iriomote Island activated VLFEs around the Ishigaki and Yonaguni Islands due to the Coulomb failure stress change ( $\Delta$ CFS) by the SSEs. Moreover, in Chapter 4, I compared the occurrence times of SSEs with those of VLFEs along the Ryukyu Trench and found that the VLFEs in the Sakishima, Okinawa, and Amami area could be activated by nearby SSEs for 5-30 days, 0-15 days, and 0-5 days, respectively (see detail in Section 4.4.1).

Although the correlations between SSEs and VLFEs in the Sakishima area have already been confirmed, the relations of SSEs and RVLFEs have not been clear. To understand whether the RVLFEs have similar activation as nearby regular (unrepeating) VLFEs, I analyzed the time series of the 97 RVLFEs and 16 Iriomote SSEs in 2005-2012. As illustrated in Figure 5.14, several RVLFE sequences coincided with SSEs (e.g., SSEs#17, #19, #23, #24, #25, #26, and #30), but some SSEs were not accompanied by any RVLFE activities (e.g., SSEs#15, #16, #18, #21, and #28). To clarify such ambiguous correlation and highlight the RVLFE activation, I divided these RVLFEs based on the periods of the 16 SSEs (Figure 5.15). Further, I stacked these SSEs with respect to their starting times. Figure 5.16 shows the stacked numbers of RVLFEs within the 16 SSEs. Two significant peaks are seen at 5-15 days and 135 days,

respectively. Here, I suspect that the first activation of 5-15 days is related to the SSE activities because it accords with the time constant of 0.1-year of the Iriomote SSEs (see detail in Section 3.3.1). Contrarily, the causes of the second peak (135 days) are still unknown, probably due to coincidental occurrences or the triggering by some external forces. Although RVLFEs appear to be more active after the SSE start, it is premature to conclude that the Iriomote SSEs really can activate the RVLFEs because the event count of RVLFEs (97) is too few to offer a statistically meaningful discussion. After all, it is still possible that the existence of these peaks is just by chance, and further studies are necessary.



**Figure 5.14.** (a) The daily GNSS coordinates of the Hateruma station relative to the Miyako station in the N2OW direction. The green belts show the active times of the 16 SSEs with a number corresponding to the SSEs in Table 3-1. Their fault patches are shown in Figure 5.12a. (b) The time series of RVLFEs (red circles) and its cumulative numbers (red curve). The units on the right and left axes are the cumulative numbers (red) and magnitudes (black),

respectively. The black circles denote two major earthquakes that occurred in the time windows of this study. Their locations and focal mechanisms are exhibited in Figure 5.12a. The gray curve at the bottom indicates the background seismicity variation within the distance of 100 km from the RVLFE source region, whose unit is given on the right inner axis (grey).



**Figure 5.15.** The 5-day count of RVLFEs within the 16 Iriomote SSEs. The time span of each diagram is from SSEs to their subsequent events. The event numbers at the top right corner refer to the SSEs in Table 3-1.



**Figure 5.16.** Stacked numbers of RVLFEs after the SSE start. The time span is from SSEs to consecutive events, same as Figure 5.15. The red bars display the counts of VLFEs with 5-day interval, and the blue bars show the numbers of VLFEs expected by random occurrences. Two significant peaks at 5-15 days and 135 days are seen in this diagram. The first peak of 5-15 days highlighted by the dashed red rectangle is evidence of the SSE activations.

# 5.4.3 Burst type or continuation type

REs can be classified into burst and continuation types based on their pattern of recurrence intervals (Igarashi et al., 2003). The burst-type REs, similar to earthquake swarms, only occur after a large earthquake (Igarashi et al., 2003). These REs last less than three years in general (Yamashita et al., 2012) and are located around large asperities on the subduction plate interface, in which megathrust earthquakes often occur (Igarashi et al., 2003). The continuation type of REs is different from the burst type; it has a similar interval

and lasts longer than the burst-type events (i.e., > 3 years) (Igarashi et al., 2003). Large earthquakes rarely trigger their activities (Igarashi et al., 2003) but sometimes temporarily vary their slip rate (e.g., Uchida et al., 2003, Matsuzawa et al., 2004), which indicates that the continuation-type REs may directly reflect the stress accumulation caused by plate motions.

The 97 RVLFEs south of Miyako Island have regular interseismic intervals (~50 days) (Figure 5.9) and last over eight years (from 2005 to 2012). It suggests that these events probably belong to the continuation type. However, these RVLFEs simultaneously possess the burst-type characteristics as well. For example, the source area of RVLFEs is adjoining the fault patch of the 1771 earthquake (Figure 5.12). In addition, the RVLFEs within the same sequences also exhibit a significant mainshock-aftershock relationship (see detail in Section 5.3.5).

To clarify RVLFEs are the continuation type or the burst type, I analyzed the activity correlations between the RVLFEs and nearby large ordinary earthquakes in this section. From 2005 to 2012, only two moderate-class earthquakes (M<sub>w</sub> >6) occurred around the Miyako Island (see EQ-1 and EQ-2 in Figure 5.12). The EQ-1, about 15 km north of the RVLFEs, is a repeating seismic event of the RE-1 sequence with an average interval of 22 years (Tamaribuchi et al., 2010). However, the EQ-2, around 30 km north of RVLFEs, is a typical intraplate earthquake located within the Philippine Sea Plate (see EQ-2 in Figure 5.12b). The occurrence times of the two earthquakes and the 97 RVLFEs are shown in Figure 5.14b. It is interesting to note that the two M6-class earthquakes did not trigger any RVLFE sequences, and the accumulation curve of RVLFEs maintains a stable and linear increase

even around the EQ-1 and EQ-2 (Figure 5.14b). Moreover, the background seismicity in an area approximately 100 km x 100 km near the RVLFE sources did not synchronize with RVLFE activities either (Figure 5.14b). These observations suggest that nearby earthquakes would not trigger RVLFE activities, that is, the RVLFEs are likely to be the continuation-type repeating events rather than the burst type.

# 5.4.4 Fault zone and seismic slip rate

Although the 97 RVLFEs detected in this study are placed in an area of approximately 50 x 50 km<sup>2</sup> (Figure 5.12a), the epicenters of more than 70 % of RVLFEs concentrate at three grid points, and the rest of these events are scattered over eight neighboring points (Figure 5.17a). The solutions of RVLFEs at the three points possess higher quality ranks (mostly A) (Figure 5.17b). Thus, I infer that these scattered events might have occurred at the same three points, but their epicenters were erroneously located at surrounding grid dots. It means that a reliable source region of the 97 RVLFEs may only lie in the three horizontal blocks, i.e., the range of 30 km x 10 km. According to this observation, I assumed the above geometric range as the fault zone of RVLFEs here to estimate the seismic slip rate as described below.

Under this assumption, I roughly calculated the slip rate of RVLFEs based on the following relation,

$$\dot{d} = \mu^{-1} S^{-1} \dot{M} \tag{5.2}$$

where  $\dot{d}$  is the slip rate,  $\mu$  is the rigidity, S is the source area, and  $\dot{M}$  is the moment release rate. For this estimation, I first determined  $\dot{M} = 1.6 \times 10^{16}$  Nm/year based on the

sum of seismic moments (M<sub>0</sub>) of the 97 RVLFEs in 2005-2012 (see M<sub>0</sub> in Supplement 2). Subsequently, I adopted the rigidity in sediments of an accretionary prism of  $1.6-6.4 \times 10^9$ Pa assessed by Ito and Obara (2006b) because these RVLFEs were probably located within the accretionary prism of the Ryukyu subduction zone (see related contents in Section 5.3.2). Nevertheless, these RVLFEs still have a possibility to have occurred on the shallow slab interface. Considering this point, I additionally employed the rigidity along megathrust faults in subduction zones at depths 5-40 km as  $1-12 \times 10^9$  Pa estimated by Bilek and Lay (1999) using results from the analysis of earthquake source time functions (see Figure 3 in Bilek and Lay, 1999). Applying these parameters, I obtained the slip rate of RVLFEs of 8-33 mm/year in accretionary prisms (the rigidity of  $1.6-6.4 \times 10^9$  Pa) and 4-53 mm/year on the slab interface (the rigidity of  $1-12 \times 10^9$  Pa), respectively. It means that if the fault is located within the accretionary prisms, the slip of RVLFEs contains about 6-26 % of the relative plate convergence in the southwestern Ryukyu subduction zone (125 mm/year) (Heki and Kataoka, 2008). However, if the fault lies on the plate surface, the RVLFEs represent 3-42 % of the relative plate motion. Although this estimation highly depends on the assumed fault size and rigidity, the above result indicates that RVLFEs accommodate plate convergence substantially smaller than the time-average plate convergence rate, regardless of my assumption of faults being on the subduction slab interface or in the accretionary prism. Such a slip rate of repeating seismic events lower than the plate convergence was also seen in the Tohoku area (Uchida et al., 2003), and it might reflect the existence of high coupling regions on the subduction plate boundary (Uchida and Matsuzawa, 2011).



**Figure 5.17** (a) The horizontal distribution of the 97 RVLFEs. The number within each color block displays the count of RVLFEs at the grid point. Most of the RVLFEs are concentrated on the three grids at 125.1°E–125.3°E and 23.9°N. (b) The horizontal distribution of the 28 RVLFEs with quality rank A.

# 5.5 Summary

- From 2005 to 2012, I detected 97 RVLFEs south of Miyako Island. These events have similar waveforms (γ>0.9), magnitudes (Mw 3.8–4.2), and source mechanisms (thrust fault) and repeatedly occurred in a small area of approximately 30 km x 10 km with an average interval of ~50 days.
- The characteristics of RVLFEs are the same as repeating earthquakes (REs) in the creeping zone of the plate boundary but possess different frequency contents.
- These RVLFEs, probably belonging to the continuation-type repeating seismic events, cannot be triggered by nearby ordinary earthquakes. However, the long-term SSEs beneath the Iriomote Island, ~150 km northwest of RVLFEs, may activate RVLFEs in 5-15 days after their onsets.
- The slip released by the RVLFEs in one year is about 6-26 % (in accretionary prisms) and 3-42 % (on the slab interface) of the average plate convergence rate in the southwestern Ryukyu subduction zone.

# Chapter 6.

Conclusions

In this study, I detected slow slip events (SSEs) and very low frequency earthquakes (VLFEs) in the Ryukyu area using GEONET GNSS data and board-band seismic data of F-net and BATS. I made a detailed analysis to clarify their properties, activities, and relations between them. Furthermore, I applied these data to explain the most contentious issue of the Ryukyu subduction zone, i.e., whether the upper and lower plates are coupled or decoupled. The main conclusions of this thesis are summarized as follows:

#### 6.1 Slow slip events (SSEs)

- 1) A total of 38 SSEs were identified in this study from 1997 to 2016. These events occurred at the same fault patch and repeated biannually beneath the Iriomote Island in the southwestern Ryukyu Arc.
- 2) The slip accumulation rate of these SSEs changes in time and significantly increases in 2002 and 2013, which coincides with the activation of the back-arc spreading as indicated by the earthquakes swarms in the Okinawa Trough.
- 3) The accelerated southward movement of the block between the Okinawa Trough and the Ryukyu Trench due to post-rifting stress diffusion might cause the increase of the slip accumulation rate of the Iriomote SSEs.
- Based on the slip rate, the Iriomote SSEs might accommodate ~72% of the plate convergence of the southwestern Ryukyu subduction sone

# 6.2 Very low frequency earthquake (VLFEs)

1) From 2005 to 2012, I detected 29,841 VLFEs in the Ryukyu subduction zone, whose
dominant frequency range falls within 0.03-0.15 Hz without significant high-frequency content. These events are all located near the Ryukyu Trench axis and have shallow thrust-faulting mechanisms, similar to VLFEs in the Nankai Trough reported by Obara and Ito (2005).

- 2) Based on the location and focal mechanism, I infer that these VLFEs probably occurred along the splay faults in the accretional prism or on the shallow plate interface of the Ryukyu subduction zone.
- 3) The high *b*-value (2.3-5.0) is a remarkable characteristic of VLFEs in the Ryukyu area, which suggests that highly heterogeneous materials or high pore pressure fluid exist near the VLFE source region.
- 4) Nearby SSEs and local earthquakes often influence VLFE activities. In the Sakishima, Okinawa, and Amami areas, VLFEs are found to be activated in 5-30 days, 0-15 days, and 0-5 days, respectively, after the start of SSEs. However, in the southern Kyushu area, both long-term (Bungo) and short-term (Hyuga-nada and Tanega-shima) SSEs and some teleseismic earthquakes (e.g., 2011 Tohoku-Oki earthquake) are found to trigger or activate the VLFEs.

#### 6.3 Repeating very low frequency earthquakes (RVLFEs)

 Among the VLFEs in the Sakishima area, I observed 97 repeating events (RVLFEs), south of the Miyako Island, having similar waveforms, amplitudes, locations, magnitudes, and source mechanisms. These events recurred in the same area with an average interval of ~50 days.

- 2) Nearby ordinary earthquakes cannot trigger the RVLFE activity, but the Iriomote SSEs probably activate the RVLFEs in 5-15 days after their onsets.
- 3) The cumulative seismic slip by the RVLFEs accommodated about 6-26 % (in accretionary prisms) and 3-42 % (on the slab interface) of the time-averaged plate convergence there.

### 6.4 Duration and magnitudes of the SSEs and VLFEs in the Ryukyu subduction zone

 The average magnitude (M<sub>w</sub>) and duration of the Iriomote SSEs and the VLFEs in Ryukyu both are consistent with the scaling law proposed for slow earthquakes by Ide et al. (2007) (Figure 6.1).



Figure 6.1. Magnitude (M<sub>w</sub>) and duration for the Iriomote SSEs (red star) and the VLFEs in

the Ryukyu area (green star) compared with the general scaling law of slow earthquakes (passed to Figure 2 of Ide et al. 2007)

#### 6.5 Ryukyu subduction zone

Integrating the locations of SSEs, VLFEs, and two suspect megathrust earthquakes (M<sub>w</sub> >8) in the Ryukyu area, I propose that both slow and ordinary earthquakes occur in the Ryukyu Trench at following depths:

- Sakishaima: the megathrust earthquakes (locked zone, ~10 km), VLFEs (~20 km), and SSEs (~30 km).
- Okinawa: VLFEs (~20 km) and SSEs (~30 km).
- Amami: Still uncertain due to the complex tectonic setting and inaccurate hypocenters of large earthquakes and VLFEs.

Chapter 6: Conclusions

## References

- Abe, K.and Kanamori, H. (1979), Temporal variation of the activity of intermediate and deep focus earthquakes, *J. Geophys. Res.*, Solid Earth, 84(B7), 3589-3595.
- Aki, K. (1965), Maximum likelihood estimate of b in the formula log (N) = a bM and its confidence limits, *Bull. Earthq*. Res. Inst. Tokyo Univ., 43, 237-239.
- Ando, M., (1975), Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, *Tectonophysics*, 27, 119-145.
- Ando, M., M. Nakamura, T. Matsumoto, M. Furukawa, K. Tadokoro M. Furumoto (2009), Is the Ryukyu subduction zone in Japan coupled or decoupled? —The necessity of seafloor crustal deformation observation, *Earth, Planets and Space*, *61*, 1031-1039, doi: 10.1186/BF03352954.
- Ando, M., Y. Tu, H. Kumagai, Y. Yamanaka, C.- H. Lin (2012), Very low frequency earthquakes along the Ryukyu subduction zone, Very low frequency earthquakes along the Ryukyu subduction zone, *Geophys. Res. Lett.*, *39*, doi:10.1029/2011GL050559
- Ando, M., R. Ikuta, Y. Tu, H. Y. Chen, and C. H. Lin (2015), The Apr 2013 earthquake swarm and dyke intrusion in the Okinawa trough, paper presented at *the Japan Geoscience Union Meeting*, Chiba, Japan, 27 May, 2015.
- Ando, M., A. Kitamura, Y. Tu, Y. Ohashi, T. Imai, M. Nakamura, R. Ikuta, Y. Miyairi, Y. Yokoyama, and M. Shishikura (2018), Source of high tsunamis along the southernmost Ryukyu trench inferred from tsunami stratigraphy, *Tectonophysics*. 722, 265-276, doi:10.1016/j.tecto.2017.11.007.
- Arai R., T. Takahashi, S. Kodaira, Y. Kaiho, A. Nakanishi, G. Fujie, Y. Nakamura, Y. Yamamoto,
  Y. Ishihara, S. Miura and Y. Kaneda (2016), Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench, *Nat. Commun*, 7:12255, doi: 10.1038/ncomms12255
- Arai R., T. Takahashi, S. Kodaira, T. Yamada, T. Takahashi, S. Miura, Y. Kaneda, A. Nishizawa,
  M. Oikawa (2017), Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab, *Geophys. Res. Lett.*, doi: 10.1002/2017GL073789
- Arciniega-Ceballos, A., B. A. Chouet, and P. Dawson (1999), Very long period signals associated with vulcanian explosions at Popocatépetl volcano, Mexico, *Geophys. Res. Lett.*, 26, 3013–3016, doi:10.1029/1999GL005390.
- Arisa, D. and K. Heki (2017), Space geodetic observations of repeating slow slip events beneath the Bonin Islands, Geophys. J. Int., 210, 1494-1502, doi:10.1093/gji/ggx2582017

Asano, Y., K. Obara and Y. Ito (2008), Spatiotemporal distribution of very-low frequency

earthquakes in Tokachi-oki near the junction of the Kuril and Japan trenches revealed by using array signal processing, *Earth, Planets Space*, 60, 871-875

- Asano, Y., K. Obara, T. Matsuzawa, H. Hirose, and Y. Ito (2015), Possible shallow slow slip events in Hyuga-nada, Nankai subduction zone, inferred from migration of very low frequency earthquakes, *Geophys. Res. Lett.*, 42, 331–338, doi:10.1002/2014GL062165.
- Aso, N., K. Ohta, and S. Ide (2013), Tectonic, volcanic, and semi-volcanic deep low-frequency earthquakes in western Japan, *Tectonophysics*, 600, 27–40, doi:10.1016/j.tecto.2012.12.015
- Baba, S., A. Takeo, K. Obara, A. Kato, T. Maeda and T. Matsuzawa (2018), Temporal Activity Modulation of Deep Very Low Frequency Earthquakes in Shikoku, Southwest Japan, *Geophys. Res. Lett.*, 45, 733-738, doi:10.1002/2017GL076122
- Beroza, G.C. and T.H. Jordan (1990), Searching for slow and silent earthquakes using free oscillations, J. Geophys. Res., 95, 2485-2510
- Beroza, C. G., and S. Ide (2011), Slow Earthquakes and Nonvolcanic Tremor, *Ann. Rev. Earth Planet. Sci., 39,* 271-296, doi: 10.1146/annurev-earth-040809-152531.
- Bilek, S.L. and T. Lay (1999), Rigidity variations with depth along interplate megathrust faults in subduction zones, *Nature*, 400, 443-446, doi:10.1038/22739
- Brown, J. R., G. C. Beroza, S. Ide, K. Ohta, D. R. Shelly, S. Y. Schwartz, W. Rabbel, M. Thorwart, and H. Kao (2009), Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, *Geophys. Res. Lett.*, 36, L19306, doi:10.1029/2009GL04002.
- Brown, J. R., S. G. Prejean, G. C. Beroza, J. Gomberg, and P. J. Haeussler (2013), Deep low-frequency earthquakes in tectonic tremor along the Alaska-Aleutian subduction zone, *J. Geophys. Res.*, 118, 1079–1090, doi:10.1029/2012JB009459.
- Chen, H.-Y., R. Ikuta, C.-H. Lin, Y.-J. Hsu, T. Kohmi, C.-C. Wang, S.-B. Yu, Y. Tu, T. Tsujii, and M. Ando (2018), Back-arc opening in the western end of the Okinawa Trough revealed from GNSS/Acoustic measurements, Geophys. Res. Lett. doi: 10.1002/2017GL075724
- Chen, K. H., R.-J. Rau and J.-C. Hu (2009), Variability of repeating earthquake behavior along the Longitudinal Valley fault zone of eastern Taiwan, *J. Geophys. Res.*, 114, doi:10.1029/2007JB005518
- Deschamps, A., and S. Lallemand (2002), The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones, *J. Geophys. Res.*, 107(B12), 2322, doi:10.1029/2001JB001706.

- Dragert, H., K. Wang, and T. S. James (2001), A silent slip event on the deeper Cascadia subduction interface, *Science*, *292*, 1525–1528, doi: 10.1126/science.1060152.
- Douglas, A., J. Beavan, L. Wallace, and J. Townend (2005), Slow slip on the northern Hikurangi subduction interface, New Zealand, *Geophys. Res. Lett., 32,* doi:10.1029/2005GL023607
- Dziewonski, A.M. and D.L. Anderson (1981), Preliminary reference Earth model, *Phys. Earth Planet. Interiors*, 25, 297–356.
- Foulger, G.R., C.-H. Jahn, G. Seeber, P. Einarsson, B.R. Julian and K. Heki (1992), Post-rifting stress relaxation at the divergent plate boundary in Northeast Iceland, *Nature*, 358, 488-490, doi:10.1038/358488a0.
- Fu, Y. and J. T. Freymueller (2013), Repeated large Slow Slip Events at the southcentral Alaska subduction zone, *Earth and Planetary Science Letters*, 375, 303-311, doi.org/10.1016/j.epsl.2013.05.049
- Fukuda, J. (2018), Variability of the space-time evolution of slow slip events off the Boso Peninsula, central Japan, from 1996 to 2014, J. Geophys. Res., 123, 732–760, doi:10.1002/2017JB014709
- Ghosh, A., A. V. Newman, A.M. Thomas, G. T. Farmer (2008), Interface locking along the subduction megathrust from microseismicity near Nicoya, Costa Rica, *Geoph. Res. Lett.*, 35, L01301, doi:10.1029/2007GL03161.
- Ghosh, A., E. Huesca-Pérez, E. Brodsky and Y. Ito (2015), Very low frequency earthquakes in Cascadia migrate with tremor, *Geophys. Res. Lett.*, 42, doi:10.1002/2015GL063286.
- Goto, K., K. Miyazawa, A. Adaniya, S. Kaikihana, Y. Kumagai, A. Shimabukuro, N. Shimabukuro, Y. Masaki, S, Matsushima, and K. Miyagi (2012), The reconsideration of the 1771 Meiwa tsunami runup heights II- The whole Sakishima area, *Tsunami Engineering Report*, 29, 129-146.
- Goto K. (2013), Re-evaluation of hypocenter of the 1911 great earthquake around Kikai-jima, Japan, J. Seismol. Soc. Jpn. (Zisin), 65, 231–242, doi:10.4294/Zisin.65.231
- Hatori, T. (1988), Tsunami Magnitudes and Source Areas along the Ryukyu Islands, *Zisin* (II), 41, pp. 541-547 (in Japanese with English abstract)
- Heki, K., G.R. Foulger, B.R. Julian and C.-H. Jahn (1993), Plate dynamics near divergent boundaries: geophysical implications of postrifting crustal deformation in NE Iceland, J. Geophys. Res., 98, 14279-14297, doi: 10.1029/93JB00781.

Heki, K., S. Miyazaki and H. Tsuji (1997), Silent fault slip following an interplate thrust

earthquake at the Japan Trench, Nature, 386, 595-598

- Heki, K. and Y. Tamura (1997), Short term afterslip in the 1994 Sanriku-Haruka-Oki earthquake, *Geophys. Res. Lett.*, 24, 3285-3288,
- Heki, K., and T. Kataoka (2008), On the biannually repeating slow-slip events at the Ryukyu Trench, southwestern Japan, *J. Geophys. Res.*, *113*, B11402, doi:10.1029/2008JB005739.
- Hirose, H., K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki (1999), A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan, *Geophys. Res. Lett.*, *26*, 3237-3240, doi: 10.1029/1999GL010999.
- Hirose, H., and K. Obara (2005), Repeating short- and long-term slow slip events with deep tremor activity, *Earth Planets Space*, 57, 961–972, doi:10.1186/BF03351875.
- Hirose, H. and K. Obara (2006), Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan, *Geophys. Res. Lett.*, *33*, doi:10.1029/2006GL026579.
- Hirose, H., Y. Asano, K. Obara, T. Kimura, T. Matsuzawa, S. Tanaka, and T. Maeda (2010),
  Slow earthquakes linked along dip in the Nankai subduction zone, *Science*, *330*, doi: 1502.
  10.1126/science.1197102.
- Hirose, H and K. Obara (2010), Recurrence behavior of short-term slow slip and correlated nonvolcanic tremor episodes in the western Shikoku, southwest Japan, *J. Geophys. Res.*, *115*, DOI: 10.1029/2008JB006050.
- Hirose, H., H. Kimura, B. Enescu, and S. Aoi (2012), Recurrent slow slip event likely hastened by the 2011 Tohoku earthquake, *Proc. Nat. Acad. Sci.*, 109, 15157-15161, doi: 10.1073/pnas.1202709109.
- Houston, H., B. G. Delbridge, A. G. Wech and K. C. Creager (2011), Rapid tremor reversals in Cascadia generated by a weakened plate interface, *Nature Geoscience*, 4(6), 404.
- Hsu, Y. J., M. Ando, S. B. Yu, and M. Simons (2012), The potential for a very large earthquake along the southernmost Ryukyu subduction zone, *Geophys. Res. Lett.*, 39, doi:10.1029/2012GL052764
- Ide, S., G. C. Beroza, D. R. Shelly, and T. Uchide (2007), A scaling law for slow earthquakes, *Nature*, 447, 76–79, doi:10.1038/nature05780
- Ide, S., Yabe, S., and Tanaka, Y. (2016), Earthquake potential revealed by tidal influence on earthquake size-frequency statistics, *Nature*, 9(11), 834-837, doi:10.1038/ngeo2796
- Igarashi, T., T. Matsuzawa and A. Hasegawa (2003), Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone, *J. Geophys. Res, 108*, doi:10.1029/2002JB001920

- Ikeda, S., H. Heki, and K. kimura (2015), Shallow repeating slow-slip-events along the convergent block boundary in northern Hokkaido, Japan, paper presented at *the Fall Meeting of American Geophysical Union*, San Francisco, USA, 14 Dec, 2015.
- Ito, Y. and K. Obara (2006a), Dynamic deformation of the accretionary prism excites very low frequency earthquakes, *Geophys. Res. Lett.*, 33, doi:10.1029/2005GL025270
- Ito, Y., and K. Obara (2006b), Very low frequency earthquakes within accretionary prisms are very low stress-drop earthquakes, *Geophys. Res. Lett.*, 33, L09302, doi:10.1029/2006GL025883.
- Ito, Y., K. Obara, K. Shiomi, S. Sekine, and H. Hirose (2007), Slow earthquakes coincident with episodic tremors and slow slip events, *Science*, *315*, 503–506, doi:10.1126/science.1134454
- Imamura, F., I. Yoshida, and A. Moore (2001), Numerical study of the 1771 Meiwa tsunami at Ishigaki Island, Okinawa and the movement of the tsunami stones, *Proc. Coastal Eng. Jpn. Soc. Civ. Eng.*, 48, 346–350 (in Japanese).
- Imamura, F., K. Goto, S. Ohkubo (2008), A numerical model for the transport of a boulder by tsunami, *J. Geophys. Res.*, 113, C01008, doi:10.1029/2007JC004170.
- Iwasa, Y. and K. Heki (2018), Repeating rifting episodes and uplift of the southwestern Ryukyu Arc, Paper presented at the 2018 Japan Geoscience Union Meeting, Makuhari, Chiba, Japan, SSS09-12.
- Jiang Y., S. Wdowinski, T. H. Dixon, M. Hackl, M. Protti and V. Gonzalez (2012), Slow slip events in costa rica detected by continuous gps observations, 2002–2011. *Geochemistry, Geophysics, Geosystems, 13*, doi.org/10.1029/2012GC004058.
- Kanamori, H. (1972), Mechanism of tsunami earthquakes, *Phys. Earth Planet. Int.*, 6, 346-359, doi:10.1016/0031-9201(72)90058-1
- Kanamori, H., and G.S. Stewart (1979) A slow earthquake, *Phys. Earth Planet. Int.*, 18, 167-175.
- Kanamori, H. and M. Kikuchi (1993), The 1992 Nicaragua earthquake: A slow tsunami earthquake associated with subducted sediments, *Nature*, *361*, 714–716.
- Kano, M., J. Fukuda, S. Miyazaki and M. Nakamura (2018), Spatio-temporal evolution of recurrent slow slip events along the southern Ryukyu subduction zone, Japan, from 2010 to 2013, J. Geophys. Res., doi: 10.1029/2018JB016072
- Kao, H. (1998), Can great earthquakes occur in the southernmost Ryukyu arc-Taiwan region?, *Terr. Amos. Oceanic Sci.*, 9, 487–508.

- Katsumata, A. and Kamaya, N. (2003), Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan, *Geophys. Res. Lett., 30*: doi: 10.1029/2002GL015981.
- Kawana, T. (1990), The notch with characteristics of coral reef, *Coral reef in Japan*, 1, pp. 66-82. (in Japanese)
- Kawasaki, I., Y. Asai, Y. Tamura, T. Sagiya, N. Mikami, Y. Okada, M. Sakata, and M. Kasahara (1995), The 1992 Sanriku-oki, Japan, ultra-slow earthquake, *J. Phy. Earth*, *43*, 105–116.
- Kawasaki, I. (2004), Silent earthquakes occurring in a stable-unstable transition zone and impications for earthquake prediction, *Earth Planets Space*, *56*, 813 821.
- Kennett, N., E. Engdahl and R. Buland (1995), Constraints on seismic velocities in the Earth from travel times, *Journal Geoph Int.*, 122, 108-124.
- Kimura, H., K. Kasahara, T. Igarashi, and N. Hirata (2006), Repeating earthquake activities associated with the Philippine Sea plate subduction in Kanto district, central Japan: A new plate configuration revealed by interplate aseismic slips, *Tectonophysics*, 417, 101–118, doi:10.1016/j.tecto.2005.06.013
- Kobayashi, A. (2010), A small scale long-term slow slip occurred in the western Shikoku in 2005, J. *Seismol. Soc. Jpn. (Zisin), 63*, 97–100, doi:10.4294/zisin.63.97. (in Japanese with English figure captions)
- Kobayashi, A. (2014), A long-term slow slip event from 1996 to 1997 in the Kii Channel, Japan, *Earth, Planets and Space, 66,* doi:org/10.1186/1880-5981-66-9.
- Kodaira, S., N. Takahashi, J. Park, K. Mochizuki, M. Shinohara, S. Kimura (2000), Western Nanaki Trough seismogenic zone: Result from wide-angle Ocean-Bottom Seimographic survey, J. Geophys. Res., 105, 5887-5905
- Kostoglodov, V., S. K. Singh, J. A. Santiago, S. I. Franco, K. M. Larson, A. R. Lowry, and R. Bilham (2003), A large silent earthquake in the Guerrero seismic gap, Mexico, *Geophys. Res. Lett.*, 30, 1807, doi:10.1029/2003GL017219.
- Kubo, A., and E. Fukuyama (2003), Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes, *Earth and Planetary Science Letters*, 210(1), 305-316, doi: 10.1016/S0012-821X(03)00132-8
- Lallemand, S., A. Heuret, and D. Boutelier (2005), On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones, Geochem. Geophys. Geosyst., 6, Q09006, doi:10.1029/2005GC000917.
- Li, B., and A. Ghosh (2017), Near-continuous tremor and low-frequency earthquake

activities in the Alaska-Aleutian subduction zone revealed by a mini seismic array, Geophys. Res. Lett., 44, doi:10.1002/2016GL072088

- Lin, C.H., L.W. Hsu, M.Y. Ho, T.C. Shin, K.J. Chen and Y.H. Yeh (2007), Low-frequency submarine volcanic swarms at the southernwestern end of the Okinawa Trough, *Geophys. Res. Lett.*, 34, L06310, doi:10.1029/2006GL029207.
- Lin, J.-Y., J.-C. Sibuet, S.-K. Hsu, W.-N. Wu (2014), Could a Sumatra-like megathrust earthquake occur in the south Ryukyu subduction zone? Earth Planets Space 66, 1–8.
- Lowry, A. R., K. M. Larson, V. Kostoglodov, and R. Bilham (2001), Transient fault slip in Guerrero, southern Mexico, *Geophys. Res. Lett.*, *28*, 3753–3756, doi: 10.1029/2001GL013238.
- Matsuzawa, T., T. Igarashi and A. Hasegawa (2002), Characteristic small-earthquake sequence off Sanriku, northeastern Honshu, Japan, *Geophys. Res. Lett.*, 29, DOI: 10.1029/2001GL014632
- Matsuzawa, T., N. Uchida, T. Igarashi, T. Okada and A. Hasegawa (2004), Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan, *Earth Planet. Sci.*, *56*, 803-811
- Matsuzawa, T., Y. Asano and K. Obara (2015), Very low frequency earthquakes off the Pacific coast of Tohoku, Japan, *Geophys. Res. Lett.*, 42, DOI: 10.1002/2015GL063959
- McNutt, S. R. (2002), Volcano seismology and monitoring for eruptions, *Int. Geophys. Ser.*, 81(A), 383–406.
- McNutt, S. R. (2005), A Review of Volcanic Seismology. *Annual Reviews of Earth and Planetary Sciences*, 33, 461-491 doi: 10.1146/annurev.earth.33.092203.122459
- Mogi, K. (1962) Magnitude-Frequency Relationship for Elastic Shocks Accompanying Fractures of Various Materials and Some Related Problems in Earthquakes. *Bull. Earthq.* Res. Inst. Tokyo Univ., 40, 831-853.
- Muller, R.D., M. Sdrolias, C. Gaina, and W.R. Roest (2008), Age, spreading rates and spreading symmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi: 10.1029/2007GC001743
- Nadeau, R. M., W. Foxall, and T. V. McEvilly (1995) Clustering and Periodic Recurrence of Microearthquakes on the San Andreas Fault at Parkfield, California, *Science*, *27*, 503-507, doi: 10.1126/science.267.5197.503
- Nakagawa, H., T. Toyofuku, K. Kotani, B. Miyahara, C. Iwashita, S. Kawamoto, Y. Hatanaka, H. Munekane, M. Ishimoto, T. Yutsudo, N. Ishikura, and Y. Sugawara (2009), Development

and validation of GEONET new analysis strategy, *J. Geogr. Surv. Inst., 118*, 1–8 (in Japanese).

- Nakamura, M. (2009), Aseismic crustal movement in southern Ryukyu Trench, southwest Japan, *Geophys. Res. Lett.*, *36*, doi: 10.1029/2009GL040357.
- Nakamura, M. (2009b), Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami, *Geophys. Res. Let*, 36, L19307, Doi.org/10.1029/2009GL039730
- Nakamura, M., M. Nakamura, K. Tadokoro, T. Okuda, M. Ando, T. Watanabe, S. Sugimoto, M. Furukawa (2010), Interplate coupling along the central Ryukyu Trench inferred from GPS/acoustic seafloor geodetic observation, Abstract T51D-2085, Presented at 2010 Fall Meeting, AGU, San Francisco, CA, 13–17 Dec.
- Nakamura, M. (2013), The 1768 and 1791 Okinawa tsunamis in the Ryukyu Trench region, American Geophysical Union Fall meeting, San Francisco.
- Nakamura, M. and N. Sunagawa (2015), Activation of very low frequency earthquakes by slow slip events in the Ryukyu Trench, *Geophys. Res. Lett.*, 42, doi: 10.1002/2014GL062929
- Nakamura, M. (2017), Distribution of low-frequency earthquakes accompanying the very low frequency earthquakes along the Ryukyu Trench, *Earth Planet. Sci.,* doi:10.1186/s40623-017-0632-4
- Nakano, M., H. Kumagai, and H. Inoue (2008), Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function, *Geophys. J. Int.*, *173*, 1000-1011, doi: 10.1111/j.1365-246X.2008.03783.x
- Nakano, M., T. Hori, E. Araki, S. Kodaira and S. Ide (2018), Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone, Nature communication, 9, doi: 10.1038/s41467-018-03431-5
- Nishimura, S., M. Hashimoto, and M. Ando (2004), A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc, *Phys. Earth Planet. Inter.*, 142, 185-203, doi:10.1016/j.pepi.2003.12.014.
- Nishimura, T. (2014), Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS, *Prog. Earth Planet. Sci.,* doi: 10.1186/s40645-014-0022-5.
- Nishizawa A., K. Kaneda, Y. Katagiri, and M. Oikawa (2014), Wide-angle refraction experiments in the Daito Ridges region at the northwestern end of the Philippine Sea

plate, Earth Planets Space, 66, doi:10.1186/1880-5981-66-25

- Nishizawa A., K. Kaneda, M. Oikawa, D. Horiuchi, Y. Fujioka, and C. Okada (2017), Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate, *Earth Planets Space.*, 69(1), doi: 10.1186/s40623-017-0674-7
- Okino, K., Y.Ohara, S. Kasuga, Y. Kato, (1999). The Philippine Sea: new survey results reveal the structure and the history of the marginal basin. *Geophys. Res. Lett.* 26, 2287-2290.
- Obana, K., S. Kodaira (2009), Low-frequency tremors associated with reverse faults in a shallow accretionary prism, *Earth Planets Sci. Lett.*, 287, 168-174, 10.1016/j.epsl.2009.08.005
- Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan. *Science*, *296*, 1679-1981, doi: 10.1126/science.1070378
- Obara, K., H. Hirose, F. Yamamizu, and K. kasahara (2004a), Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone, *Geophys. Res. Lett*, *31*, doi: 10.1029/2004GL020848.
- Obara, K., Y. Haryu, Y. Ito, and K. Shiomi (2004b), Low frequency events occurred during the sequence of aftershock activity of the 2003 Tokachi-Oki earthquake; a dynamic process of the tectonic erosion by subducted seamount, *Earth Planets Space*, 56, 347–351
- Obara, K. and Y. Ito (2005), Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism, *Earth, planets and space*, 57, 321-326, doi:10.1186/BF03352570
- Obara, K. (2011), Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan, *Journal of Geodynamics*, *52*(*3*-4), 229-248.
- Obara, K., and A. Kato (2016), Connecting slow earthquakes to huge earthquakes, *Science*, *353*, 253-257,doi: 10.1126/science.aaf1512.
- Ohta, Y., J. Freymueller, S. Hreinsdottir and H. Suito (2006), A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone, *Earth Planet. Sci. Lett., 247*, 108-116, doi: 10.1016/j.epsl.2006.05.013
- Ohzono, M., H. Takahashi, and M. Ichiyanagi (2014), An intraplate slow earthquake observed by a dense GPS network in Hokkaido, northernmost Japan, *Geophys. J. Int., 200*, 144-148, doi: 10.1093/gji/ggu380.

Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull.

Seism. So. Am., 82, 1018-1040.

- Okino, K., S. Kasuga, and Y. Ohara (1998), A new scenario of the Parece Vela Basin genesis, *s*, *Mar. Geophys. Res.*, 20(1), 21-40
- Ozawa, S., M. Murakami, M. Kaidzu, T. Tada, T. Sagiya, Y. Hatanaka, H. Yarai, and T. Nishimura (2002), Detection and monitoring of ongoing aseismic slip in the Tokai Region central Japan, *Science*, *298*, 1009–1012, doi:10.1126/science.1076780.
- Ozawa, S., S. Miyazaki, Y. Hatanaka, T. Imakiire, M. Kaidzu, and M. Murakami (2003), Characteristic silent earthquakes in the eastern part of the Boso Peninsula, central Japan, *Geophys. Res. Lett.*, *30*, 1283, doi:10.1029/2002GL016665.
- Ozawa, S., Y. Hatanaka, M. Kaidzu, M. Murakami, T. Imakiire, and Y. Ishigaki (2004), Aseismic slip and low-frequency earthquakes in the Bungo channel, southwestern Japan, *Geophys. Res. Lett.*, 31, L07609, doi:10.1029/2003GL019381
- Ozawa, S., H. Suito, and M. Tobita (2007), Occurrence of quasi-periodic slow-slip off the east coast of the Boso Peninsula, central Japan, *Earth, Planets and Space*, *59*, 1241–1245, doi:10.1186/BF03352072.
- Ozawa, S., H. Suito, T. Imakiire and M. Murakmi (2007b), Spatiotemporal evolution of aseismic interplate slip between 1996 and 1998 and between 2002 and 2004, in Bungo channel, southwest Japan, *J. Geophys. Res.*, 112, B05409, doi:10.1029/2006JB004643.
- Ozawa, S. (2014), Shortening of recurrence interval of Boso slow slip events in Japan, *Geophys. Res. Lett.*, *41*, 2762–2768, doi: 10.1002/2014GL060072.
- Ozawa, S. (2017), Long-term slow slip events along the Nankai trough subduction zone after the 2011 Tohoku earthquake in Japan, *Earth, Planets and Space, 69,* doi: 10.1186/s40623-017-0640-4.
- Peng, Z. and J. Gomberg (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena, *Nature Geosci.*, 3, 599–607, doi: 10.1038/ngeo940
- Peterson, E. T. and T. Seno (1984), Factors affecting seismic moment release rates in subduction zones, *J. Geophys. Res.*, *89*, 10233-10248, doi: 10.1029/JB089iB12p10233.
- Rau, R.-J., K. H. Chen and K.-E. Ching (2007), Repeating earthquakes and seismic potential along the northern Longitudinal Valley fault of eastern Taiwan, *Geophys. Res. Lett.*, *34*, doi: 10.1029/2007GL031622
- Rogers, G., and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip, *Science*, *300*, 1942-1943, doi: 10.1126/science.1084783

- Sagiya, T. and W. Thatcher (1999), Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan, *J. Geophys. Res.*, 104, 1111-1129,
- Satake, K., and Y. Tanioka (1997), Fault Parameters and Tsunami Generation of the 1995 Amami-Oshima-Kinkai Earthquake, *Journal of Geography (Chigaku Zasshi)*, 106(4), 546-556.
- Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. *Bull. Seism. So. Am.*, 58(1), 399-415.
- Scholz, C. H., and J. Campos (2012), The seismic coupling of subduction zones revisited, *J. Geophys. Res.*, *117*, doi: 10.1029/2011JB009003.
- Scholz, C. H. (2015). On the stress dependence of the earthquake b value, *Geophys. Res. Lett.*, 42(5), 1399-1402.
- Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamula (2006), Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic slip and tremor, *Nature*, 442, 188 – 191, doi:10.1038/nature04931.
- Shelly, D. R., G. C. Beroza, and S. Ide (2007), Non-volcanic tremor and low-frequency earthquake swarms, *Nature*, *446*, 305 307, doi:10.1038/nature05666.
- Shibazaki, B. and Y. Iio (2003), On the physical mechanism of silent slip events along the deeper part of the seismogenic zone, Geophys. Res. Lett., 30, 2003GL017047, doi:10.1029/2003GL017047.
- Sibuet, J.-C., J. Letouzey, F. Barbier, J. Charvet, J.-P. Foucher, T. W. C. Hilde, M. Kimura, L.-Y. Chiao, B. Marsset, C. Muller, and J.-F. Stephan (1987), Backarc extension in the Okinawa Trough, *J. Geophys. Res.*, 92, 14,041-14,063.
- Socquet, J., Piña Valdes, J. Jara, F. Cotton, A. Walpersdorf, N. Cotte, S. Specht, F. Ortega, D. Carrizo and E. Norabuena (2017). An 8-month slow slip event triggers progressive nucleation of the 2014 Chile megathrust, *Geophys. Res. Lett.*, 44, doi: 10.1002/2017GL073023.
- Stern, R.J. (2002), Subduction zones, Rev. Geophys, 40, doi:10.1029/2001RG000108.
- Sugioka, H., T. Okamoto, T. Nakamura, Y. Ishihara, A. Ito, K. Obana, K. Nakahigashi, M. Shinohara, and Y. Fukao (2012), Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip, *Nat. Geosci.*, 5, 414–418, doi:10.1038/NGEO1466.
- Suito, H. and S. Ozawa (2009), Transient crustal deformation in the TokaiDistrict -The Tokai Slow Slip Event and Postseismic deformation caused by the 2004 off southeast Kii

Peninsula earthquake, J. Seismol. Soc. Jpn., 2(61), 113–135. (in Japanese with English abstract)

- Szeliga, W., T. Melbourne, M. Santillan, and M. Miller (2008), GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005, J. Geophys. Res., 113, doi: 10.1029/2007JB004948
- Tamaribuchi K., Y. Yamada, Y. Ishigaki, Y. Takagi, M. Nakamura, K. Maeda and M. Okada (2010), Characteristic earthquake sequence near Miyakojima Island, Ryukyu Arc, Japan, J. Seismol. Soc. Jpn., 2(62), 193–207. (in Japanese with English abstract)
- Thomas, A. M., R. Bürgmann, D. R. Shelly, N. M. Beeler, and M. L. Rudolph (2012), Tidal triggering of low frequency earthquakes near Parkfield, California: Implications for fault mechanics within the brittle-ductile transition, *J. Geophys. Res.*, 117, doi: 10.1029/2011JB009036
- Tu, Y. and K. Heki (2017), Decadal modulation of repeating slow slip event activity in the southwestern Ryukyu Arc possibly driven by rifting episodes at the Okinawa Trough, *Geophys. Res. Lett.*, 44, 9308-9313, doi: 10.1002/2017GL074455
- Uchida, N., T. Matsuzawa and T. Igarashi (2003), Interplate quasi-static slip off Sanriku, NE Japan, estimated from repeating earthquakes, *Geophys. Res. Lett.*, *15*, doi: 10.1029/2003GL017452
- Uchida, N., and T. Matsuzawa (2011), Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from small repeating earthquake data, *Earth Planets Space*, 63, 675–679, doi:10.5047/eps.2011.07.006.
- Uchida, N. and T. Matsuzawa (2013), Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture, *Earth, planets and space*, 374, 81-91
- Usami, T. (2003), Materials for Comprehensive List of Destructive Earthquakes in Japan, pp. 605, *Univ. Tokyo Press*, Tokyo.
- Utsu, T. (1965), A method for determining the value of b in a formula log n = a bM showing the magnitude-frequency relation for earthquakes, *Geophys. Bull.*, Hokkaido Univ., Hokkaido, Japan, 13, 99-103 (in Japanese).
- Utsu, T. (1982), Catalog of Large Earthquakes in the Region of Japan from 1885 through 1980, *Bulletin of the Earthquake Research Institute*, University of Tokyo, 57, 401-463 (in Japanese).
- Utsu, T. (2001), Seismology 3<sup>rd</sup> Ed., (Kyoritsu Shuppan, Tokyo), pp. 376, (in Japanese).

- Uyeda, S., and H. Kanamori (1979), Back-Arc Opening and the Mode of Subduction, J. *Geophys. Res.*, 84, 1049-1061, doi: 10.1029/JB084iB03p01049.
- Vergnolle, M., A. Walpersdorf, V. Kostoglodov, P. Tregoning, J. A. Santiago, N. Cotte, S. I. Franco (2010), Slow slip events in Mexico revised from the processing of 11 year GPS observations, *Geophys. Res. Lett.*, 115, doi: 10.1029/2009JB006852.
- Wallace, L. M., S. C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S. Y. Schwartz, and A. F. Sheehan (2016), Slow slip near the trench at the Hikurangi subduction zone, New Zealand, *Science*, 352, 701-704, doi: 10.1126/science.aaf2349
- Wang, K., and S. L. Bilek (2014), Invited review paper: Fault creep caused by subduction of rough seafloor relief, *Tectonophysics*, 610, 1–24.
- Wu, W. N., H. Kao, S. K. Hsu, C. L. Lo, and H. W. Chen, (2010). Spatial variation of the crustal stress field along the Ryukyu-Taiwan-Luzon convergent boundary. J. Geophys. Res., 115(B11), doi: 10.1029/2009JB007080
- Yamada, T., R. Hino, A. Nishizawa, H. Shiobara, T. Sato, K. Goto, ... & H. Shimamura, (1997), Aftershock observation of the 1995 Amami-Oshima-Kinkai Earthquake using ocean bottom seismometers, *Journal of Geography (Chigaku Zasshi)*, 106(4), 514-524.
- Yamano, H., H. Kayane, N. Yonekura (2001), Anatomy of a modern coral reef flat: A recorder of storms and uplift in the late Holocene, *Journal of Sedimentary Research*, 71, 295–304, doi:10.1306/082900710295.
- Yamano, H., O. Abe, E. Matsumoto, H. Kayanne, N. Yonekura and P. Blanchond (2003), Influence of wave energy on Holocene coral reef development: an example from Ishigaki Island, Ryukyu Islands, Japan, *Sedimentary Geology*, 159, 27-41, doi: 10.1016/S0037-0738(03)00093-9
- Yamashita, Y., H. Shimizu, and K. Goto (2012), Small repeating earthquake activity, interplate quasi-static slip, and interplate coupling in the Hyuga-nada, southwestern Japan subduction zone, *Geophys. Res. Lett.*, 39, L08304, doi:10.1029/2012GL051476.
- Yamashita, Y., H. Yakiwara, Y. Asano, H. Shimizu, K. Uchida, S. Hirano, ... and M. Kamizono (2015), Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface, *Science*, 348(6235), 676-679.

188

# **Supplementary 1**

### The catalog of VLFEs in 2005-2012

 Table S1. Occurrence times, locations, magnitudes and source parameters of the 1504

 VLFEs along the Ryukyu trench.

| No.      | Time                             | Log   | Lat          | Mw         | (km)            | $Strike_1$ | $\mathbf{Dip}_1$ | $Rake_1$   | Strike <sub>2</sub> | Dip <sub>2</sub> | Rake <sub>2</sub> | value  | rank   |
|----------|----------------------------------|-------|--------------|------------|-----------------|------------|------------------|------------|---------------------|------------------|-------------------|--------|--------|
| 1        | 20050103064550                   | 133.8 | 31.6         | 4.1        | 50              | 60         | 80               | -30        | 156                 | 61               | -168              | 4      | С      |
| 2<br>3   | 20050103073820                   | 134.0 | 31.0<br>31.2 | 4.5<br>4.4 | 50<br>60        | 55         | 80<br>81         | -70        | 320                 | 60               | -133<br>170       | 3      | Č      |
| 4        | 20050103144749                   | 132.4 | 30.6         | 3.9        | 20              | 225        | 81               | 330        | 320                 | 60               | 190               | 5      | B      |
| 5        | 20050106232344                   | 128.0 | 28.0         | 3.8        | 40              | 40         | 80<br>53         | 170        | 132                 | 80<br>40         | 10                | 5      | B      |
| 7        | 20050112135909                   | 132.0 | 30.4         | 4.0        | 10              | 25         | 53               | 106        | 180                 | 40               | 70                | 5      | B      |
| 8        | 20050112153820                   | 132.0 | 30.6         | 4.0        | 10              | 40         | 60               | 130        | 161                 | 46               | 42                | 5      | В      |
| 9<br>10  | 20050112160000                   | 132.2 | 30.6<br>30.6 | 4.0<br>3.9 | 10<br>60        | 25         | 53<br>80         | 106        | 180<br>288          | 40<br>80         | 70<br>350         | 5<br>4 | B      |
| 11       | 20050113172500                   | 134.0 | 32.0         | 4.3        | 10              | 238        | 75               | -103       | 100                 | 20               | -50               | 4      | Č      |
| 12       | 20050113182500                   | 132.8 | 30.2         | 4.1        | 5               | 280        | 40               | -70        | 75                  | 53               | -106              | 4      | C      |
| 14       | 20050114000005                   | 133.2 | 31.2         | 4.2        | 60              | 60         | 80               | 170        | 152                 | 80               | 10                | 4      | Č      |
| 15       | 20050130111730                   | 130.8 | 30.8         | 3.8        | 5               | 15         | 53               | 74         | 220                 | 40               | 110               | 4      | C      |
| 10       | 20050208171341                   | 127.8 | 25.2<br>32.6 | 3.8<br>3.9 | 30<br>30        | 20         | 80<br>80         | 190        | 288                 | 80<br>80         | 330<br>10         | 5      | B      |
| 18       | 20050208060614                   | 132.4 | 32.0         | 3.7        | 5               | 260        | 50               | 90         | 80                  | 40               | <u>90</u>         | 4      | Ĉ      |
| 19<br>20 | 20050301105211<br>20050301105756 | 124.2 | 23.8         | 3.8<br>3.8 | 20              | 240        | 30<br>30         | 90<br>90   | 60<br>60            | 60<br>60         | 90<br>90          | 8      | A<br>A |
| 21       | 20050301111059                   | 124.2 | 23.8         | 3.9        | 20              | 240        | 30               | 90         | 60                  | 60               | 90                | 8      | A      |
| 22       | 20050301111926                   | 124.2 | 23.8         | 3.7        | 20              | 240        | 30               | 90         | 60<br>50            | 60<br>71         | 90<br>83          | 8      | A      |
| 24       | 20050301112551                   | 124.2 | 23.8         | 3.7        | 20              | 200        | 30               | 90         | 60                  | 60               | 90                | 7      | B      |
| 25       | 20050301120344                   | 124.2 | 23.8         | 3.8        | 20              | 240        | 30               | -90        | 60                  | 60               | -90               | 8      | Ā      |
| 26       | 20050301134123                   | 124.2 | 23.8         | 3.5<br>3.7 | 20              | 240        | 30<br>30         | 90<br>90   | 60<br>60            | 60<br>60         | 90<br>90          | 57     | B      |
| 28       | 20050306123858                   | 125.2 | 23.8         | 4.1        | 20              | 260        | 40               | 150        | 14                  | 71               | 54                | 8      | Ă      |
| 29<br>30 | 20050306124629                   | 125.4 | 23.8         | 4          | 30              | 12         | 61<br>61         | 62<br>62   | 240                 | 40<br>40         | 130               | 8      | A      |
| 31       | 20050306133848                   | 125.4 | 23.8         | 4          | 30              | 12         | 61               | 62         | 240                 | 40               | 130               | 8      | Â      |
| 32       | 20050308161309                   | 127.8 | 25.2         | 4.1        | 30              | 20         | 80               | 190        | 288                 | 80               | 350               | 5      | B      |
| 33<br>34 | 20050318083419                   | 127.4 | 26.2<br>25.2 | 4.2<br>4   | 40<br>10        | 297        | 53               | -106       | 60<br>60            | 90<br>40         | -70               | 3<br>4 | Č      |
| 35       | 20050318165241                   | 128.0 | 25.4         | 4          | 10              | 200        | 60               | 230        | 79                  | 48               | 318               | 5      | B      |
| 36       | 20050325002519                   | 128.2 | 25.4         | 3.8        | 40              | 192        | 80<br>10         | -170       | 100                 | 80               | -10               | 4      | C      |
| 38       | 20050329124249                   | 130.0 | 29.0         | 4.1        | 20              | 20         | 90               | -90        | 194                 | 0                | -96               | 4      | Č      |
| 39       | 20050330211409                   | 129.5 | 28.5         | 4          | 40              | 300        | 20               | 10         | 201                 | 87<br>60         | 110               | 4      | C      |
| 41       | 20050350250909                   | 130.0 | 29.0         | 4.3        | 20              | 20         | 90               | -90        | 194                 | 0                | -96               | 4      | Ċ      |
| 42       | 20050401103910                   | 130.5 | 29.0         | 3.6        | 5               | 62         | 41               | 15         | 320                 | 80               | 130               | 5      | B      |
| 43<br>44 | 20050409071211                   | 122.8 | 23.0<br>23.4 | 3.8<br>3.8 | 20<br>40        | 60<br>60   | 80<br>80         | 210        | 318<br>324          | 41<br>61         | 105<br>348        | 5      | B      |
| 45       | 20050409141656                   | 122.8 | 23.6         | 3.9        | 40              | 58         | 84               | 50         | 320                 | 40               | 170               | 8      | Ã      |
| 46<br>47 | 20050413065000<br>20050420034835 | 127.2 | 25.0         | 4.1<br>4   | 60<br>20        | 254        | $\frac{1}{20}$   | 54<br>110  | 140<br>39           | 40<br>71         | 150<br>83         | 5      | C<br>B |
| 48       | 20050420040628                   | 125.2 | 23.8         | 4.1        | 30              | 12         | 61               | 62         | 240                 | 40               | 130               | 9      | Ă      |
| 49       | 20050420143230                   | 126.8 | 24.8         | 3.6        | 5               | 320        | 20               | 230        | 182                 | 75               | 283               | 4      | C      |
| 51       | 20050427174542<br>20050430073935 | 123.2 | 25.8<br>25.8 | 3.6        | 20              | 40         | 40<br>60         | 90         | 220                 | 30               | 90                | 6      | B      |
| 52       | 20050518043500                   | 123.0 | 23.6         | 3.8        | 40              | 58         | 84               | 50         | 320                 | 40               | 170               | 7      | В      |
| 55<br>54 | 20050519152406                   | 127.8 | 25.4<br>25.6 | 4.1        | 40<br>10        | 20         | 80<br>40         | -90        | 288<br>60           | 80<br>50         | -90               | 8<br>5 | A<br>B |
| 55       | 20050519180226                   | 127.8 | 25.6         | 3.6        | 20              | 279        | 48               | 318        | 40                  | 60               | 230               | 5      | B      |
| 56<br>57 | 20050519181910                   | 128.0 | 25.6         | 3.9        | 40              | 20         | 80               | 30         | 284                 | 61               | 168               | 5      | B      |
| 58       | 20050519104940                   | 128.2 | 25.4         | 3.8        | 20              | 200        | 60               | 50         | 79                  | 45               | 138               | 5      | B      |
| 59       | 20050519214319                   | 128.0 | 25.6         | 3.9        | 20              | 200        | 80               | 10         | 108                 | 80               | 170               | 3      | C      |
| 60<br>61 | 20050521171652                   | 123.0 | 23.0<br>23.8 | 3.8<br>3.6 | 40<br>20        | 220        | 84<br>60         | -10        | 320<br>315          | 40<br>81         | -150              | 6      | B      |
| 62       | 20050526040842                   | 129.0 | 25.2         | 3.9        | 10              | 80         | 60               | 150        | 156                 | 64               | 34                | 5      | B      |
| 63<br>64 | 20050526045343                   | 128.0 | 25.4         | 3.9        | $\frac{10}{20}$ | 268        | 80<br>80         | 350        | 280                 | 80<br>80         | 190<br>170        | 3      | C<br>B |
| 65       | 20050526071605                   | 128.2 | 25.4         | 4.1        | 40              | 12         | 80               | 10         | 280                 | 80               | 170               | 6      | B      |
| 66       | 20050527051541                   | 128.2 | 25.4         | 3.8        | 10              | 200        | 60               | 50         | 79                  | 48               | 138               | 8      | A      |
| 68       | 20050529105441                   | 120.4 | 24.0<br>23.6 | 5.8<br>4   | 40              | 200<br>240 | 80               | -70        | 44<br>336           | 50<br>61         | -121<br>-168      | 2<br>8 | Б<br>А |
| 69       | 20050531130948                   | 122.8 | 23.4         | 3.9        | 40              | 60         | 80<br>80         | 210        | 324                 | 61               | 348               | ĕ      | B      |
| 70<br>71 | 20050531141149<br>20050531185710 | 123.0 | 23.6<br>23.6 | 3.6<br>3.8 | 40<br>60        | 60<br>304  | 80<br>22         | 230<br>153 | 318<br>60           | 41<br>80         | 345<br>70         | 6<br>8 | B      |
| 72       | 20050531190914                   | 123.2 | 23.6         | 3.7        | 60              | 222        | 84               | 310        | 320                 | 40               | 190               | 7      | B      |
| 73       | 20050531214629                   | 123.2 | 23.6         | 3.7        | 60              | 222        | 84               | 130        | 320                 | 40               | 10                | 4      | C      |
| 74<br>75 | 20050531215142                   | 123.2 | 23.6<br>23.4 | 3.9<br>4.1 | 40<br>50        | 58<br>40   | 84<br>80         | 50<br>50   | 300<br>298          | 40<br>41         | 1/0               | 5<br>9 | В<br>А |

| 76<br>77          | 20050601000529<br>20050601115254                    | 123.4 23.4<br>123.6 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.8<br>4.7        | 50<br>50       | 40<br>200         | 80<br>80       | 50<br>-30         | 298<br>296        | 41<br>61       | 165<br>-168       | 9<br>9      | A<br>A      |
|-------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|-------------------|----------------|-------------------|-------------------|----------------|-------------------|-------------|-------------|
| 78<br>79<br>80    | 20050601120041<br>20050601122549<br>20050601122917  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4<br>4<br>4     | 40<br>60<br>50 | 38<br>38<br>40    | 84<br>84<br>80 | 50<br>50<br>30    | 300<br>300<br>304 | 40<br>40<br>61 | 170<br>170<br>168 | 8<br>9<br>9 | A<br>A<br>A |
| 81<br>82          | 20050601124506<br>20050601125732                    | 123.6 23.4<br>123.4 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3<br>3.9        | 40<br>50       | 205<br>35         | 81<br>81       | 330<br>-150       | 300<br>300        | 60<br>60       | 190<br>-10        | 8<br>7      | A<br>B      |
| 83<br>84          | 20050601130629<br>20050601152103                    | 123.4 23.4<br>123.4 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1<br>4.2        | 60<br>40       | 38<br>40          | 84<br>80       | 50<br>50          | 300<br>296        | 40<br>41       | 170<br>165        | 8<br>9      | A<br>A      |
| 85<br>86          | 20050601153640<br>20050605034024                    | 123.4 23.6<br>129.0 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>3.9          | 20<br>10       | 276<br>40         | 36<br>50       | 121<br>90         | 60<br>220         | 60<br>40       | 70<br>90          | 9<br>3      | A<br>C      |
| 87<br>88          | 20050605221457<br>20050605222408                    | 123.4 23.4<br>123.6 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>4.1          | 60<br>20       | 40<br>240         | 80<br>30       | 50<br>-90         | 298<br>60         | 41<br>60       | 165<br>-90        | 7           | B<br>B<br>C |
| 89<br>90<br>01    | 20050606000140<br>20050606004954<br>20050606220246  | 123.0 23.0<br>123.4 23.4<br>123.6 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8<br>3.8<br>3.6 | 20<br>50<br>20 | 276<br>276<br>276 | 36<br>36       | 121<br>121<br>121 | 60<br>60          | 60<br>60       | 70<br>70<br>70    | 4<br>4<br>7 | C<br>C<br>B |
| 91<br>92<br>03    | 200506000220240<br>20050607042552<br>20050608054559 | 123.6 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6<br>3.9        | 20<br>20<br>10 | 270<br>280<br>268 | 40<br>80       | 121<br>110<br>350 | 75<br>0           | 53<br>80       | 70<br>74<br>190   | 6           | B           |
| 94<br>95          | 20050609025804<br>20050611213919                    | $129.0 20.0 \\ 131.0 29.0 \\ 129.4 26.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7<br>3.7        | 20<br>10       | 40<br>245         | 80<br>53       | -10<br>106        | 132<br>40         | 80<br>40       | -170<br>70        | 55          | B<br>B      |
| 96<br>97          | 20050612184440<br>20050612184825                    | 128.2 25.8<br>128.2 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6<br>3.6        | 20<br>20       | 240<br>240        | 40<br>40       | 70<br>70          | 85<br>85          | 53<br>53       | 106<br>106        | 7<br>7      | B<br>B      |
| 98<br>99          | 20050613134000<br>20050613152316                    | 127.4 24.6<br>127.6 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3<br>4          | 5<br>30        | 296<br>60         | 22<br>80       | -153<br>10        | 180<br>326        | 80<br>80       | -70<br>170        | 5<br>8      | B<br>A      |
| 100               | 20050621032500<br>20050621104929<br>20050621110512  | $126.6  24.4 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  23.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.2  25.8 \\ 125.$ | 3.6<br>4          | 10<br>20       | 16<br>260         | 61<br>40       | -168<br>150       | 280<br>14         | 80<br>71       | -30<br>54         | 6<br>8      | B<br>A      |
| 102               | 20050623065757                                      | $125.2  25.8 \\ 128.2  25.8 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  24.6 \\ 126.4  25.6 \\ 126.4  25.6 \\ 126.4  24.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.4  26.6 \\ 126.$ | 4<br>3.6          | 20<br>20<br>40 | 40<br>260<br>60   | 60<br>40<br>80 | 90<br>90<br>10    | 220<br>80<br>152  | 50<br>50       | 90<br>90<br>170   | 8<br>5<br>5 | A<br>B<br>B |
| 104               | 20050629100140<br>20050629150808<br>20050702200956  | 126.4 24.0<br>126.4 24.8<br>128.6 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>4.1<br>3.7 | 40<br>30<br>40 | 300<br>300        | 40<br>20       | -30<br>170        | 54<br>39          | 71<br>87       | -126<br>70        | 5<br>4      | B<br>C      |
| 107<br>108        | 20050702201825<br>20050702211205                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7<br>3.6        | 10<br>30       | 40<br>34          | 70<br>64       | 90<br>326         | 220<br>140        | 20<br>60       | 90<br>210         | 5<br>7      | B<br>B      |
| 109<br>110        | 20050702212052<br>20050703053007                    | 130.0 28.0<br>130.0 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5<br>3.7        | 30<br>20       | 34<br>40          | 64<br>60       | 146<br>-30        | 140<br>146        | 60<br>64       | 30<br>-146        | 7<br>7      | B<br>B      |
| 111<br>112        | 20050703054752<br>20050704071130                    | 129.5 28.5<br>123.2 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6<br>4.2        | 10<br>5        | 46<br>20          | 64<br>60       | 34<br>-70         | 300<br>164        | 60<br>36       | 150<br>-121       | 4<br>3      | C<br>C      |
| 113               | 20050713091043<br>20050715085500<br>20050724064112  | 130.5 29.0<br>132.0 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6               | 5<br>30        | 64<br>280<br>200  | 61<br>20       | 348<br>170        | 160<br>19<br>70   | 80<br>87       | 210<br>70         | 4<br>4      | C<br>C<br>D |
| 115<br>116<br>117 | 20050724064115<br>20050724065019<br>20050724065618  | 128.0 23.4<br>127.8 25.4<br>127.8 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1<br>3.9        | 20<br>30       | 200<br>20<br>20   | 80<br>80       | 190<br>10         | 288<br>288        | 48<br>80<br>80 | 138<br>350<br>170 | 0<br>4<br>6 | D<br>C<br>B |
| 118<br>119        | 20050724005018                                      | 127.8 25.4 127.8 25.4 127.8 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7<br>3.8        | 30<br>30       | 20<br>20<br>20    | 80<br>80       | 190<br>190        | 288<br>288<br>288 | 80<br>80       | 350<br>350        | 4<br>6      | C<br>B      |
| 120<br>121        | 20050724074516<br>20050807180609                    | 128.2 25.4<br>125.0 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>3.9          | 20<br>10       | 192<br>62         | 80<br>75       | -170<br>103       | 100<br>200        | 80<br>20       | -10<br>50         | 5<br>7      | B<br>B      |
| 122<br>123        | 20050807181213<br>20050812073549                    | 125.2 23.8<br>129.6 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9<br>4.1        | 20<br>50       | 20<br>80          | 60<br>60       | 70<br>150         | 236<br>186        | 36<br>64       | 121<br>34         | 7<br>4      | B<br>C      |
| 124<br>125        | 20050814093500<br>20050817235230                    | 130.0 25.4<br>129.2 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9<br>3.9        | 60<br>30       | 194<br>300        | 71<br>60       | -126<br>-90       | 80<br>120         | 40<br>30       | -30<br>-90        | 3           | C<br>C<br>C |
| 120<br>127<br>128 | 20050822221404<br>20050825203943<br>20050826000712  | 130.0 23.4<br>127.4 24.4<br>127.8 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.9<br>4.3<br>3.0 | 5<br>30        | 20<br>300<br>20   | 90<br>20<br>80 | 210<br>10         | 194<br>182<br>288 | 80<br>80       | 04<br>287<br>170  | 5<br>6<br>6 | B           |
| 129               | 20050826000712<br>20050826001642<br>20050826010703  | 127.8 25.4<br>128.0 25.2<br>127.8 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1<br>3.8        | 30<br>20       | 200<br>200<br>200 | 80<br>80       | 210<br>190        | 104<br>108        | 61<br>80       | 348<br>360        | 4<br>5      | C<br>B      |
| 131<br>132        | 20050827101000<br>20050831093339                    | 130.0 27.0<br>129.0 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3<br>3.8        | 5<br>30        | 1<br>360          | 48<br>20       | 42<br>50          | 240<br>222        | 60<br>75       | 130<br>103        | 5<br>4      | В<br>С      |
| 133<br>134        | 20050902051925<br>20050902174401                    | 122.8 23.6<br>124.2 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9<br>3.5        | 20<br>20       | 60<br>240         | 80<br>40       | 50<br>110         | 318<br>35         | 41<br>53       | 165<br>74         | 9<br>7      | A<br>B      |
| 135<br>136<br>127 | 20050902175301<br>20050907063140<br>20050909051142  | 124.4 23.6<br>131.5 28.5<br>127.6 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7<br>3.8        | 20<br>5<br>20  | 62<br>200         | 40<br>80<br>48 | /0<br>287<br>218  | 65<br>180<br>60   | 53<br>20       | 106<br>210<br>230 | 6<br>5<br>6 | B           |
| 137               | 20050909051142<br>20050915121628<br>20050915132025  | 127.0 23.0<br>122.2 23.6<br>122.4 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5<br>3.4        | 10<br>10       | 299<br>272<br>254 | 40<br>61<br>71 | 62<br>54          | 140<br>140        | 40<br>40       | 130<br>150        | 5           | B<br>B      |
| 140<br>141        | 20050915205248<br>20050915205248<br>20050915205500  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4<br>3.4        | 30<br>20       | 80<br>78          | 80<br>84       | 230<br>50         | 338<br>340        | 41<br>40       | 345<br>170        | 3           | Č<br>B      |
| 142<br>143        | 20050915212945<br>20050916002004                    | 122.8 23.8<br>122.8 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6<br>3.6        | 20<br>30       | 50<br>240         | 80<br>80       | 50<br>-10         | 338<br>332        | 41<br>80       | 165<br>-170       | 7<br>7      | B<br>B      |
| 144<br>145        | 20050916064929<br>20050916070546                    | 122.8 23.6<br>122.8 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7<br>3.8        | 40<br>30       | 58<br>60          | 84<br>80       | 50<br>30          | 320<br>324        | 40<br>61       | 170<br>168        | 6<br>8      | B<br>A      |
| 146               | 20050918233008<br>20050919050232<br>20050025204617  | 123.2 23.4<br>127.0 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7<br>4.1        | 30<br>5<br>20  | 200<br>300        | 80<br>20       | -10<br>210        | 292<br>182        | 80<br>80<br>50 | -170<br>287       | 5           | B           |
| 140<br>149<br>150 | 20050925204017<br>20051029005204<br>20051101153730  | 124.0 20.0<br>130.0 29.0<br>127.4 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4<br>3.8<br>4   | 20<br>5        | 32<br>340         | 40<br>80<br>30 | 90<br>10<br>-90   | 300<br>160        | 50<br>80<br>60 | 90<br>170<br>-90  | 5<br>7<br>6 | B<br>B      |
| 151<br>152        | 20051105000410<br>20051105002030                    | 132.8 31.2<br>130.2 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0<br>3.6        | 10<br>10       | 259<br>320        | 71<br>20       | -97<br>30         | 100<br>202        | 20<br>80       | -70<br>107        | 4<br>5      | Č<br>B      |
| 153<br>154        | 20051109075447<br>20051109075930                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7<br>3.5        | 20<br>20       | 240<br>240        | 40<br>30       | 110<br>-90        | 35<br>60          | 53<br>60       | 74<br>-90         | 8<br>7      | Ã<br>B      |
| 155<br>156        | 20051109081122<br>20051109091019<br>20051100001518  | 124.2 23.8<br>124.2 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9<br>3.8        | 20<br>20       | 240<br>240        | 30<br>30       | -90<br>90         | 60<br>60          | 60<br>60       | -90<br>90         | 8<br>8<br>7 | A<br>A<br>P |
| 157               | 20051109091518                                      | 124.2 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6               | 20             | 240               | 30             | -90               | 60                | 60             | -90               | Ĩ           | B           |

| 1590112011101111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20051109132820<br>20051109135113<br>20051109152125<br>20051109152125<br>20051109123227<br>200511091232829<br>20051114161820<br>2005111416540<br>2005111416540<br>2005111416540<br>2005111416540<br>2005111416540<br>20051115095450<br>20051115095450<br>20051115195450<br>20051115133603<br>20051115133603<br>20051115133603<br>2005111517230<br>2005111517230<br>20051116165106<br>20051118171148<br>20051119185032<br>20051206172640<br>20051206172640<br>2005120613229<br>20051206204410<br>2005120613421<br>20051207071002<br>20051207074400<br>20051207074400<br>20051207074400<br>20051207074400<br>20051207074400<br>20051207074400<br>20051207074400<br>20051207074400<br>20051207074414<br>2005120703454<br>2005121012356<br>2005121012356<br>2005121012356<br>2005121102100<br>2005121102356<br>200512110230607<br>20051214030607<br>20051214030607<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>20051214430607<br>20051214430607<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121443405<br>2005121442051244050<br>2005121443405<br>2005121443405<br>2005121443405<br>20 |
| 124.2 $23.8$ $124.2$ $23.8$ $124.2$ $23.8$ $124.2$ $23.8$ $124.2$ $23.8$ $124.2$ $23.8$ $125.2$ $23.8$ $125.4$ $23.8$ $127.5$ $24.8$ $127.4$ $24.6$ $127.4$ $24.6$ $127.4$ $24.6$ $127.4$ $24.6$ $127.4$ $24.6$ $127.4$ $24.6$ $127.4$ $24.6$ $127.4$ $24.6$ $127.8$ $25.2$ $127.0$ $24.2$ $127.8$ $25.4$ $129.0$ $27.0$ $129.0$ $27.0$ $129.0$ $27.0$ $130.5$ $29.0$ $130.0$ $29.5$ $130.0$ $29.5$ $130.0$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $123.4$ $23.4$ </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 3.89\\ 3.76\\ 3.89\\ 4\\ 4\\ 3.99\\ 4.4\\ 3.89\\ 4.4\\ 3.89\\ 4.4\\ 3.89\\ 4.4\\ 3.89\\ 4.4\\ 3.89\\ 4.4\\ 3.89\\ 4.4\\ 3.89\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 4.9\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 4.8\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.4\\ 3.8\\ 4.$            |
| $\begin{array}{c} 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 30\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 260\\ 12\\ 279\\ 268\\ 296\\ 296\\ 296\\ 296\\ 296\\ 200\\ 240\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} -90\\ -90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 150\\ 62\\ 318\\ 150\\ 165\\ -153\\ 27\\ -153\\ 150\\ 146\\ -30\\ 350\\ 170\\ 230\\ -20\\ -163\\ 170\\ 230\\ -20\\ -163\\ 170\\ 230\\ -20\\ -10\\ 100\\ -90\\ 107\\ -153\\ 110\\ 10\\ -90\\ -10\\ 100\\ -10\\ -90\\ -10\\ 130\\ 121\\ 150\\ -90\\ -10\\ -10\\ -90\\ 130\\ 121\\ 150\\ -90\\ -10\\ 130\\ 121\\ 150\\ -90\\ -10\\ -10\\ -90\\ 130\\ 121\\ 150\\ -90\\ -10\\ -90\\ 130\\ 121\\ 150\\ -90\\ -10\\ -90\\ 130\\ 121\\ 150\\ -90\\ -70\\ 50\\ 333\\ 230\\ 333\\ -10\\ 62\\ 21\\ 90\\ 100\\ 100\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 30\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 60\\ 60\\ 60\\ 60\\ 60\\ 14\\ 240\\ 40\\ 356\\ 0\\ 180\\ 180\\ 180\\ 180\\ 180\\ 120\\ 182\\ 220\\ 180\\ 180\\ 180\\ 152\\ 194\\ 340\\ 152\\ 182\\ 200\\ 152\\ 60\\ 52\\ 60\\ 50\\ 300\\ 38\\ 40\\ 298\\ 40\\ 298\\ 40\\ 298\\ 40\\ 220\\ 35\\ 288\\ 288\\ 12\\ 240\\ 108\\ 200\\ 35\\ 288\\ 288\\ 12\\ 240\\ 108\\ 200\\ 35\\ 288\\ 288\\ 288\\ 12\\ 240\\ 108\\ 200\\ 35\\ 288\\ 288\\ 288\\ 288\\ 288\\ 288\\ 288\\ 28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 71\\ 40\\ 60\\ 61\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} -90\\ -90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 54\\ 130\\ 230\\ 12\\ 50\\ -70\\ 110\\ -70\\ 12\\ 30\\ -100\\ -70\\ 83\\ -109\\ -30\\ -90\\ 30\\ -70\\ -83\\ 150\\ -90\\ -90\\ 30\\ -70\\ -83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 83\\ 150\\ -90\\ -70\\ 10\\ -170\\ -90\\ 62\\ 70\\ -170\\ -168\\ -10\\ 10\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 110\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 70\\ 90\\ 100\\ -90\\ 100\\ -90\\ 100\\ -90\\ 100\\ -90\\ 100\\ -90\\ 100\\ -90\\ 100\\ -90\\ 100\\ -90\\ -90\\ -90\\ -90\\ -90\\ -90\\ -90\\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7788889577587665444557633454454444765554534335443397847447854469973645655645476544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BBAAAAABBBBBABBBBCCCBBBBBBCCCBCCBCCBBBBBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20060127040830<br>2006021301319<br>2006021301319<br>2006021301419<br>20060213014019<br>20060213014019<br>20060213014019<br>20060218045050<br>20060218045050<br>20060218045050<br>20060218045050<br>20060218045050<br>20060218045050<br>20060219040133<br>2006022071050<br>2006022071050<br>2006022071050<br>2006022071050<br>2006022071050<br>200602207161306<br>200603006181721<br>20060307034135<br>20060329155311<br>20060329155311<br>20060329155311<br>20060329155311<br>2006032915531<br>20060401024709<br>20060401024709<br>20060401024709<br>20060401024709<br>20060401024709<br>20060403043953<br>20060403043953<br>20060403043953<br>20060403043953<br>20060410024709<br>20060414062037<br>20060417090133<br>20060417090133<br>20060418042309<br>20060418042409<br>20060418042409<br>20060418042409<br>20060418042409<br>20060418042409<br>20060418042409<br>2006042210910<br>2006042210911<br>2006042210914<br>2006042210914<br>2006042210914<br>2006042210914<br>2006050306460<br>2006050306460<br>2006050306460<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>20060503064726<br>2006077203870<br>2006077203870<br>2006077203870<br>2006077203870<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>2006072303702<br>20 |
| 128.025.4128.025.4125.423.8129.528.0124.623.6124.224.0129.028.0123.223.6122.823.4122.823.4122.823.6123.023.6123.023.6123.023.6123.023.6123.023.6123.023.6123.028.0131.528.5129.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0131.031.5130.230.6132.230.6132.230.6132.323.6123.823.6123.823.6123.823.6123.823.6123.232.4123.232.4132.032.4132.032.4132.232.4132.025.6128.225.4128.225.4128.225.4128.223.8124.223.8124.223.8124.223.8124.223.8124.2 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 4\\ 4\\ 3.96\\ 3.35\\ 3.4\\ 3.999\\ 3.7\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 20\\ 30\\ 20\\ 30\\ 10\\ 5\\ 40\\ 40\\ 40\\ 20\\ 5\\ 20\\ 5\\ 30\\ 30\\ 20\\ 10\\ 40\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 220\\ 12\\ 260\\ 40\\ 300\\ 280\\ 299\\ 58\\ 60\\ 58\\ 240\\ 254\\ 12\\ 260\\ 20\\ 348\\ 34\\ 358\\ 12\\ 12\\ 240\\ 45\\ 235\\ 240\\ 260\\ 200\\ 25\\ 8\\ 8\\ 20\\ 180\\ 200\\ 25\\ 8\\ 8\\ 200\\ 192\\ 15\\ 209\\ 300\\ 260\\ 40\\ 260\\ 344\\ 242\\ 240\\ 200\\ 20\\ 20\\ 200\\ 20\\ 200\\ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 80 \\ 61 \\ 40 \\ 80 \\ 20 \\ 248 \\ 84 \\ 80 \\ 20 \\ 248 \\ 84 \\ 80 \\ 20 \\ 20 \\ 48 \\ 84 \\ 80 \\ 20 \\ 20 \\ 64 \\ 41 \\ 80 \\ 80 \\ 80 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 10 \\ 62 \\ 150 \\ 190 \\ 50 \\ -10 \\ 170 \\ 318 \\ 50 \\ 30 \\ 50 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\$                                                                          |
| $\begin{array}{c} 128\\ 240\\ 14\\ 308\\ 278\\ 39\\ 19\\ 60\\ 320\\ 324\\ 320\\ 320\\ 324\\ 320\\ 320\\ 320\\ 320\\ 320\\ 320\\ 320\\ 280\\ 320\\ 280\\ 320\\ 200\\ 140\\ 140\\ 280\\ 336\\ 200\\ 140\\ 142\\ 52\\ 52\\ 246\\ 342\\ 35\\ 34\\ 164\\ 122\\ 90\\ 100\\ 272\\ 168\\ 200\\ 120\\ 299\\ 14\\ 220\\ 280\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 122\\ 272\\ 168\\ 80\\ 200\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 14\\ 220\\ 280\\ 140\\ 120\\ 299\\ 140\\ 220\\ 280\\ 140\\ 120\\ 299\\ 140\\ 220\\ 280\\ 140\\ 120\\ 299\\ 140\\ 220\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 120\\ 120\\ 280\\ 140\\ 120\\ 280\\ 120\\ 120\\ 280\\ 140\\ 120\\ 280\\ 120\\ 120\\ 280\\ 140\\ 120\\ 280\\ 120\\ 120\\ 280\\ 140\\ 120\\ 280\\ 140\\ 120\\ 280\\ 120\\ 120\\ 280\\ 140\\ 120\\ 280\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 80\\ 40\\ 71\\ 80\\ 41\\ 87\\ 87\\ 60\\ 40\\ 61\\ 40\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 170\\ 130\\ 54\\ 350\\ 165\\ -110\\ 70\\ 230\\ 170\\ 168\\ 170\\ -168\\ 170\\ -168\\ -30\\ 170\\ -168\\ -30\\ 170\\ -168\\ -90\\ -10\\ 168\\ -90\\ -10\\ 168\\ -90\\ -10\\ 168\\ -90\\ -10\\ 168\\ 190\\ 190\\ -165\\ -170\\ 348\\ 170\\ -10\\ 170\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ 50\\ -90\\ -100\\ -10\\ 345\\ -90\\ -100\\ -10\\ 345\\ -90\\ -100\\ -10\\ 345\\ -90\\ -100\\ -10\\ -10\\ 345\\ -90\\ -100\\ -10\\ -10\\ -10\\ 345\\ -90\\ -100\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10\\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 39955445888974476465665345778547864354366876554469568543389949367453436677888835456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| СААВВССВААААВССВВСВВВВВВССВВВАВСВАВССВСС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 2345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789001234567890012345678900123458688888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20060726101749<br>20060730185058<br>20060805235614<br>20060806005614<br>20060806005614<br>20060806023623<br>20060806023362<br>20060806023362<br>20060806023382<br>20060806155844<br>20060806150238<br>20060807120640<br>200608080805050<br>200608080805552<br>2006080808081555<br>2006080808081555<br>2006080808081555<br>20060808080933<br>2006080809341<br>2006080809341<br>20060808093520<br>2006080809341<br>20060808093520<br>20060808093410<br>200608080935320<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060808122257<br>20060813124228<br>20060813124228<br>20060813124228<br>20060813124228<br>20060813124228<br>20060813124228<br>20060814041320<br>2006081404523<br>2006081404523<br>2006081404523<br>20060814145439<br>20060814145439<br>200608112044<br>20060831205537<br>20060831205537<br>20060831215656<br>20060902044832<br>20060912104801<br>20060912105813<br>20060912105813<br>20060912104801<br>20060912105813<br>20060912105813<br>2006091204813<br>2006091204813<br>2006091204813<br>2006091205528<br>20061012101536<br>2006101210313<br>20061016122352<br>20061012101536<br>2006101210313<br>20061016125528<br>200610161032959<br>20061016103129<br>200610161235528<br>20061016103129<br>200610161235528<br>20061016103129<br>200610161235528<br>200610161032959<br>20061016124352<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439<br>2006101612439 |
| 127.825.4127.825.2127.825.4127.825.4127.825.4128.025.4127.825.4127.825.4127.825.4127.825.4127.825.4127.825.4127.825.4123.623.8123.423.4123.623.8123.423.8123.423.8123.423.8123.423.8123.423.4123.423.4123.423.4123.423.4123.423.4123.423.4123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6123.623.6130.029.0130.029.0130.029.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.028.0130.0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 3.8\\ 3.9\\ 4.4\\ 4.2\\ 4.3\\ 4.4\\ 4.3\\ 4.4\\ 4.3\\ 4.4\\ 4.3\\ 3.4\\ 4.4\\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 40\\ 40\\ 20\\ 40\\ 40\\ 20\\ 20\\ 30\\ 40\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 20\\ 40\\ 40\\ 50\\ 20\\ 40\\ 40\\ 50\\ 50\\ 50\\ 20\\ 30\\ 20\\ 20\\ 30\\ 20\\ 20\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 32\\ 20\\ 20\\ 20\\ 20\\ 200\\ 200\\ 200\\ 200\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} -170\\ 190\\ 10\\ 10\\ 10\\ 10\\ 10\\ 190\\ 138\\ 50\\ 30\\ -10\\ 190\\ 230\\ 50\\ 153\\ 230\\ 230\\ 230\\ 230\\ 230\\ 230\\ 230\\ 23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 300<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>299<br>299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} -10\\ 350\\ 170\\ 170\\ 170\\ 350\\ 50\\ 138\\ 168\\ -170\\ 318\\ 170\\ 70\\ 345\\ 70\\ 97\\ 77\\ 250\\ 345\\ 345\\ -103\\ 250\\ 345\\ -103\\ 165\\ 54\\ -103\\ 165\\ 345\\ -103\\ 165\\ 345\\ -103\\ 165\\ 345\\ -103\\ 165\\ 345\\ -103\\ 165\\ 345\\ -103\\ 168\\ 54\\ -30\\ 50\\ -170\\ 30\\ 190\\ 190\\ 34\\ 34\\ 210\\ 168\\ 54\\ -30\\ 50\\ -10\\ 121\\ 350\\ 30\\ -90\\ -10\\ 168\\ 74\\ 74\\ 350\\ 170\\ 30\\ -10\\ 168\\ 74\\ 74\\ 350\\ 170\\ 30\\ -10\\ 168\\ 74\\ 74\\ 350\\ 30\\ -30\\ 350\\ 54\\ -10\\ 350\\ -10\\ 168\\ -10\\ 350\\ -10\\ 168\\ -10\\ -10\\ 168\\ -10\\ -10\\ 168\\ -10\\ -10\\ 168\\ -10\\ -10\\ -10\\ 168\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4644793747648476676868666788949934556564635456675589938334446545996687778977666559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| СВССВАСВСВВСАСВВВВВАВАВАВВВВАСААССВВВВВВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| $\begin{array}{l} 444444444444444444444444444444444444$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20061111114500<br>20061114034602<br>20061115024234<br>20061116190355<br>20061117132736<br>20061118043028<br>20061118043028<br>20061118043028<br>200611120041239<br>20061120041239<br>20061120041239<br>20061120043036<br>200611200452910<br>20061120053710<br>20061120053710<br>2006112015329<br>20061202135857<br>20061202142259<br>20061202142259<br>20061202142259<br>20061202142259<br>200612021424509<br>2006120214259<br>2006120416426<br>2006120416426<br>2006120416426<br>2006120416426<br>2006120416426<br>2006120416426<br>2006120416426<br>2006120416426<br>20061213124145<br>2006123113550<br>20070112050502<br>20070112055350<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>2007011205502<br>20070218012611<br>20070218012611<br>20070218021436<br>20070228190833<br>20070228192640<br>20070218012611<br>20070218021436<br>20070218012611<br>20070218021436<br>20070218012611<br>20070218021436<br>2007021802436<br>2007021802436<br>2007021802436<br>20070218022430<br>200705070302155742<br>20070302155742<br>20070302155742<br>2007050703031303<br>2007050301303<br>2007050301303<br>2007050301303<br>2007050301303<br>200705070405726<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>20070517053352<br>2007051705               |
| 125.4 $23.8$ $130.0$ $28.5$ $130.5$ $29.5$ $123.6$ $23.4$ $133.2$ $32.8$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $123.8$ $23.6$ $127.8$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.6$ $127.8$ $25.4$ $128.0$ $25.6$ $127.8$ $25.4$ $128.0$ $25.6$ $127.8$ $25.4$ $128.0$ $25.6$ $122.2$ $22.4$ $125.2$ $23.8$ $126.0$ $24.6$ $122.2$ $22.4$ $125.4$ $23.8$ $128.6$ $26.0$ $128.2$ $25.6$ $128.2$ $25.6$ $128.4$ $23.6$ $124.2$ $23.8$ $126.0$ $24.6$ $124.2$ $23.8$ $126.0$ $24.6$ $124.2$ $23.8$ $126.2$ $23.8$ $126.2$ $23.8$ $126.2$ $23.8$ </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 4.1\\ 3.9\\ 4.1\\ 3.9\\ 4.1\\ 3.3\\ 4.4\\ 3.9\\ 3.9\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 30\\ 5\\ 40\\ 40\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 12\\ 256\\ 20\\ 200\\ 40\\ 279\\ 280\\ 202\\ 280\\ 260\\ 280\\ 260\\ 280\\ 260\\ 280\\ 200\\ 260\\ 296\\ 12\\ 20\\ 200\\ 260\\ 40\\ 15\\ 0\\ 248\\ 260\\ 260\\ 40\\ 259\\ 56\\ 240\\ 276\\ 240\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 62\\ 12\\ 150\\ -30\\ -70\\ 318\\ 130\\ 130\\ 121\\ -30\\ 130\\ 110\\ 121\\ 130\\ 10\\ 190\\ 10\\ 230\\ -30\\ -153\\ -170\\ 10\\ 300\\ 170\\ 210\\ 230\\ -30\\ -153\\ -170\\ 10\\ 300\\ 170\\ 210\\ 230\\ -30\\ -153\\ -170\\ 10\\ 300\\ 100\\ -90\\ -146\\ 350\\ 150\\ 62\\ 70\\ 50\\ 130\\ 10\\ -90\\ -146\\ 350\\ 150\\ 62\\ 70\\ 50\\ 130\\ 120\\ 30\\ 300\\ 150\\ 333\\ 62\\ -30\\ 310\\ 126\\ 30\\ 90\\ 90\\ 121\\ 10\\ 90\\ -90\\ -74\\ 318\\ 326\\ 10\\ 310\\ 126\\ 30\\ 90\\ 90\\ 121\\ 10\\ 90\\ -90\\ -74\\ 318\\ 326\\ 10\\ 310\\ 126\\ 30\\ 90\\ 90\\ 121\\ 10\\ 90\\ -90\\ -74\\ 318\\ 326\\ 10\\ 318\\ 326\\ 10\\ 318\\ 326\\ 10\\ 318\\ 326\\ 318\\ 326\\ 10\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326\\ 318\\ 326$ |
| $\begin{array}{c} 240\\ 160\\ 126\\ 296\\ 156\\ 40\\ 52\\ 300\\ 52\\ 60\\ 106\\ 52\\ 58\\ 59\\ 65\\ 300\\ 288\\ 288\\ 79\\ 18\\ 6\\ 180\\ 288\\ 102\\ 94\\ 300\\ 328\\ 220\\ 160\\ 300\\ 328\\ 220\\ 160\\ 300\\ 328\\ 220\\ 160\\ 300\\ 328\\ 220\\ 160\\ 300\\ 328\\ 220\\ 200\\ 180\\ 280\\ 120\\ 280\\ 180\\ 280\\ 220\\ 220\\ 260\\ 180\\ 180\\ 280\\ 220\\ 220\\ 260\\ 180\\ 180\\ 280\\ 220\\ 220\\ 200\\ 180\\ 280\\ 220\\ 200\\ 280\\ 220\\ 200\\ 280\\ 180\\ 280\\ 220\\ 200\\ 200\\ 280\\ 180\\ 280\\ 200\\ 280\\ 220\\ 200\\ 200\\ 280\\ 180\\ 280\\ 200\\ 280\\ 200\\ 200\\ 280\\ 200\\ 280\\ 200\\ 280\\ 200\\ 280\\ 200\\ 280\\ 200\\ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 40\\ 80\\ 64\\ 12\\ 20\\ 61\\ 40\\ 61\\ 60\\ 61\\ 75\\ 71\\ 60\\ 10\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 130\\ 150\\ 34\\ -163\\ 230\\ 62\\ 190\\ 62\\ 70\\ -146\\ 62\\ 77\\ 83\\ 70\\ -10\\ 170\\ 350\\ 170\\ 350\\ 170\\ 318\\ 283\\ -146\\ -70\\ -10\\ 170\\ 168\\ 10\\ 27\\ 190\\ -30\\ 190\\ -30\\ 190\\ -30\\ 190\\ -30\\ 190\\ -30\\ 190\\ -30\\ 106\\ 50\\ 70\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -146\\ 130\\ 90\\ -106\\ 50\\ 70\\ 90\\ -146\\ 130\\ 90\\ -106\\ 230\\ -146\\ 130\\ 90\\ -106\\ 230\\ -146\\ 130\\ 90\\ -106\\ 230\\ -146\\ 130\\ 90\\ -106\\ 230\\ 230\\ 250\\ 250\\ 250\\ 250\\ 250\\ 250\\ 250\\ 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 75594568785656983455454977676376548957644466544565488646383435575654555444473478844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BBBACBBABABBBBAACCBBCBBCBCABBBBCBBBBCAABBBCCCBBBBCCABBBCAABCBCACCCBBBBBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20070623161139<br>2007062611344<br>2007062611344<br>20070628022910<br>20070628022910<br>20070628022910<br>20070628022910<br>20070708031416<br>20070708031416<br>20070709103930<br>20070710084538<br>20070710204919<br>20070720074119<br>2007072017195809<br>20070721195809<br>20070731065125<br>20070731065636<br>20070731065636<br>200707310752<br>20070815155839<br>20070815155839<br>20070815155839<br>20070815155839<br>20070815155839<br>20070815161127<br>20070822172140<br>20070822172140<br>20070825121740<br>2007095234614<br>20070911033010<br>20070911033840<br>20070911033840<br>20070911033840<br>20070911033840<br>20070911033840<br>20070911033840<br>2007102803809<br>2007102803809<br>2007102803809<br>20071028041023<br>20071028044023<br>20071028044657<br>20071109180505<br>20071109180505<br>20071109210612<br>20071109210612<br>20071109210612<br>2007110923935<br>200711002625<br>2007111004204<br>20071109210612<br>200711092395<br>2007111004225<br>2007111004225<br>2007111004225<br>2007111004225<br>20071110045128<br>20071201093702<br>2007120109457<br>2007120109457<br>2007120109457<br>2007120109457<br>2007120109452<br>2007120109452<br>2007120109452<br>2007120109452<br>2007120109452<br>2007120109452<br>2007120109452<br>2007120100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100755<br>2007120100708<br>2007120100708<br>2007120100265<br>20071110042245<br>20071110045218<br>20071201093702<br>2007120109457<br>2007120100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>20071201100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>2007120100708<br>200712000708<br>20071200070 |
| 129.626.6127.825.2129.027.0129.626.6129.226.8129.626.6129.027.0129.827.8129.027.0129.827.8130.227.6128.226.0123.223.4128.627.0128.423.8125.423.8125.423.8125.423.8126.424.8128.025.2128.425.4123.823.6130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.4128.225.4128.423.4123.623.4123.623.4123.423.4123.423.8124.223.8124.2 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 4\\ 4.392\\ 4.333\\ 3.333\\ 3.4\\ 4.4\\ 4.4\\ 4.4\\ 4.4\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 10\\ 30\\ 10\\ 30\\ 10\\ 5\\ 10\\ 5\\ 5\\ 20\\ 20\\ 5\\ 20\\ 10\\ 5\\ 30\\ 30\\ 10\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 245\\ 20\\ 0\\ 60\\ 245\\ 85\\ 278\\ 260\\ 42\\ 20\\ 266\\ 60\\ 0\\ 312\\ 12\\ 12\\ 60\\ 256\\ 194\\ 280\\ 280\\ 40\\ 220\\ 214\\ 20\\ 260\\ 276\\ 276\\ 40\\ 40\\ 240\\ 280\\ 200\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 53\\ 80\\ 40\\ 80\\ 53\\ 81\\ 53\\ 75\\ 80\\ 60\\ 40\\ 61\\ 61\\ 61\\ 80\\ 40\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 286\\ 10\\ 230\\ -10\\ 286\\ 150\\ 106\\ -103\\ 150\\ 103\\ -90\\ -146\\ 30\\ 50\\ 30\\ 62\\ 62\\ 62\\ 170\\ -166\\ 301\\ 54\\ 150\\ -70\\ 146\\ -30\\ 150\\ 70\\ -10\\ 150\\ -70\\ 146\\ -30\\ 150\\ 70\\ -10\\ 50\\ 210\\ 121\\ 301\\ 50\\ 50\\ 333\\ 230\\ 153\\ -90\\ 30\\ 74\\ 190\\ -50\\ 90\\ -90\\ -90\\ -90\\ 90\\ -90\\ -90\\ 90\\ -90\\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 40\\ 288\\ 228\\ 152\\ 40\\ 180\\ 40\\ 140\\ 356\\ 161\\ 180\\ 200\\ 160\\ 314\\ 239\\ 226\\ 240\\ 240\\ 240\\ 240\\ 240\\ 152\\ 280\\ 200\\ 80\\ 34\\ 52\\ 52\\ 199\\ 186\\ 140\\ 146\\ 146\\ 146\\ 146\\ 284\\ 200\\ 280\\ 298\\ 40\\ 200\\ 298\\ 40\\ 298\\ 40\\ 298\\ 40\\ 200\\ 60\\ 220\\ 60\\ 162\\ 298\\ 40\\ 298\\ 40\\ 200\\ 200\\ 60\\ 220\\ 60\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 240\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 162\\ 181\\ 181\\ 181\\ 181\\ 181\\ 181\\ 181\\ 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 40\\ 80\\ 61\\ 80\\ 40\\ 20\\ 61\\ 82\\ 50\\ 60\\ 48\\ 71\\ 40\\ 40\\ 80\\ 60\\ 40\\ 71\\ 61\\ 61\\ 71\\ 60\\ 64\\ 48\\ 60\\ 60\\ 81\\ 40\\ 80\\ 71\\ 40\\ 60\\ 60\\ 41\\ 48\\ 40\\ 80\\ 80\\ 80\\ 57\\ 50\\ 60\\ 40\\ 60\\ 80\\ 20\\ 40\\ 71\\ 80\\ 71\\ 80\\ 84\\ 81\\ 60\\ 71\\ 40\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 250\\ 170\\ 298\\ -170\\ 298\\ -170\\ 250\\ 10\\ 70\\ -50\\ 12\\ 42\\ 50\\ -90\\ -30\\ 146\\ 138\\ 126\\ 130\\ 130\\ 10\\ -30\\ 250\\ 150\\ 54\\ 62\\ -118\\ -97\\ 34\\ 30\\ -146\\ 348\\ 121\\ 150\\ 168\\ 348\\ 70\\ -168\\ 170\\ -56\\ 165\\ 250\\ 345\\ 70\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4577556355755546998756687364665786887644838345674553386755886898776766574443744999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| СВВВВВВСВВВВВВСВА А АВВВВАВСВСВВВВАВАА АВВССАСАССВВВСВВССАВВВСАВВААВАААВА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 369         200802           570         200802           571         200802           571         200802           573         200802           574         200802           574         200802           575         200802           576         200802           577         200802           578         200802           579         200802           579         200802           580         200802           581         200802           582         200802           583         200802           584         200802           585         200802           586         200802           587         200802           588         200802           591         200802           592         200802           593         200802           594         200802           595         200802           596         200802           607         200802           608         200802           607         200802           608         200802 </th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 215103429<br>216114538<br>216115230<br>217124124<br>217130725<br>217133627<br>217145617<br>321101614<br>321101614<br>321154846<br>321155424<br>3221155424<br>3221155424<br>322020624<br>328083741<br>328084358<br>328091530<br>407191249<br>409055149<br>429001826<br>429162637<br>501185054<br>50102158<br>506041752<br>506042255<br>506044703<br>506041752<br>506044703<br>506052123<br>507055345<br>507055345<br>507055345<br>507055345<br>507055345<br>507055345<br>507055345<br>507055345<br>507055345<br>507055957<br>512190353<br>512193659<br>512213022<br>512233002<br>512233012<br>512233012<br>51223302<br>512233012<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>51223302<br>5120411<br>52106205<br>521063119<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521093213<br>52109411<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>5210855<br>521084529<br>5210855<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>521084529<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 125.2<br>127.8<br>126.2<br>127.8<br>126.2<br>127.8<br>127.6<br>127.8<br>127.6<br>127.8<br>128.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>130.0<br>130.2<br>128.2<br>126.4<br>126.4<br>126.4<br>126.4<br>126.4<br>126.4<br>124.2<br>124.2<br>124.2<br>124.2<br>124.2<br>125.4<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>132.6<br>123.7<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2<br>125.2 |
| 24.0 25.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 225.4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{l} 3.9\\ 3.85\\ 9.29\\ 3.97\\ 4.87\\ 3.3.65\\ 4.42\\ 1.1\\ 3.87\\ 6.52\\ 4.42\\ 1.1\\ 3.88\\ 3.7\\ 4.1\\ 1.1\\ 4.4\\ 4.2\\ 4.29\\ 4.29\\ 4.39\\ 4.29\\ 2.51\\ 4.8\\ 3.59\\ 9.9\\ 4.99\\ 3.99\\ 4.5\\ 4.8\\ 3.99\\ 4.19\\ 1.5\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 2.51\\ 4.88\\ 3.99\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29\\ 4.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{l} 20\\ 20\\ 5\\ 10\\ 5\\ 20\\ 10\\ 25\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 258<br>279<br>206<br>3079<br>215<br>180<br>0<br>420<br>2528<br>260<br>260<br>2812<br>60<br>2008<br>276<br>240<br>406<br>250<br>240<br>406<br>250<br>260<br>280<br>280<br>280<br>280<br>280<br>280<br>280<br>280<br>280<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 41<br>420<br>40<br>4853<br>480<br>41<br>40<br>8888<br>61<br>8888<br>40<br>630<br>50<br>630<br>300<br>41<br>5553<br>61<br>853<br>60<br>553<br>460<br>5554<br>60<br>60<br>5560<br>40<br>820<br>60<br>8888<br>888<br>61<br>8888<br>880<br>61<br>8888<br>880<br>61<br>8888<br>880<br>61<br>8888<br>880<br>61<br>8888<br>880<br>61<br>8888<br>80<br>61<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 165\\ 138\\ 90\\ 34\\ 30\\ 318\\ 74\\ 130\\ -70\\ 168\\ 150\\ -170\\ 190\\ 170\\ -118\\ 170\\ 190\\ 130\\ 121\\ 90\\ 90\\ -90\\ -106\\ -106\\ 118\\ 30\\ -106\\ 110\\ -106\\ 118\\ -90\\ -70\\ -106\\ -106\\ -106\\ 118\\ -90\\ -70\\ -30\\ -70\\ 121\\ 107\\ 121\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{smallmatrix} 0 \\ 40 \\ 200 \\ 280 \\ 186 \\ 40 \\ 628 \\ 344 \\ 155 \\ 160 \\ 74 \\ 160 \\ 288 \\ 0 \\ 80 \\ 152 \\ 80 \\ 220 \\ 40 \\ 60 \\ 60 \\ 60 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220 \\ 220$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80<br>60<br>70<br>70<br>40<br>40<br>53<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6644576544564553977756898878858755664433556757654657776844358498999874694485446799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BBCCBBBBCCBBCBBCABBBBBAAAABAABABBBBBCCCCCBBBBBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20080910061233<br>20080918054810<br>20080918180500<br>2008091818050<br>200809181920358<br>200809181203958<br>20080918020358<br>20080923210535<br>20080923210535<br>20080923210535<br>20080923210535<br>20080924001929<br>20080924004106<br>20080924004106<br>20080924005419<br>2008106110312<br>2008106110312<br>2008106110312<br>2008102162629<br>2008102162629<br>2008113183426<br>20081114003916<br>2008112015629<br>20081113183426<br>20081114003916<br>2008112015629<br>2008112015629<br>200811211505109<br>20081120154642<br>20081120155109<br>20081202195921<br>20081202195921<br>20081203185052<br>20081203185052<br>2008120194842<br>2008120155109<br>20081202195921<br>20081203185052<br>20081203185052<br>20081203185052<br>20081203185052<br>20081203185052<br>20081203185052<br>20081203185052<br>20081203185052<br>200812013161037<br>200913161037<br>2009011304558<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>2009011304205<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090126013658<br>20090128160519<br>20090128160519<br>20090128160519<br>20090128160519<br>20090128160519<br>20090128160519<br>2009031005539<br>2009031005539<br>2009031005539<br>2009031005539<br>2009031005539<br>20090313075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>20090310075448<br>2009031000645<br>2009031000645<br>2009031000645<br>2009031000645<br>2009031 |
| 125.223.8128.225.4128.225.4128.025.6128.225.4128.025.2128.025.4128.225.4128.225.4128.225.4128.225.4128.025.2128.225.4128.025.2128.225.4128.025.2128.223.8124.223.8124.223.8124.223.8130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.228.0130.428.0130.029.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.2128.025.6129.027.0131.530.0130.029.0130.029.0130.029.0130.029.0130.029.0130.029.0130.029.0130.029.0130.029.0130.0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 4\\3.8\\1.4\\4\\3.8\\4.1\\4\\4.3\\3.4\\4.3\\3.3\\4.4\\3.3\\4.4\\3.3\\4.4\\3.3\\4.4\\3.3\\4.4\\3.3\\4.4\\3.3\\4.4\\3.3\\4.4\\3.3\\3.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} 20\\ 10\\ 20\\ 10\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 258\\ 215\\ 40\\ 56\\ 15\\ 259\\ 215\\ 299\\ 32\\ 215\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 200\\ 240\\ 212\\ 200\\ 240\\ 212\\ 200\\ 240\\ 215\\ 200\\ 240\\ 215\\ 200\\ 240\\ 215\\ 200\\ 212\\ 200\\ 240\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 200\\ 212\\ 215\\ 200\\ 212\\ 200\\ 212\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 215\\ 200\\ 212\\ 200\\ 212\\ 200\\ 212\\ 200\\ 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 41\\ 53\\ 50\\ 36\\ 81\\ 48\\ 53\\ 60\\ 53\\ 60\\ 53\\ 60\\ 53\\ 60\\ 53\\ 60\\ 53\\ 60\\ 60\\ 75\\ 80\\ 60\\ 60\\ 75\\ 80\\ 60\\ 60\\ 75\\ 80\\ 60\\ 60\\ 75\\ 80\\ 60\\ 60\\ 75\\ 80\\ 80\\ 60\\ 60\\ 75\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 165\\ 74\\ -90\\ 121\\ 30\\ 318\\ 74\\ 318\\ -170\\ -106\\ 30\\ -106\\ -146\\ 62\\ 54\\ 130\\ -30\\ 150\\ 90\\ 70\\ -146\\ 30\\ 150\\ 103\\ 307\\ 126\\ 326\\ -30\\ 130\\ 306\\ 100\\ 230\\ 90\\ 210\\ 121\\ 30\\ 100\\ -70\\ 74\\ -90\\ 50\\ 50\\ 230\\ 306\\ 150\\ 230\\ 306\\ 150\\ -30\\ 100\\ -70\\ 74\\ -90\\ 50\\ 50\\ 230\\ 30\\ 150\\ 62\\ -106\\ -30\\ 90\\ -118\\ 30\\ 100\\ -10\\ 70\\ 150\\ 150\\ 230\\ 30\\ 150\\ 230\\ 30\\ 150\\ 230\\ 30\\ 150\\ 230\\ 30\\ 100\\ -118\\ -30\\ 100\\ -10\\ 70\\ 165\\ 210\\ 100\\ -10\\ 70\\ 165\\ 210\\ 100\\ -10\\ 70\\ 165\\ 210\\ 100\\ -10\\ 70\\ 165\\ 210\\ 100\\ -10\\ 70\\ 165\\ 210\\ 100\\ -10\\ 70\\ 165\\ 210\\ 100\\ -10\\ 70\\ 100\\ -10\\ 100\\ -10\\ 100\\ -10\\ 100\\ -10\\ 100\\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 0 \\ 60 \\ 220 \\ 200 \\ 280 \\ 20 \\ 60 \\ 300 \\ 60 \\ 300 \\ 60 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 80 \\ 40 \\ 60 \\ 60 \\ 60 \\ 40 \\ 60 \\ 40 \\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 50\\ 110\\ -90\\ 70\\ 170\\ 230\\ 110\\ 230\\ -10\\ -30\\ 130\\ 168\\ -70\\ -30\\ 130\\ 168\\ -70\\ -30\\ 168\\ 34\\ 50\\ 168\\ 34\\ 50\\ 168\\ 34\\ 50\\ 168\\ 34\\ 50\\ 168\\ 34\\ 50\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 168\\ 30\\ 10\\ -106\\ 100\\ -106\\ 100\\ -90\\ 165\\ 345\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -106\\ 100\\ -100\\ 100\\ -106\\ 100\\ -100\\ 100\\ -100\\ 100\\ -100\\ 100\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 495767654655676798773455654434767874996435776344534444887478994949458465568333989855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| САВВВВВВСВВВВВВВВААВВСССВВВВВАВСААВССВВВВВСССВСССССААВСВААСАСВВССССААВСВААСССВВВВВАСССАААВВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 777777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20090407004243<br>20090407024106<br>200904071024106<br>20090412185139<br>20090412185139<br>20090414135511<br>20090428105242<br>20090428053605<br>20090427054906<br>20090428073345<br>20090428073345<br>20090428073345<br>20090428073345<br>20090428073345<br>20090507042928<br>20090507042928<br>20090507042928<br>20090507042928<br>20090507042928<br>20090507042928<br>20090507154513<br>20090507042928<br>20090507154513<br>20090508011423<br>20090508014920<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090515153432<br>20090521163404<br>2009052116505<br>20090521200456<br>20090521200456<br>20090629213021<br>20090629205304<br>20090629213021<br>20090629213021<br>20090629213021<br>20090629213021<br>20090629213021<br>20090629213021<br>20090629213021<br>2009062923352<br>2009072315528<br>20090711051533<br>20090711051533<br>20090711051533<br>20090712315428<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>2009072315553<br>20090724025631<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>20090723155628<br>2009072315553<br>20090724025631<br>2009072315553<br>20090724025531<br>2009072315558<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203510<br>2009081203558<br>2009072315558<br>2009081203558<br>2009081203559<br>2009081203558<br>2009081203559<br>2009081203558<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>20090812035558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>2009081203559<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558<br>200908155558 |
| 132.632.2132.832.2130.028.5126.024.6123.823.4123.423.6128.225.4129.527.5131.528.0130.028.0130.028.0124.423.6124.423.6124.423.6124.423.6124.423.6124.423.6124.223.8124.423.6124.225.4128.025.4128.025.4128.025.4128.025.4128.025.4128.025.4128.025.4128.025.4128.025.6129.226.8124.423.6124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8124.223.8125.224.0128.025.6128.025.6128.025.6128.025.6128.025.6128.025.6128.025.6128.025.6128.0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4849847747657779778524999414977786673576778886679854427888977999997883488944286964987588894<br>3333333333333333444333443333333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 20\\ 20\\ 20\\ 50\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 200\\ 200\\ 199\\ 60\\ 279\\ 38\\ 40\\ 260\\ 40\\ 268\\ 280\\ 240\\ 259\\ 15\\ 220\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} 80\\ 80\\ 87\\ 80\\ 48\\ 84\\ 40\\ 30\\ 80\\ 71\\ 84\\ 40\\ 30\\ 20\\ 20\\ 80\\ 20\\ 20\\ 53\\ 53\\ 60\\ 40\\ 48\\ 18\\ 80\\ 40\\ 40\\ 60\\ 50\\ 40\\ 30\\ 20\\ 20\\ 40\\ 45\\ 30\\ 20\\ 20\\ 60\\ 84\\ 71\\ 72\\ 88\\ 84\\ 22\\ 20\\ 60\\ 84\\ 71\\ 72\\ 88\\ 84\\ 22\\ 20\\ 60\\ 84\\ 71\\ 72\\ 88\\ 84\\ 82\\ 20\\ 60\\ 84\\ 71\\ 72\\ 88\\ 84\\ 80\\ 80\\ 30\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 150\\ -30\\ -30\\ -110\\ 10\\ 138\\ 50\\ 90\\ 90\\ 30\\ 126\\ 310\\ 70\\ -90\\ 90\\ 130\\ 170\\ 130\\ 90\\ 74\\ -106\\ 70\\ 130\\ 90\\ 74\\ -106\\ 70\\ 130\\ 30\\ -70\\ -70\\ -70\\ -20\\ 110\\ 138\\ 30\\ 10\\ 10\\ 10\\ 30\\ -70\\ -70\\ -70\\ -20\\ 230\\ 130\\ -70\\ -70\\ -20\\ 230\\ 130\\ -50\\ 74\\ 10\\ 153\\ 170\\ -106\\ -130\\ 230\\ -50\\ 74\\ 10\\ 153\\ 170\\ -100\\ -30\\ 121\\ 318\\ -50\\ 210\\ -100\\ -100\\ -30\\ 121\\ 301\\ 90\\ 121\\ 287\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -100\\ -30\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 296\\ 296\\ 100\\ 328\\ 40\\ 300\\ 220\\ 80\\ 304\\ 140\\ 120\\ 65\\ 60\\ 220\\ 30\\ 60\\ 60\\ 60\\ 60\\ 221\\ 220\\ 280\\ 324\\ 35\\ 35\\ 35\\ 60\\ 140\\ 184\\ 220\\ 65\\ 60\\ 60\\ 221\\ 221\\ 60\\ 60\\ 801\\ 240\\ 244\\ 65\\ 79\\ 79\\ 322\\ 60\\ 140\\ 19\\ 60\\ 161\\ 284\\ 220\\ 320\\ 60\\ 19\\ 39\\ 64\\ 60\\ 60\\ 60\\ 120\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} 12\\ -168\\ -10\\ 170\\ 90\\ 90\\ 168\\ 30\\ 190\\ 106\\ 106\\ -90\\ 90\\ 77\\ 10\\ 77\\ 90\\ 110\\ -70\\ 121\\ 74\\ 50\\ 170\\ 170\\ 74\\ 168\\ -166\\ -106\\ -106\\ -106\\ -106\\ 130\\ -90\\ 90\\ 100\\ 100\\ -90\\ 110\\ 90\\ -90\\ 110\\ 130\\ 333\\ 106\\ 318\\ 318\\ -10\\ 100\\ -70\\ 130\\ 130\\ 333\\ 106\\ 318\\ 318\\ -10\\ 250\\ 10\\ -70\\ -138\\ -10\\ 250\\ 10\\ -70\\ -138\\ -10\\ 250\\ 10\\ -10\\ -10\\ 348\\ 110\\ 170\\ -77\\ -103\\ 138\\ -10\\ 250\\ 10\\ -10\\ -70\\ -103\\ -348\\ 110\\ 190\\ 70\\ -70\\ -103\\ -348\\ -10\\ 250\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -50\\ 230\\ -348\\ -10\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -10\\ -70\\ -70\\ -10\\ -70\\ -10\\ -70\\ -70\\ -10\\ -70\\ -70\\ -10\\ -70\\ -70\\ -70\\ -10\\ -70\\ -70\\ -10\\ -70\\ -70\\ -70\\ -70\\ -70\\ -70\\ -70\\ -7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7753696534557796545763654555866563777467886565588858457667656335654587776687576795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ВВВОВАВВООВВВВВАВВОВВВОВВВАВВВВОВВВОВВААВВВВАААВАВОВВААСВВВВВВВВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 8145<br>8145<br>8145<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20090907183519           20090907183519           200909015024740           20090915024740           20090915024740           20090915024740           20090917210759           20090927214431           20091017014504           20091017020741           20091017020741           20091017020741           20091017020741           20091017020741           20091018021525           20091018152305           20091018152305           20091018152305           20091018152305           20091028151939           20091028151939           20091028151939           20091030184039           20091030124440           20091031134549           20091031134549           20091031134549           20091031134549           20091031134549           20091031234820           20091104163735           20091104163735           20091104163735           20091104163735           20091104163735           20091104163735           20091104163735           20091104163735           20091104163735           20091105161642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 125.8 $22.2$ $131.5$ $26.5$ $128.0$ $25.4$ $127.8$ $25.4$ $123.6$ $23.4$ $127.8$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.0$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.2$ $25.4$ $128.0$ $25.6$ $128.2$ $25.4$ $128.0$ $25.6$ $130.0$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.0$ $29.0$ $130.0$ $29.0$ $130.0$ $29.0$ $130.0$ $29.0$ $130.0$ $29.0$ $130.0$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ $130.5$ $29.0$ </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 4.4 \\ 4.6 \\ 4.4 \\ 3.9 \\ 4 \\ 4.2 \\ 9.4 \\ 3.7 \\ 4 \\ 4.3 \\ 9.4 \\ 3.7 \\ 4 \\ 3.7 \\ 4 \\ 3.7 \\ 4 \\ 3.7 \\ 4 \\ 3.7 \\ 3.8 \\ 4.5 \\ 7.7 \\ 3.9 \\ 3.9 \\ 3.9 \\ 3.7 \\ 3.8 \\ 4 \\ 3.7 \\ 3.9 \\ 4 \\ 4.7 \\ 3.5 \\ 9.7 \\ 1.9 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.7 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 3.8 \\ 4 \\ 3.8 \\ 3.8 \\ 3.8 \\ 3.8$ |
| $\begin{array}{c} 50\\ 5\\ 10\\ 20\\ 10\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 20\\ 166\\ 212\\ 20\\ 200\\ 248\\ 215\\ 20\\ 200\\ 248\\ 215\\ 200\\ 200\\ 259\\ 200\\ 215\\ 200\\ 200\\ 259\\ 200\\ 215\\ 200\\ 20\\ 15\\ 34\\ 46\\ 280\\ 200\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20<br>61<br>60<br>80<br>83<br>80<br>84<br>80<br>61<br>40<br>60<br>53<br>64<br>61<br>80<br>84<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 250\\ -144\\ 62\\ 70\\ 230\\ 10\\ 350\\ -106\\ 30\\ -106\\ 30\\ -10\\ 318\\ 50\\ 74\\ 50\\ 90\\ 50\\ 138\\ 130\\ -74\\ 326\\ 34\\ 298\\ 190\\ 230\\ 146\\ 310\\ -10\\ 34\\ 298\\ 190\\ 230\\ 146\\ 310\\ -10\\ 330\\ 190\\ 170\\ 10\\ 90\\ -10\\ 170\\ 2150\\ 10\\ 210\\ 190\\ -10\\ 330\\ 10\\ 210\\ 10\\ 300\\ 10\\ 210\\ 10\\ 30\\ 10\\ -10\\ 310\\ 30\\ 10\\ -10\\ 310\\ 30\\ 10\\ -10\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 30\\ 30\\ 10\\ -74\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 221\\ 220\\ 80\\ 236\\ 79\\ 288\\ 340\\ 60\\ 284\\ 292\\ 20\\ 79\\ 60\\ 79\\ 20\\ 32\\ 80\\ 225\\ 141\\ 236\\ 220\\ 140\\ 300\\ 160\\ 148\\ 152\\ 280\\ 325\\ 60\\ 52\\ 152\\ 194\\ 19\\ 162\\ 300\\ 160\\ 328\\ 202\\ 148\\ 152\\ 152\\ 80\\ 74\\ 300\\ 325\\ 340\\ 152\\ 80\\ 74\\ 325\\ 340\\ 152\\ 80\\ 74\\ 325\\ 340\\ 152\\ 80\\ 74\\ 326\\ 324\\ 324\\ 324\\ 324\\ 324\\ 324\\ 324\\ 324$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 71\\ 90\\ 40\\ 36\\ 80\\ 40\\ 61\\ 80\\ 80\\ 40\\ 40\\ 51\\ 80\\ 60\\ 40\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 277\\ 90\\ 130\\ 121\\ 318\\ 170\\ 190\\ -70\\ 168\\ -170\\ 230\\ 138\\ 110\\ 138\\ 90\\ 138\\ 50\\ 62\\ -50\\ 106\\ 42\\ 121\\ 110\\ 210\\ 150\\ 230\\ 345\\ 30\\ 190\\ 190\\ -170\\ 130\\ 50\\ 62\\ 10\\ 42\\ 121\\ 110\\ 210\\ 150\\ 2350\\ -170\\ 130\\ 50\\ 62\\ 10\\ 130\\ 50\\ 62\\ 100\\ 130\\ 50\\ 62\\ 100\\ 130\\ 50\\ 62\\ 100\\ 130\\ 50\\ 62\\ 100\\ 130\\ 50\\ 62\\ 100\\ 130\\ 150\\ 210\\ -170\\ 230\\ 350\\ -170\\ 100\\ 130\\ 54\\ 10\\ 150\\ 210\\ -170\\ 230\\ 350\\ -170\\ 100\\ 130\\ 54\\ 10\\ 150\\ 210\\ -170\\ 230\\ 350\\ -170\\ 100\\ 130\\ 54\\ 10\\ 150\\ 210\\ -170\\ 230\\ 350\\ -170\\ 100\\ 130\\ 54\\ 10\\ 150\\ 210\\ -170\\ 230\\ 350\\ -170\\ 100\\ 130\\ 54\\ 10\\ 100\\ 100\\ 74\\ 110\\ 250\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3337783676457434564359855344445535565455363543444563443333345753333455664554783433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| いいします。<br>いいののでは、<br>のののののののでは、<br>のののののののののののののののののののののののののののののののののののの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 88889999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20091224093640<br>20091230142059<br>20091230142410<br>20100101074916<br>20100101102453<br>20100101102653<br>20100101102500<br>20100108051250<br>20100108051250<br>20100108051250<br>20100108051250<br>20100108051250<br>20100108172022<br>20100108172022<br>20100108181535<br>20100109162121<br>20100111022636<br>20100111022636<br>20100112201000<br>201001125010320<br>20100125014912<br>20100125014912<br>20100125050436<br>20100125075717<br>20100125014050<br>20100125133530<br>20100125133530<br>20100125133530<br>20100126030230<br>20100126030230<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126090140<br>20100126144820<br>20100126154542<br>20100126154542<br>20100126154542<br>20100126154542<br>20100126154542<br>20100126154542<br>2010012700130<br>2010012700320<br>20100127004348<br>20100127004348<br>20100127004348<br>2010012702320<br>2010012702320<br>20100127004348<br>2010012702320<br>20100127004348<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012704348<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>2010012702320<br>201001270230<br>2010012702320<br>2010012702320<br>201001270230<br>201001270230<br>201001270230<br>201001270230<br>20100129022155<br>20100129023155 |
| 131.0 $28.0$ 128.0 $25.5$ 128.0 $25.2$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 127.8 $25.4$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $23.8$ 124.2 $30.4$ 132.2 $30.4$ 132.2 $30.4$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 132.8 $31.0$ 133 $31.2$ 133.2 $31.2$ 133.3 $31.8$ 133 $31.8$ 133 $31.8$ 133 $31.2$ 132.2 $32.2$ 132.6 $32.2$ 132.6 $32.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 4.1 \\ 9.3.7 \\ 9.4 \\ 4.7 \\ 4.8 \\ 5.7.7 \\ 6.7.4 \\ 7.4 \\ 8.5 \\ 3.3.3 \\ 3.4.1 \\ 8.8 \\ 7.4 \\ 3.3.3 \\ 3.4.1 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 3.3.3 \\ 3.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3.3 \\ 4.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 4.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 4.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 4.3 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.4 \\ 3.3 \\ 3.4 \\ 3.4 \\ 3.4 \\ 3.4 \\ 3.4 \\$                                                             |
| $\begin{array}{c} 30\\ 10\\ 40\\ 30\\ 30\\ 40\\ 10\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 240\\ 212\\ 220\\ 20\\ 200\\ 200\\ 200\\ 200\\ 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 20 \\ 60 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 210\\ -118\\ 250\\ 10\\ 10\\ 10\\ -10\\ 230\\ 10\\ 121\\ 90\\ -90\\ -90\\ 90\\ 90\\ 90\\ -90\\ 90\\ 90\\ -90\\ 90\\ -90\\ 90\\ -90\\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 122\\ 80\\ 76\\ 288\\ 288\\ 292\\ 79\\ 300\\ 34\\ 40\\ 60\\ 60\\ 220\\ 300\\ 240\\ 340\\ 340\\ 200\\ 120\\ 220\\ 140\\ 220\\ 140\\ 220\\ 140\\ 220\\ 140\\ 220\\ 220\\ 316\\ 180\\ 100\\ 220\\ 316\\ 180\\ 100\\ 220\\ 316\\ 316\\ 180\\ 100\\ 220\\ 35\\ 38\\ 35\\ 180\\ 100\\ 220\\ 35\\ 38\\ 35\\ 180\\ 100\\ 220\\ 35\\ 38\\ 35\\ 180\\ 100\\ 200\\ 120\\ 200\\ 120\\ 200\\ 35\\ 38\\ 35\\ 180\\ 100\\ 220\\ 35\\ 38\\ 35\\ 180\\ 100\\ 200\\ 120\\ 200\\ 145\\ 960\\ 32\\ 220\\ 35\\ 38\\ 35\\ 180\\ 100\\ 200\\ 120\\ 200\\ 145\\ 960\\ 32\\ 220\\ 35\\ 38\\ 35\\ 180\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 200\\ 100\\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 80\\ 40\\ 36\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} 287\\ -50\\ 301\\ 170\\ 170\\ 170\\ -170\\ 318\\ 170\\ -90\\ -90\\ -90\\ -90\\ -90\\ -90\\ -90\\ -9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3555787335788666888643555755847547374874874874344456646435555576675757446445545555445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ○BBBBBABC○BBBAABBBBAAABC○BBBBBBBBACBB○B○B○B○                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 978<br>979<br>980    | 20100201173610<br>20100202104140<br>20100202140308 | 132.8 31.2<br>132.4 32.6<br>131.8 30.6               | 4.1<br>4.4<br>3.6 | 10<br>30<br>5                                                               | 15<br>8<br>215     | 53<br>80<br>53 | -106<br>350<br>74  | 220<br>100<br>60  | 40<br>80<br>40 | -70<br>190<br>110   | 6<br>5<br>6 | B<br>B<br>B |
|----------------------|----------------------------------------------------|------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|--------------------|----------------|--------------------|-------------------|----------------|---------------------|-------------|-------------|
| 981<br>982<br>983    | 20100203045000<br>20100203104440<br>20100203152500 | 132.6 32.8<br>132.6 32.0<br>132.6 31.6               | 4.2<br>4.1<br>3.8 | 20<br>30<br>20                                                              | $180 \\ 28 \\ 220$ | 80<br>80<br>80 | 150<br>170<br>-30  | 276<br>120<br>316 | 61<br>80<br>61 | 12<br>10<br>-168    | 4<br>6<br>5 | Ċ<br>B<br>B |
| 984<br>985           | 20100203170639<br>20100203204453                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4.2<br>3.8        | 20<br>20<br>5                                                               | 360<br>305         | 80<br>53       | 170<br>106         | 92<br>100         | 80<br>40       | 10<br>70            | 4           | Č<br>C<br>C |
| 980<br>987<br>988    | 20100203205000<br>20100204074500<br>20100204162708 | 132.8 31.0<br>133.2 30.0<br>132.2 30.0               | 4<br>3.9<br>3.8   | 10<br>20<br>5                                                               | 256<br>68<br>74    | 30<br>80<br>64 | 350<br>326         | 40<br>168<br>180  | 80<br>80<br>60 | 190<br>210          | 4<br>4<br>4 | C<br>C<br>C |
| 989<br>990<br>001    | 20100205001434<br>20100205002739<br>20100206010320 | 132.2 30.4<br>132.4 32.4<br>130.4 30.4               | 3.8<br>4<br>3.1   | 10<br>60<br>40                                                              | 234<br>20<br>239   | 64<br>80<br>87 | 146<br>130<br>70   | 340<br>122<br>140 | 60<br>41<br>20 | 30<br>18<br>170     | 5<br>4<br>3 | B<br>C<br>C |
| 992<br>993           | 20100206010320<br>20100206120342<br>20100206132640 | 132.8 31.0<br>132.8 31.0                             | 3.8<br>3.9        | 10<br>10                                                                    | 239<br>240<br>15   | 40<br>53       | -70<br>-106        | 35<br>220         | 53<br>40       | -106<br>-70         | 5<br>7<br>7 | B<br>B      |
| 994<br>995<br>996    | 20100206144617<br>20100206172246<br>20100207042703 | 132.6 31.2<br>132.6 31.4<br>130.8 30.8               | 4.1<br>3.7<br>4.1 | 10<br>10<br>5                                                               | 20<br>20<br>15     | 50<br>50<br>53 | -90<br>-90<br>-106 | 200<br>200<br>220 | 40<br>40<br>40 | -90<br>-90<br>-70   | 9<br>8<br>6 | A<br>A<br>B |
| 997<br>998           | 20100207044734<br>20100207103224<br>20100207115420 | 130.8 30.8<br>123.8 23.6                             | 3.6<br>3.7        | 5<br>20                                                                     | 15<br>276          | 53<br>36       | 74<br>121          | 220<br>60         | 40<br>60       | 110<br>70           | 4<br>5      | Ĉ<br>B      |
| 1000<br>1001         | 20100207113439<br>20100208103434<br>20100208133023 | 123.4 23.8<br>122.8 23.4<br>123.6 23.4               | 3.8<br>3.7        | 30<br>40<br>30                                                              | 60<br>279          | 80<br>48       | 30<br>138          | 240<br>324<br>40  | 40<br>61<br>60 | 168<br>50           | 9<br>6<br>7 | A<br>B<br>B |
| 1002<br>1003<br>1004 | 20100208152226<br>20100208154910<br>20100208162238 | 131 30.8<br>123.6 23.6<br>123.6 23.6                 | 3.8<br>4<br>3.6   | 50<br>20<br>20                                                              | 240<br>276<br>260  | 60<br>36<br>30 | 150<br>121<br>60   | 346<br>60<br>80   | 64<br>60<br>60 | 34<br>70<br>90      | 3<br>8<br>4 | C<br>A<br>C |
| 1005                 | 20100208170412<br>20100208171121<br>20100208182002 | 123.6 23.6<br>123.6 23.6<br>120.8 20.8               | 3.9<br>3.8        | 20<br>20                                                                    | 276<br>276         | 36<br>36       | 121<br>121<br>106  | 60<br>60          | 60<br>60       | 70<br>70<br>70      | 9<br>8<br>2 | Ă<br>A      |
| 1007<br>1008<br>1009 | 20100208183903<br>20100209061550<br>20100211162016 | 132.6 32.6<br>132.2 30.6                             | 3.9<br>3.9<br>3.9 | 20<br>60                                                                    | 15<br>8<br>75      | 61<br>81       | -100<br>118<br>30  | 140<br>340        | 40<br>40<br>60 | 50<br>170           | 5<br>4<br>4 | C<br>C<br>C |
| 1010<br>1011<br>1012 | 20100211164015<br>20100211172110<br>20100211172614 | 130.8 30.8<br>132.6 32.6<br>132.2 32.8               | 3.8<br>4.2<br>4.2 | 60<br>30<br>40                                                              | 260<br>8<br>360    | 40<br>80<br>80 | -10<br>170<br>170  | -368<br>100<br>92 | 84<br>80<br>80 | -130<br>10<br>10    | 4<br>4<br>3 | C<br>C<br>C |
| 1013<br>1014         | 20100211173240<br>20100212063542<br>20100212063542 | 132.8 32.2<br>132.6 31.6                             | 4.2<br>4          | 5<br>20                                                                     | 256<br>40          | 36<br>60       | 301<br>-30         | 40<br>136         | 60<br>61       | 250<br>-166         | 36          | Č<br>B      |
| 1015<br>1016<br>1017 | 20100212071119<br>20100212144730<br>20100212193035 | 132.8 31.4<br>132.8 32.2<br>133.2 33.0               | 3.9<br>3.9<br>3.8 | 20<br>20<br>5                                                               | 321<br>200         | 80<br>48<br>80 | -138<br>130        | 200<br>200<br>302 | 80<br>60<br>41 | -50<br>15           | 0<br>7<br>4 | В<br>В<br>С |
| 1018<br>1019<br>1020 | 20100212204512<br>20100214004040<br>20100215052353 | 131.8 31.8<br>129.0 28.0<br>131.8 30.0               | 3.7<br>3.7<br>3.5 | 5<br>30<br>10                                                               | 58<br>360<br>39    | 84<br>20<br>48 | 50<br>50<br>318    | 320<br>222<br>160 | 40<br>75<br>60 | $170 \\ 103 \\ 230$ | 3<br>5<br>4 | C<br>B<br>C |
| 1021<br>1022         | 20100215052912<br>20100217015730<br>20100217015730 | 130.2 30.6<br>132.8 32.4                             | 3.6<br>3.7        | 50<br>30                                                                    | 188<br>28          | 80<br>80       | 170<br>350         | 280<br>120        | 80<br>80       | 10<br>190           | 4           | Č<br>C      |
| 1023<br>1024<br>1025 | 20100217021820<br>20100219083440<br>20100219112518 | 132.0 32.0<br>130.2 30.6<br>130 31.0                 | 3.9<br>4<br>3.9   | 20<br>50<br>60                                                              | 188<br>20          | 80<br>60       | 350<br>-90         | 280<br>200        | 40<br>80<br>30 | 190<br>-90          | 4<br>5<br>3 | B<br>C      |
| 1026<br>1027<br>1028 | 20100221194959<br>20100222110640<br>20100223220453 | 129.0 27.0<br>132.8 32.4<br>124.4 23.6               | 3.6<br>3.9<br>3.5 | $     \begin{array}{c}       10 \\       30 \\       20     \end{array}   $ | 40<br>20<br>260    | 50<br>80<br>40 | 90<br>-10<br>-70   | 220<br>112<br>55  | 40<br>80<br>53 | 90<br>-170<br>-106  | 8<br>5<br>6 | A<br>B<br>B |
| 1029<br>1030         | 20100225105142<br>20100225181140<br>20100225183535 | 132.2 32.6<br>130.5 29.5<br>130.5 20.5               | 4.1<br>4          | 30<br>40                                                                    | 360<br>20          | 80<br>60       | -10<br>-30         | 92<br>126         | 80<br>64       | -170<br>-146        | 4<br>5      | Ĉ<br>B<br>P |
| 1032<br>1033         | 20100225185555<br>20100225202500<br>20100228051000 | 130.3 29.3<br>132.0 31.0<br>133.2 31.2               | 4.5<br>3.9        | 40<br>30<br>10                                                              | 42<br>40           | 75<br>40       | 103<br>90          | 180<br>220        | 20<br>50       | 50<br>90            | 3<br>4      | C<br>C<br>C |
| 1034<br>1035<br>1036 | 20100228073039<br>20100228095614<br>20100228163546 | 132.6 31.2<br>132.8 31.0<br>132.6 31.0               | 3.9<br>4.1<br>4   | 10<br>10<br>10                                                              | 40<br>40<br>15     | 60<br>60<br>53 | 90<br>-90<br>-106  | 220<br>220<br>220 | 30<br>30<br>40 | 90<br>-90<br>-70    | 5<br>5<br>8 | B<br>B<br>A |
| 1037<br>1038<br>1039 | 20100301172930<br>20100301181910<br>20100316135820 | 133 32.8<br>132.4 32.6<br>132.6 32.4                 | 4<br>3.8<br>4.2   | $     \begin{array}{c}       10 \\       30 \\       30     \end{array} $   | $\frac{8}{20}$     | 80<br>80<br>80 | 170<br>350<br>150  | 100<br>100<br>116 | 80<br>80<br>61 | 10<br>190<br>12     | 6<br>5<br>6 | B<br>B<br>B |
| 1040<br>1041         | 20100316160033<br>20100316160033<br>20100318022522 | 132.4 32.6<br>132.4 32.4<br>132.4 32.4               | 3.9<br>4.1        | 30<br>10                                                                    | 8<br>20            | 80<br>60       | 170<br>-90         | 100<br>200        | 80<br>30       | 10<br>-90           | 65          | B<br>B<br>C |
| 1042<br>1043<br>1044 | 20100318023700<br>20100318032500<br>20100318081758 | 131.4 32.8<br>132.4 32.6<br>132.2 32.6               | 4<br>4.2<br>4.3   | 20<br>10<br>20                                                              | 20<br>360          | 60<br>80       | -168<br>90<br>150  | 340<br>200<br>96  | 80<br>30<br>61 | -30<br>90<br>12     | 4<br>3<br>6 | C<br>B      |
| 1045<br>1046<br>1047 | 20100318164233<br>20100318164410<br>20100318201741 | 132.4 32.2<br>132.6 32.2<br>132.6 32.0               | 4.1<br>4.2<br>3.8 | $     \begin{array}{c}       10 \\       20 \\       20     \end{array} $   | 20<br>200<br>208   | 60<br>80<br>80 | -70<br>150<br>350  | 164<br>296<br>300 | 36<br>61<br>80 | -121<br>12<br>190   | 6<br>8<br>7 | B<br>A<br>B |
| 1048                 | 20100318203910<br>20100318210537<br>20100318210537 | 132.4 32.0<br>132.4 32.4<br>132.4 32.4               | 3.7<br>4          | 10<br>20                                                                    | 26<br>320          | 71<br>40       | 126<br>50          | 140<br>188        | 40<br>61       | 30<br>118           | 8<br>5      | A<br>B<br>D |
| 1050<br>1051<br>1052 | 20100319101734<br>20100319162633<br>20100319165029 | 132.4 32.0<br>132.6 32.2<br>132.4 32.2               | 4.1<br>4.3<br>4.3 | 20<br>30                                                                    | 200<br>200<br>20   | 80<br>80       | 150<br>-10         | 296<br>112        | 61<br>80       | 12<br>-170          | 5<br>7<br>6 | B<br>B      |
| 1053<br>1054<br>1055 | 20100321043000<br>20100321183230<br>20100322021033 | 132.6 32.0<br>133.6 31.0<br>132.6 32.6               | 4.2<br>4.1<br>4.1 | 30<br>5<br>30                                                               | 28<br>280<br>8     | 80<br>20<br>80 | 350<br>-70<br>350  | 120<br>79<br>100  | 80<br>71<br>80 | 190<br>-97<br>190   | 7<br>4<br>5 | B<br>C<br>B |
| 1056                 | 20100504091050<br>20100504092715<br>20100504005516 | 127.0 24.4<br>127.8 25.4                             | 4<br>3.8          | 5<br>10<br>20                                                               | 300<br>20          | 20<br>80       | 30<br>50           | 182<br>278        | 80<br>41       | 107<br>165          | 3<br>4      | Č<br>C<br>P |
| 1059                 | 20100507221807                                     | 127.6 23.4 126.4 24.8                                | 3.8<br>3.7        | 20<br>30                                                                    | 20<br>60           | 80<br>80       | 10                 | 208<br>328        | 80<br>80       | 170                 | 5           | В           |

| 1060<br>1061<br>1062<br>1063<br>1064 | 20100507223550<br>20100508215757<br>20100508221609<br>20100512172508<br>20100514031526                   | 127.0 25.8<br>129.5 28.0<br>130.0 28.0<br>128.2 25.4<br>129.0 28.5                                                                            | 3.8<br>3.5<br>3.8<br>3.9<br>3.8 | 5<br>5<br>30<br>40<br>10   | 214<br>280<br>34<br>12<br>220        | 64<br>40<br>64<br>80<br>60 | 146<br>250<br>326<br>-170<br>10 | 320<br>125<br>140<br>280<br>125        | 60<br>53<br>60<br>80<br>81 | 30<br>286<br>210<br>-10<br>150   | 4<br>7<br>6<br>5      |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|--------------------------------------|----------------------------|---------------------------------|----------------------------------------|----------------------------|----------------------------------|-----------------------|--|
| 1065<br>1066<br>1067<br>1068<br>1069 | 20100514065226<br>20100521053230<br>20100521094803<br>20100521095534<br>20100521131049                   | 129.5       28.5         123.0       23.6         123.0       23.6         123.0       23.6         123.0       23.6         123.0       23.6 | 3.8<br>3.7<br>3.6<br>3.6<br>3.7 | 20<br>40<br>40<br>40<br>40 | 40<br>58<br>60<br>60<br>58           | 20<br>84<br>80<br>80<br>84 | 90<br>-130<br>50<br>50<br>50    | 220<br>320<br>318<br>318<br>320        | 70<br>40<br>41<br>41<br>40 | 90<br>-10<br>165<br>165<br>170   | 6<br>7<br>8<br>8<br>8 |  |
| 1070<br>1071<br>1072<br>1073<br>1074 | 20100521131539<br>20100521131852<br>20100523222500<br>20100607034000<br>20100607035910                   | 123.0       23.6         123.0       23.6         122.6       22.0         126.8       24.8         127.0       24.4                          | 3.7<br>3.5<br>4.3<br>3.9<br>4.1 | 40<br>40<br>20<br>10<br>5  | 58<br>225<br>320<br>245<br>16        | 84<br>81<br>60<br>53<br>61 | 50<br>330<br>230<br>286<br>-168 | 320<br>320<br>199<br>40<br>280         | 40<br>60<br>48<br>40<br>80 | 170<br>190<br>318<br>250<br>-30  | 9<br>7<br>3<br>3      |  |
| 1075<br>1076<br>1077<br>1078<br>1079 | 20100611040439<br>20100611041803<br>20100611043042<br>20100611044717<br>20100611051516                   | 122.8 23.8<br>122.8 23.4<br>122.8 23.4<br>122.8 23.4<br>122.8 23.4<br>122.8 23.4                                                              | 3.9<br>3.8<br>3.8<br>4<br>3.7   | 5<br>40<br>40<br>40<br>40  | 340<br>60<br>60<br>60<br>60          | 40<br>80<br>80<br>80<br>80 | 210<br>30<br>30<br>210<br>30    | 226<br>324<br>324<br>324<br>324<br>324 | 71<br>61<br>61<br>61<br>61 | 306<br>168<br>168<br>348<br>168  | 7<br>6<br>8<br>9<br>9 |  |
| 1080<br>1081<br>1082<br>1083<br>1084 | 20100618081554<br>20100618102205<br>20100618112204<br>20100618193500<br>20100618194410                   | 128.0 25.2<br>127.2 24.8<br>128.0 25.4<br>127.8 25.2<br>127.6 25.8                                                                            | 4.2<br>4.1<br>4<br>4<br>3.9     | 20<br>5<br>20<br>40<br>5   | 200<br>300<br>200<br>32<br>318       | 80<br>20<br>80<br>80<br>75 | 30<br>190<br>10<br>10<br>77     | 104<br>201<br>108<br>300<br>180        | 61<br>87<br>80<br>80<br>20 | 168<br>290<br>170<br>170<br>130  | 8<br>3<br>4<br>3      |  |
| 1085<br>1086<br>1087<br>1088<br>1088 | 20100620115003<br>20100622075558<br>20100623023524<br>2010062311909<br>2010062325256                     | 127.8 25.4<br>123.4 24.6<br>128.0 25.8<br>125.4 23.8<br>128.0 25.8                                                                            | 3.8<br>3.9<br>3.9<br>4.1        | 40<br>20<br>10<br>30<br>20 | $32 \\ 260 \\ 40 \\ 240 \\ 40 \\ 40$ | 80<br>80<br>60<br>40       | 10<br>230<br>90<br>110          | 300<br>158<br>220<br>35<br>220         | 80<br>41<br>30<br>53<br>30 | 170<br>345<br>90<br>74           | 5<br>3<br>5<br>9<br>5 |  |
| 1000<br>1090<br>1091<br>1092<br>1093 | 20100624012152<br>20100624020353<br>20100625043443<br>20100625043730<br>20100626123515                   | 128.0 25.8<br>128.0 25.4<br>130.0 28.0<br>129.0 29.5<br>120.0 28.0                                                                            | 4<br>4.1<br>3.6<br>3.9          | 10<br>40<br>30<br>20       | 220<br>12<br>40<br>320               | 40<br>80<br>60<br>50       | 250<br>10<br>150<br>90          | 65<br>280<br>146<br>140                | 53<br>80<br>64<br>40       | 286<br>170<br>34<br>90           | 5<br>4<br>5<br>3      |  |
| 1094<br>1095<br>1096<br>1097<br>1098 | 20100020135313<br>20100626135555<br>20100626170520<br>20100627053504<br>20100627054035                   | 130.0         28.0           130.0         28.0           131.5         28.5           125.4         23.8           125.2         23.8        | 5.5<br>3.5<br>4.1<br>4.2<br>3.9 | 20<br>20<br>5<br>30<br>20  | 40<br>62<br>12<br>40                 | 60<br>80<br>61<br>60       | -50<br>107<br>62<br>90          | 141<br>161<br>180<br>240<br>220        | 48<br>20<br>40<br>30       | 42<br>-138<br>30<br>130<br>90    | 8<br>7<br>9<br>8      |  |
| 1099<br>1100<br>1101<br>1102<br>1103 | 20100628061914<br>20100719234843<br>20100721043032<br>20100722023044<br>20100722023549                   | 130.0       28.0         122.8       22.8         123.2       23.4         128.0       25.2         122.8       23.6                          | 3.8<br>3.9<br>3.9<br>3.9<br>3.7 | 30<br>50<br>20<br>30<br>40 | 34<br>320<br>299<br>12<br>58         | 64<br>80<br>48<br>80<br>84 | 326<br>90<br>318<br>10<br>50    | 140<br>140<br>60<br>280<br>320         | 60<br>10<br>60<br>80<br>40 | 210<br>90<br>230<br>170<br>170   | 5<br>3<br>6<br>4<br>8 |  |
| 1104<br>1105<br>1106<br>1107<br>1108 | 20100723193517<br>20100723194140<br>20100725081000<br>20100725082320<br>20100726231224                   | 122.8 23.6<br>123.0 23.6<br>123.0 22.6<br>123.6 22.2<br>123.6 22.4                                                                            | 3.9<br>3.6<br>4<br>4<br>4.3     | 40<br>20<br>40<br>20<br>20 | 240<br>300<br>88<br>280<br>244       | 80<br>40<br>80<br>30<br>36 | 150<br>150<br>170<br>-90<br>59  | 336<br>57<br>180<br>100<br>100         | 61<br>71<br>80<br>60<br>60 | 12<br>54<br>10<br>-90<br>110     | 4<br>5<br>4<br>3<br>3 |  |
| 1109<br>1110<br>1111<br>1112<br>1113 | 20100728182002<br>20100728191239<br>20100729062014<br>20100823045230<br>20100826141019                   | 125.0       24.0         125.0       24.0         125.2       23.8         123.4       23.8         130.0       29.0                          | 3.9<br>3.9<br>3.9<br>3.5<br>4.3 | 10<br>10<br>20<br>20<br>20 | 240<br>240<br>260<br>280<br>260      | 20<br>20<br>40<br>40<br>20 | 110<br>110<br>150<br>50<br>-30  | 39<br>39<br>14<br>148<br>18            | 71<br>71<br>71<br>61<br>80 | 83<br>83<br>54<br>118<br>-107    | 9<br>9<br>8<br>3<br>4 |  |
| 1114<br>1115<br>1116<br>1117<br>1118 | 20100826214921<br>20100826234918<br>20100827015134<br>20100827053303<br>20100828030140                   | 130.5 29.0<br>130.5 29.0<br>130.5 29.0<br>130.0 29.0<br>130.5 29.0                                                                            | 4.1<br>3.9<br>4<br>4.2<br>3.7   | 5<br>5<br>10<br>5<br>5     | 68<br>64<br>60<br>20<br>58           | 80<br>61<br>80<br>90<br>41 | 350<br>168<br>170<br>90<br>345  | 160<br>160<br>152<br>194<br>160        | 80<br>80<br>80<br>0<br>80  | 190<br>30<br>10<br>84<br>230     | 4<br>5<br>4<br>4      |  |
| 1119<br>1120<br>1121<br>1122<br>1123 | 20100828151656<br>20100828152603<br>20100828184820<br>20100829141136<br>20100829163530                   | 129.5 29.5<br>130.0 29.0<br>129.0 29.0<br>130.0 29.0<br>128.0 25.4                                                                            | 4.1<br>4.1<br>3.7<br>3.9<br>4.1 | 10<br>40<br>20<br>40<br>10 | 360<br>18<br>266<br>2<br>200         | 20<br>75<br>71<br>84<br>60 | -70<br>77<br>126<br>310<br>230  | 159<br>240<br>20<br>100<br>79          | 71<br>20<br>40<br>40<br>48 | -97<br>130<br>30<br>190<br>318   | 4<br>5<br>3<br>6<br>8 |  |
| 1124<br>1125<br>1126<br>1127<br>1128 | 20100829163901<br>20100829163901<br>20100829165820<br>20100829180335<br>20100829181850<br>20100829222210 | 128.0 25.4<br>128.0 25.2<br>127.8 25.4<br>128.0 25.2<br>130.5 200                                                                             | 3.8<br>3.6<br>3.9<br>3.9        | 20<br>10<br>40<br>30       | 200<br>195<br>20<br>20               | 60<br>81<br>80<br>80       | 50<br>30<br>30<br>10<br>345     | 79<br>100<br>284<br>288                | 48<br>60<br>61<br>80       | 318<br>170<br>168<br>170<br>230  | 6<br>5<br>7<br>6      |  |
| 1129<br>1130<br>1131<br>1132         | 20100829224932<br>20100918042037<br>20100919032220<br>20100924015851<br>20100926180755                   | 130.5 29.0<br>130.5 29.0<br>125.0 24.0<br>127.8 25.2<br>122.4 24.4<br>128.0 25.8                                                              | 4<br>4<br>4<br>4.1              | 5<br>10<br>30<br>20        | 64<br>18<br>32<br>260                | 61<br>75<br>80<br>60       | 168<br>77<br>10<br>50           | 160<br>240<br>300<br>139               | 80<br>20<br>80<br>48       | 30<br>130<br>170<br>138          | 6<br>7<br>4<br>8      |  |
| 1133<br>1134<br>1135<br>1136<br>1137 | 20100926180755<br>20100926181110<br>20100927064629<br>20100927075500<br>20100927111000                   | 126.0       25.8         128.2       25.4         128.0       25.6         127.0       24.4         131.0       28.0                          | 5.9<br>4<br>3.8<br>4<br>3.9     | 20<br>30<br>20<br>5<br>5   | 192<br>206<br>260<br>259             | 40<br>80<br>64<br>40<br>71 | 10<br>34<br>-30<br>-97          | 05<br>100<br>100<br>14<br>100          | 55<br>80<br>60<br>71<br>20 | 170<br>170<br>150<br>-126<br>-70 | 4<br>5<br>3<br>4      |  |
| 1138<br>1139<br>1140<br>1141         | 20100928093316<br>20100928094305<br>20101008151315<br>20101008163910                                     | 128.0 25.4<br>127.8 25.6<br>123.4 23.4<br>123.6 23.6                                                                                          | 3.8<br>4<br>4<br>4.6            | 20<br>20<br>60<br>40       | 200<br>260<br>40<br>38               | 60<br>40<br>80<br>84       | 230<br>-70<br>230<br>50         | 79<br>55<br>298<br>300                 | 48<br>53<br>41<br>40       | 318<br>-106<br>345<br>170        | 4<br>5<br>7<br>9      |  |

| 1306         | 20111118203130                   | 127.8 25.4<br>128.0 25.8 | 4.1        | 30<br>20 | 40<br>256         | 80<br>36 | 190<br>301       | 308<br>40         | 80<br>60 | 350<br>250   | 6      | B      |
|--------------|----------------------------------|--------------------------|------------|----------|-------------------|----------|------------------|-------------------|----------|--------------|--------|--------|
| 1308         | 20111122164616                   | 131.5 27.5               | 3.9        | 30<br>10 | 80                | 80       | 170              | 172               | 80       | 10           | 3      | Č      |
| 1309         | 20111123110308                   | 130.0 27.0<br>131.5 28.5 | 3.9<br>3.9 | 10<br>5  | 68<br>62          | 61<br>80 | 118<br>107       | 200<br>180        | 40<br>20 | 50<br>30     | 5<br>5 | B      |
| 1311         | 20111204204812                   | 128.8 25.8               | 3.6        | 10       | 201               | 48       | 42               | 80                | 60       | 130          | 5      | B      |
| 1313         | 20111215164640                   | 127.2 24.2<br>127.8 25.6 | 4.5<br>3.9 | 20       | 280<br>280        | 40<br>40 | -30<br>130       | 52                | 61       | -120<br>61   | 43     | Č      |
| 1314         | 20111220101959                   | 125.0 23.8               | 4.0        | 20       | 240               | 20       | 90<br>34         | 60                | 70       | 90<br>150    | 9      | A      |
| 1316         | 20111228051412                   | 127.8 25.4               | 3.8        | 30       | 20<br>20          | 80       | 10               | 280               | 80       | 170          | 6      | B      |
| 1317         | 20111228171925                   | 128.0 25.4<br>130.5 28.5 | 3.7        | 10<br>5  | 200<br>75         | 60<br>81 | 50<br>-150       | 79<br>340         | 48<br>60 | 138<br>-10   | 6<br>4 | B      |
| 1319         | 20120115075637                   | 129.0 29.0               | 3.9        | 40       | 238               | 75       | -103             | 100               | 20       | -50          | 5      | B      |
| 1320         | 20120121141256 20120204024251    | 129.0 28.0<br>130.0 28.0 | 3.7<br>3.7 | 30<br>30 | 360<br>48         | 20<br>80 | 50<br>170        | 140               | 75<br>60 | 103          | 4<br>6 | B      |
| 1322         | 20120204130259                   | 127.8 25.2               | 4          | 30       | 20                | 80       | 190              | 288               | 80       | 350          | 5      | B      |
| 1324         | 20120209003803                   | 130.0 28.0               | 3.0<br>3.8 | 30       | 40<br>48          | 80<br>80 | 350              | 130               | 80       | 12           | 6      | B      |
| 1325         | 20120215202330                   | 130.0 29.5               | 3.9        | 20       | 320               | 20<br>87 | 50<br>70         | 182               | 75<br>20 | 103          | 3      | C      |
| 1327         | 20120219022226                   | 130.0 29.5               | 4.1        | 20       | 296               | 22       | -153             | 140               | 80       | -70          | 5      | B      |
| 1328         | 20120219123308                   | 130.5 29.0               | 4.1<br>3.7 | 5        | 64<br>72          | 61<br>80 | 346<br>10        | $\frac{160}{340}$ | 80<br>80 | $210 \\ 170$ | 6<br>5 | B      |
| 1330         | 20120219221531                   | 130.5 29.0               | 4          | 5        | 239               | 87       | 70               | 140               | 20       | 170          | é      | B      |
| 1331         | 20120223210224<br>20120225042050 | 130.0 28.0 123.8 23.6    | 3.7<br>3.8 | 30<br>20 | $280^{48}$        | 80<br>40 | 170              | 140<br>52         | 80<br>61 | 10<br>62     | 5<br>5 | В      |
| 1333         | 20120227020229                   | 123.4 23.4               | 4.2        | 50       | 35                | 81       | 30               | 300               | 60       | 170          | 9      | A      |
| 1335         | 20120227025208                   | 123.4 23.4 123.6         | 4.4        | 40       | 38                | 80<br>84 | 50<br>50         | 300               | 40       | 170          | 9      | A      |
| 1336         | 20120227073121                   | 123.4 23.4<br>123.4 23.4 | 4.3<br>4.2 | 50<br>60 | 35<br>40          | 81<br>80 | -150<br>230      | 300<br>298        | 60<br>41 | -10<br>345   | 9<br>8 | A<br>A |
| 1338         | 20120227073840                   | 123.4 23.4               | 4          | 50       | 40                | 80       | 50               | 298               | 41       | 165          | 9      | A      |
| 1339<br>1340 | 20120227074440<br>20120227110111 | 123.4 23.4<br>123.4 23.4 | 3.9<br>3.8 | 40<br>60 | 40<br>40          | 80<br>80 | 50<br>50         | 298<br>298        | 41<br>41 | 165<br>165   | 9      | A<br>A |
| 1341         | 20120227221042                   | 123.4 23.4               | 4          | 50       | 40                | 80       | 230              | 298               | 41       | 345          | 6      | B      |
| 1342         | 20120227235459<br>20120228074229 | 123.4 23.4<br>123.4 23.4 | 4.3<br>4.1 | 60<br>50 | 40<br>40          | 80<br>80 | 50<br>50         | 298<br>298        | 41<br>41 | 165<br>165   | 9      | A<br>A |
| 1344         | 20120228090524                   | 123.4 23.4               | 4          | 60<br>60 | 40                | 80       | 50               | 298               | 41       | 165          | 8      | A      |
| 1345         | 20120228090755                   | 123.4 23.4 123.4         | 4.2        | 50       | 40                | 80<br>80 | 230              | 298               | 41       | 345          | 9      | A      |
| 1347         | 20120228204939                   | 123.2 23.4               | 4.1<br>4   | 20<br>20 | 280<br>280        | 50<br>40 | 90<br>-70        | 100<br>75         | 40<br>53 | 90<br>-106   | 6      | B      |
| 1349         | 20120229234546                   | 123.2 23.6               | 3.9        | 60       | 58                | 84       | -130             | 320               | 40       | -10          | 8      | Ă      |
| 1350         | 20120229235155<br>20120301031914 | 123.2 23.6               | 3.8<br>3.8 | 60<br>60 | 222               | 84<br>84 | 310<br>310       | 320<br>320        | 40<br>40 | 190<br>190   | 8      | A<br>A |
| 1352         | 20120301032246                   | 123.2 23.6               | 3.9        | 60       | 22                | 84       | 310              | 320               | 40       | 190          | 8      | A      |
| 1355         | 20120301052740                   | 123.2 23.0               | 3.0<br>3.7 | 30<br>30 | 200               | 40<br>80 | -10              | 292               | 80       | -170         | 8      | ь<br>А |
| 1355         | 20120301110507                   | 123.0 23.4               | 4.1<br>4   | 30<br>30 | 212               | 80<br>80 | 10               | 120               | 80<br>80 | 170          | 9      | A<br>A |
| 1357         | 20120301132214                   | 123.8 23.6               | 3.9        | 20       | 280               | 40       | -50              | 52                | 61       | -118         | 6      | B      |
| 1358         | 20120301144937<br>20120301145554 | 123.8 23.6<br>123.8 23.8 | 4.2<br>3.9 | 20<br>10 | $\frac{280}{280}$ | 40<br>20 | -50<br>130       | 52<br>58          | 61<br>75 | -118<br>77   | 7<br>7 | B<br>B |
| 1360         | 20120301151112                   | 123.8 23.6               | 3.6        | 20       | 276               | 36       | 121              | 60                | 60       | 70           | 6      | Ĩ      |
| 1362         | 20120301131313                   | 123.8 23.0               | 3.7<br>3.8 | 20<br>10 | 280               | 40<br>84 | 130              | 320               | 40       | 02<br>10     | 7      | В      |
| 1363         | 20120301185730                   | 123.0 23.6               | 3.8        | 40<br>20 | 58<br>225         | 84<br>81 | 50<br>150        | 320               | 40<br>60 | 170          | 9      | A<br>A |
| 1365         | 20120301202109                   | 123.0 23.6               | 3.8        | 40       | 58                | 84       | 50               | 320               | 40       | 170          | 9      | Â      |
| 1366         | 20120302030226<br>20120302061445 | 122.8 23.6<br>125.4 24.0 | 4.1<br>4   | 30<br>30 | 225<br>252        | 81<br>80 | -170             | 320<br>160        | 60<br>80 | 190<br>-10   | 9      | A<br>A |
| 1368         | 20120302094817                   | 126.0 25.4               | 4          | 5        | 18                | 75       | -103             | 240               | 20       | -50          | 4      | Ĉ      |
| 1370         | 20120303213730                   | 123.4 22.0 124.2 23.8    | 3.9<br>3.9 | 20       | 240<br>240        | 40<br>30 | -70<br>-90       | 60                | 55<br>60 | -106<br>-90  | 0<br>7 | B      |
| 1371         | 20120304124439                   | 127.8 25.4               | 4.1<br>3 0 | 20       | 20                | 80<br>60 | 190<br>50        | 288<br>70         | 80<br>48 | 350<br>138   | 8      | A<br>^ |
| 1373         | 20120307165630                   | 128.0 25.4               | 4.1        | 30       | 12                | 80       | 10               | 280               | 80       | 170          | 5      | B      |
| 1374<br>1375 | 20120307172055<br>20120307180355 | 128.2 25.2<br>128.2 25.4 | 4.1<br>3.8 | 50<br>30 | 12<br>20          | 80<br>60 | $\frac{10}{210}$ | 280<br>274        | 80<br>64 | 170<br>326   | 6<br>5 | B<br>B |
| 1376         | 20120308034516                   | 124.4 23.6               | 3.8        | 20       | 60                | 40<br>81 | -50              | 192               | 61       | -118         | Ž      | Ĩ      |
| 1378         | 20120310030140                   | 122.8 23.4<br>122.8 23.4 | 5.9<br>3.9 | 50<br>40 | 55<br>60          | 81<br>80 | 30<br>30         | 520<br>324        | 60<br>61 | 168          | 9      | В<br>А |
| 1379         | 20120310075033                   | 122.8 23.4               | 3.9        | 40<br>60 | 60                | 80<br>81 | 30               | 324               | 61<br>60 | 165          | 9      | A<br>^ |
| 1381         | 20120313020426                   | 122.8 23.4               | 3.9        | 40       | 60                | 80       | 30               | 324               | 61       | 165          | 8      | A      |
| 1382         | 20120313021552 20120314164142    | 122.8 23.4<br>122.6 23.4 | 3.9<br>4   | 40<br>30 | 60<br>68          | 80<br>80 | 30<br>170        | 324<br>160        | 61<br>80 | 168<br>10    | 8<br>6 | A<br>R |
| 1384         | 20120404151919                   | 128.0 25.6               | 3.7        | 10       | 84                | 61       | 168              | 180               | 80       | 30           | 5      | B      |
| 1385         | 20120405002805 20120405003815    | 128.0 25.6<br>128.0 25.6 | 3.8<br>3.8 | 5<br>10  | 268<br>88         | 80<br>80 | 350<br>170       | 0<br>180          | 80<br>80 | 190<br>10    | 6      | В<br>В |
| 1387         | 20120405020124                   | 128.0 25.6               | 3.9        | 5        | 360               | 80       | 170              | 92                | 80       | ĩŏ           | 5      | B      |
| 138901139931139951139945113996789900123946678990012399456789900123994567899001239945678990012399456789900124444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20120405035500<br>20120405112317<br>20120406031656<br>20120428003000<br>20120428003000<br>20120428003000<br>20120428003000<br>20120428003000<br>20120511065146<br>20120511065146<br>20120511083028<br>20120522012808<br>20120522012808<br>20120526134841<br>20120621081052<br>20120630105808<br>20120701040934<br>20120703094140<br>20120716130211<br>20120716130219<br>20120716130729<br>20120716130729<br>20120716130729<br>20120716130729<br>20120716130729<br>20120716130729<br>20120716130729<br>20120716130729<br>20120716130729<br>20120727205448<br>20120727205448<br>20120727205448<br>20120727205448<br>201207272155204<br>2012082100295<br>2012082100295<br>2012082100295<br>2012082100295<br>2012082100295<br>201208210005<br>20120821194252<br>20120821194252<br>20120822200590<br>20120822200590<br>20120822200590<br>20120822200590<br>20120822200590<br>20120822200590<br>20120822200590<br>20120822200710<br>2012082200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>2012092200710<br>20120020200710<br>20120020200710<br>20120020200710<br>20120020200710<br>20120020200710<br>20120020200710<br>20120020200710<br>20120020200710<br>20120020200710<br>201200200710000000000 |
| 127.4 $24.4$ $128.0$ $25.6$ $128.2$ $26.2$ $122.0$ $22.0$ $125.0$ $24.0$ $125.2$ $24.0$ $125.2$ $23.5$ $123.8$ $23.2$ $129.4$ $26.8$ $125.2$ $23.5$ $123.8$ $23.2$ $129.4$ $26.4$ $125.0$ $24.0$ $124.2$ $23.6$ $131.5$ $29.0$ $124.2$ $24.8$ $124.2$ $24.4$ $125.0$ $23.6$ $127.6$ $26.4$ $127.6$ $26.4$ $127.6$ $26.4$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.6$ $125.0$ $23.4$ $128.0$ $25.6$ $127.8$ $25.2$ $127.8$ $25.4$ $128.0$ $25.6$ $127.8$ $25.4$ $128.0$ $25.6$ $127.6$ $24.4$ $128.0$ $25.8$ $130.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $120.0$ $28.0$ $123.0$ $28.0$ </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 3.8\\ 3.9\\ 3.8\\ 4\\ 4.2\\ 4.1\\ 3.4\\ 3.4\\ 4.3\\ 4.3\\ 3.3\\ 3.4\\ 4.1\\ 4.3\\ 3.3\\ 3.4\\ 4.1\\ 3.4\\ 3.3\\ 3.4\\ 4.1\\ 3.4\\ 3.3\\ 3.4\\ 4.1\\ 3.3\\ 3.4\\ 4.1\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 10\\ 5\\ 6\\ 5\\ 10\\ 10\\ 30\\ 10\\ 30\\ 30\\ 60\\ 30\\ 10\\ 10\\ 5\\ 20\\ 30\\ 20\\ 20\\ 5\\ 5\\ 5\\ 5\\ 20\\ 20\\ 20\\ 5\\ 5\\ 5\\ 30\\ 30\\ 5\\ 5\\ 20\\ 30\\ 10\\ 20\\ 20\\ 20\\ 40\\ 50\\ 10\\ 10\\ 10\\ 50\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 60\\ 5\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 26\\ 40\\ 180\\ 268\\ 640\\ 40252\\ 224\\ 260\\ 0\\ 281\\ 18\\ 240\\ 258\\ 260\\ 300\\ 180\\ 655\\ 540\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} 64\\ 50\\ 60\\ 61\\ 71\\ 40\\ 50\\ 80\\ 75\\ 80\\ 60\\ 75\\ 40\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 34\\ 90\\ -10\\ 298\\ 126\\ -70\\ -90\\ 10\\ 103\\ -170\\ 59\\ -30\\ 90\\ 97\\ -103\\ 30\\ 77\\ 110\\ 70\\ -10\\ 50\\ -90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 280\\ 220\\ 275\\ 40\\ 180\\ 35\\ 220\\ 160\\ 240\\ 14\\ 180\\ 80\\ 240\\ 14\\ 180\\ 80\\ 240\\ 14\\ 180\\ 80\\ 240\\ 120\\ 55\\ 145\\ 272\\ 3120\\ 60\\ 60\\ 60\\ 60\\ 292\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 220\\ 92\\ 200\\ 300\\ 300\\ 300\\ 300\\ 300\\ 300\\ 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 60\\ 40\\ 81\\ 40\\ 53\\ 40\\ 80\\ 80\\ 60\\ 71\\ 40\\ 20\\ 26\\ 40\\ 53\\ 80\\ 41\\ 60\\ 60\\ 60\\ 60\\ 61\\ 80\\ 80\\ 61\\ 80\\ 80\\ 61\\ 80\\ 80\\ 61\\ 80\\ 71\\ 80\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 60\\ 80\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 160\\ 90\\ -150\\ 230\\ 30\\ -106\\ -90\\ 170\\ 50\\ -10\\ 110\\ -126\\ 90\\ 70\\ -50\\ 146\\ 130\\ 74\\ 106\\ -170\\ 165\\ 170\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3544555788384483454555488896564546555543575543555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| СВССВВВВААСАССАССВСВВВСААААВВВСВСВВВВВВССВВВВВССВВВВВСВВВВВСВВВВВСВВВВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 1470 | 20121027010733   | 124.0 20 | 5.0 3.9 | 30 | 240 | 80 | -10     | 332 | 80 | -170   | 3 | С |
|------|------------------|----------|---------|----|-----|----|---------|-----|----|--------|---|---|
| 1471 | 20121027030825   | 123.8 2  | 3.6 3.5 | 20 | 276 | 36 | 121     | 60  | 60 | 70     | 5 | B |
| 1472 | 20121027182150   | 123.4 2  | 3.4 4.1 | 60 | 40  | 80 | 50      | 298 | 41 | 165    | 7 | В |
| 1473 | 20121029004939   | 123.0 23 | 3.6 3.9 | 40 | 60  | 80 | 50      | 318 | 41 | 165    | 9 | А |
| 1474 | 20121029015613   | 123.0 23 | 3.6 4   | 40 | 225 | 81 | 330     | 320 | 60 | 190    | 9 | А |
| 1475 | 20121029022308   | 123.0 23 | 3.6 4.2 | 40 | 58  | 84 | -130    | 320 | 40 | -10    | 8 | А |
| 1476 | 20121029051746   | 123.0 23 | 3.8 4   | 20 | 225 | 81 | 150     | 320 | 60 | 10     | 3 | С |
| 1477 | 20121029053343   | 123.2 2  | 3.8 3.9 | 20 | 280 | 20 | -50     | 58  | 75 | -103   | 3 | С |
| 1478 | 20121029062116   | 123.0 2. | 3.6 4   | 40 | 58  | 84 | 50      | 320 | 40 | 170    | 4 | С |
| 1479 | 20121030083853   | 122.8 2  | 3.4 4   | 40 | 60  | 80 | 30      | 324 | 61 | 168    | 8 | А |
| 1480 | 20121030084651   | 122.8 2. | 3.4 3.9 | 40 | 60  | 80 | 30      | 324 | 61 | 168    | 9 | А |
| 1481 | 20121030085348   | 122.8 2. | 3.4 3.7 | 30 | 60  | 80 | 30      | 324 | 61 | 168    | 9 | А |
| 1482 | 20121101184319   | 127.8 20 | 5.0 4.4 | 40 | 60  | 80 | -10     | 152 | 80 | -170   | 5 | В |
| 1483 | 20121101201049   | 123.2 2  | 3.2 4   | 20 | 234 | 71 | -126    | 120 | 40 | -30    | 4 | С |
| 1484 | 20121103031000   | 122.8 2. | 3.6 3.8 | 40 | 240 | 80 | -10     | 332 | 80 | -170   | 7 | В |
| 1485 | 20121103035640   | 122.8 2  | 3.4 3.8 | 30 | 60  | 80 | 30      | 324 | 61 | 168    | 8 | А |
| 1486 | 20121103042708   | 122.8 2  | 3.4 3.8 | 40 | 60  | 80 | 30      | 324 | 61 | 168    | 8 | А |
| 1487 | 20121105205632   | 129.0 20 | 5.5 4.1 | 5  | 15  | 53 | -106    | 220 | 40 | -70    | 6 | В |
| 1488 | 20121113165846   | 124.2 24 | 4.6 3.5 | 10 | 240 | 60 | -10     | 335 | 81 | -150   | 3 | C |
| 1489 | 20121113170213   | 124.2 2. | 3.8 3.6 | 20 | 240 | 30 | 90      | 60  | 60 | 90     | 8 | А |
| 1490 | 20121113171448   | 124.4 2  | 3.6 4   | 20 | 260 | 40 | 130     | 32  | 61 | 62     | 9 | А |
| 1491 | 20121113193529   | 124.2 2  | 3.6 3.9 | 20 | 220 | 40 | 70      | 65  | 53 | 106    | 8 | A |
| 1492 | 20121113200742   | 124.2 2. | 3.8 3.8 | 20 | 240 | 30 | -90     | 60  | 60 | -90    | 7 | В |
| 1493 | 20121114032259   | 125.4 2  | 2.6 4.1 | 5  | 320 | 40 | 110     | 115 | 53 | 74     | 3 | C |
| 1494 | 20121130054920   | 129.0 20 | 5.5 4   | 10 | 40  | 40 | 90      | 220 | 50 | 90     | 5 | B |
| 1495 | 20121130060500   | 128.5 20 | 5.5 4.1 | 10 | 220 | 80 | 250     | 104 | 22 | 333    | 4 | C |
| 1496 | 20121204200628   | 128.5 2  | /.0 3.8 | 20 | 66  | 64 | 34      | 320 | 60 | 150    | 1 | B |
| 1497 | 20121212123150   | 129.0 20 | 5.5 4   | 5  | 15  | 53 | /4      | 220 | 40 | 110    | 3 | C |
| 1498 | 20121212132706   | 128.5 2  | 7.0 3.9 | 20 | 299 | 48 | 138     | 60  | 60 | 50     | 1 | B |
| 1499 | 20121212133646   | 128.5 2  | 7.0 3.7 | 30 | 300 | 40 | -30     | 54  | 71 | -126   | 5 | B |
| 1200 | 20121212135640   | 128.5 2  | 1.0 3.8 | 30 | 300 | 40 | -30     | 54  | 71 | -126   | 5 | В |
| 1201 | 2012121212160320 | 129.0 2  | 2.2 3.8 | 10 | 248 | 80 | 350     | 340 | 80 | 190    | 4 | C |
| 1202 | 20121213004820   | 128.5 2  | 2.2 3.9 | 10 | 260 | 60 | 190     | 165 | 81 | 330    | 4 | C |
| 1203 | 20121213132550   | 129.0 2  | 1.0 3.8 | 2  | 80  | 80 | -10     | 172 | 80 | -170   | 4 | C |
| 1504 | 20121230182044   | 128.2 20 | b.0 4   | 5  | 80  | 80 | - ( ( ) | 172 | 80 | -1'/() | 4 | C |

## **Supplementary 1-F1**

24-hour seismograms showing VLFE activation caused by the Mw 8.3 Kuril earthquake











X 10+3

Time (sec)



X 10+3

Time (sec)



**Supplement 1-F1.** Twenty-four-hour vertical component seismograms after the M<sub>w</sub> 8.3 Kuril earthquake occurrence obtained from the broadband seismic stations of F-net (triangles in the right diagram). The seismogram filtered at 0.02-0.06 Hz is arranged from top to bottom based on increasing distance northward from 120°E, 20°N. The time zero in (a) is comparable to (UT) 11:00:00, on Nov. 15, 2006. The time spacing in each diagram (a-h) is three hours.

## **Supplementary 2**

## The catalog of RVLFEs in 2005-2012

| Z  | Time           | Log   | Lat  | Σ   | Depth | Strike | Dip | Rake | Strike | Dip | Rake | Quality | Quality | CCC          | Sectionce | Mo       |
|----|----------------|-------|------|-----|-------|--------|-----|------|--------|-----|------|---------|---------|--------------|-----------|----------|
|    |                | (a°)  | (N°) | M   | (km)  | 1      | 1   | 1    | 2      | 2   | 2    | value   | rank    | ( <b>V</b> ) | Jedgellee | (e+15Nm) |
| 1  | 20050306123904 | 125.2 | 23.9 | 4.1 | 20    | 0      | 80  | 50   | 258    | 41  | 165  | 6       | A       | 0.99         | 1-1       | 1.70     |
| 7  | 20050306124629 | 125.4 | 23.8 | 4.0 | 30    | 12     | 61  | 62   | 240    | 40  | 130  | 9       | в       | 1.00         | 1-2       | 1.42     |
| m  | 20050306125726 | 125.3 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | ∞       | A       | 1.00         | 1-3       | 1.06     |
| 4  | 20050306133847 | 125.3 | 23.9 | 3.9 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | ∞       | A       | 0.99         | 1-4       | 1.02     |
| ŋ  | 20050420034835 | 125.3 | 23.9 | 4.0 | 20    | 240    | 40  | 150  | 354    | 71  | 54   | 4       | U       | 0.94         | 2-1       | 1.32     |
| 9  | 20050420040629 | 125.3 | 23.9 | 4.1 | 20    | 20     | 60  | 70   | 238    | 36  | 121  | ∞       | ٩       | 0.99         | 2-2       | 1.53     |
| ~  | 20050427174543 | 125.2 | 23.9 | 4.0 | 20    | 0      | 80  | 50   | 258    | 41  | 165  | ∞       | A       | 0.93         | 2-3       | 1.36     |
| ∞  | 20050621104939 | 125.1 | 23.9 | 4.0 | 20    | 14     | 71  | 64   | 260    | 40  | 150  | 4       | U       | 0.89         | 3-1       | 1.26     |
| 6  | 20050621110723 | 125.2 | 23.8 | 4.0 | 20    | 40     | 60  | 06   | 220    | 30  | 06   | ഹ       | В       | 0.99         | 3-2       | 1.44     |
| 10 | 20050807180602 | 125.3 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 38  | 121  | ഹ       | В       | 0.98         | 4-1       | 1.49     |
| 11 | 20050807181218 | 125.2 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 36  | 122  | ഹ       | В       | 0.99         | 4-2       | 1.10     |
| 12 | 20051109233209 | 125.2 | 23.9 | 3.9 | 20    | 14     | 71  | 64   | 260    | 40  | 150  | ∞       | ٩       | 0.98         | 5-1       | 0.93     |
| 13 | 20051109233836 | 125.2 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | ∞       | A       | 1.00         | 5-2       | 1.19     |
| 14 | 20060108075950 | 125.3 | 23.9 | 3.9 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | ഹ       | в       | 0.99         | 6-1       | 0.96     |
| 15 | 20060108080649 | 125.3 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | 9       | В       | 1.00         | 6-2       | 1.07     |
| 16 | 20060211094253 | 125.3 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | 7       | в       | 1.00         | 7-1       | 1.11     |
| 17 | 20060212131130 | 125.1 | 23.9 | 4.0 | 20    | 14     | 71  | 54   | 260    | 40  | 150  | 7       | в       | 0.97         | 7-2       | 1.14     |
| 18 | 20060603055500 | 125.3 | 23.9 | 3.8 | 20    | 12     | 61  | 62   | 240    | 40  | 130  | ഹ       | В       | 0.87         | 8-1       | 0.67     |
| 19 | 20060603061338 | 125.3 | 23.9 | 4.0 | 20    | 20     | 60  | 70   | 236    | 36  | 121  | ∞       | A       | 1.00         | 8-2       | 1.10     |
| 20 | 20060603074433 | 125.2 | 23.9 | 4.0 | 20    | 40     | 60  | 06   | 220    | 30  | 06   | 7       | в       | 1.00         | 8-3       | 1.48     |
| 21 | 20060609033819 | 125.2 | 23.8 | 4.0 | 20    | 14     | 71  | 54   | 260    | 40  | 150  | 7       | в       | 0.91         | 8-4       | 1.44     |
| 22 | 20060715204947 | 125.2 | 23.9 | 4.0 | 20    | 40     | 70  | 06   | 220    | 20  | 06   | ഹ       | в       | 0.96         | 9-1       | 1.42     |
| 23 | 20061111114018 | 125.2 | 23.9 | 4.1 | 20    | 0      | 80  | 50   | 258    | 41  | 165  | പ       | в       | 0.98         | 10-1      | 1.59     |
| 24 | 20061111114500 | 125.4 | 23.8 | 4.1 | 30    | 12     | 61  | 62   | 240    | 40  | 130  | ŝ       | U       | 1.00         | 10-2      | 2.08     |
| 25 | 20070112055346 | 125.2 | 23.8 | 3.9 | 20    | 14     | 71  | 54   | 260    | 40  | 150  | 6       | A       | 0.97         | 11-1      | 1.05     |
| 26 | 20070112060022 | 125.2 | 23.9 | 4.0 | 20    | 0      | 80  | 50   | 258    | 41  | 165  | ∞       | ۷       | 1.00         | 11-2      | 1.11     |

Table S1. Occurrence times, locations, magnitudes and source parameters of the 97 RVLFEs south of Miyako Island.

216

| 27 | 20070323140753 | 125.3 | 23.9 | 3.9 | 20 | 12  | 61 | 62  | 240 | 40 | 130 | 9 | в | 0.91 | 12-1 | 0.91 |
|----|----------------|-------|------|-----|----|-----|----|-----|-----|----|-----|---|---|------|------|------|
| 28 | 20070503013304 | 125.2 | 23.8 | 4.0 | 20 | 14  | 71 | 54  | 260 | 40 | 150 | 9 | В | 0.75 | 13-1 | 1.44 |
| 29 | 20070503014109 | 125.4 | 23.8 | 4.0 | 30 | 12  | 61 | 62  | 240 | 40 | 130 | 9 | В | 1.00 | 13-2 | 1.33 |
| 30 | 20070611114039 | 125.2 | 23.9 | 4.1 | 20 | 0   | 80 | 50  | 258 | 41 | 165 | 7 | В | 0.98 | 14-1 | 2.03 |
| 31 | 20070611114602 | 125.3 | 23.9 | 3.9 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 9 | В | 1.00 | 14-2 | 0.84 |
| 32 | 20070611120305 | 125.3 | 23.9 | 3.9 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ഹ | В | 1.00 | 14-3 | 0.99 |
| 33 | 20070731065125 | 125.4 | 23.8 | 4.2 | 30 | 12  | 61 | 62  | 240 | 40 | 130 | ∞ | ۷ | 0.99 | 15-1 | 2.22 |
| 34 | 20070731065637 | 125.4 | 23.8 | 4.0 | 30 | 12  | 61 | 62  | 240 | 40 | 130 | 7 | В | 1.00 | 15-2 | 1.49 |
| 35 | 20070731070758 | 125.3 | 23.9 | 3.9 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ∞ | ٩ | 1.00 | 15-3 | 0.92 |
| 36 | 20071222002451 | 125.4 | 23.8 | 4.2 | 30 | 12  | 61 | 62  | 240 | 40 | 130 | ∞ | ٩ | 0.99 | 16-1 | 2.46 |
| 37 | 20071222002826 | 125.3 | 23.9 | 3.9 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ∞ | ۷ | 1.00 | 16-2 | 0.95 |
| 38 | 20080211033516 | 125.2 | 23.9 | 4.1 | 20 | 0   | 80 | 50  | 258 | 41 | 165 | ∞ | ۷ | 0.98 | 17-1 | 1.68 |
| 39 | 20080211034133 | 125.4 | 23.8 | 4.0 | 30 | 12  | 61 | 62  | 240 | 40 | 130 | 7 | В | 1.00 | 17-2 | 1.37 |
| 40 | 20080211035341 | 125.2 | 23.8 | 3.9 | 20 | 40  | 60 | 06  | 220 | 30 | 06  | 7 | В | 0.99 | 17-3 | 0.86 |
| 41 | 20080215103433 | 125.2 | 23.9 | 3.9 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ഹ | В | 0.92 | 17-4 | 0.94 |
| 42 | 20080507055343 | 125.2 | 23.9 | 4.0 | 20 | 14  | 71 | 54  | 260 | 40 | 150 | ŝ | ۷ | 0.93 | 18-1 | 1.45 |
| 43 | 20080507055953 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 7 | В | 1.00 | 18-2 | 1.44 |
| 44 | 20080607271119 | 125.2 | 23.8 | 4.0 | 20 | 40  | 60 | 06  | 220 | 30 | 06  | പ | В | 0.91 | 19-1 | 1.47 |
| 45 | 20080627073009 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 9 | В | 1.00 | 19-2 | 1.14 |
| 46 | 20080701010642 | 125.1 | 23.9 | 3.9 | 20 | 14  | 71 | 54  | 260 | 40 | 150 | 9 | В | 0.93 | 20-1 | 0.82 |
| 47 | 20080901171245 | 125.2 | 23.9 | 4.1 | 20 | 0   | 80 | 50  | 258 | 41 | 165 | 8 | ٩ | 0.96 | 21-1 | 1.96 |
| 48 | 20080901192605 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 6 | A | 1.00 | 21-2 | 1.40 |
| 49 | 20080910061242 | 125.1 | 23.9 | 3.9 | 20 | 0   | 80 | 50  | 258 | 41 | 165 | 4 | ပ | 0.85 | 21-3 | 0.94 |
| 50 | 20081020164605 | 125.2 | 23.9 | 4.0 | 20 | 260 | 40 | 170 | 358 | 84 | 50  | 7 | в | 0.91 | 22-1 | 1.80 |
| 51 | 20081209131102 | 125.2 | 23.8 | 4.1 | 20 | 40  | 60 | 06  | 220 | 30 | 06  | 7 | в | 0.98 | 23-1 | 1.57 |
| 52 | 20081209131835 | 125.3 | 23.8 | 4.0 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 4 | U | 0.99 | 23-2 | 1.16 |
| 53 | 20081209134602 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ഹ | в | 0.99 | 23-3 | 1.31 |
| 54 | 20090126155349 | 125.1 | 23.9 | 4.0 | 20 | 14  | 17 | 54  | 260 | 40 | 150 | 7 | в | 0.83 | 24-1 | 1.32 |
| 55 | 20090126160209 | 125.3 | 23.9 | 4.1 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 7 | в | 1.00 | 24-2 | 1.64 |
| 56 | 20090331090046 | 125.2 | 23.9 | 4.1 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | 9 | в | 0.95 | 25-1 | 1.71 |
| 57 | 20090331090639 | 125.2 | 23.9 | 4.0 | 20 | 0   | 80 | 50  | 258 | 41 | 165 | 9 | в | 0.99 | 25-2 | 1.07 |
| 58 | 20090331092232 | 125.4 | 23.8 | 3.9 | 30 | 12  | 61 | 62  | 240 | 40 | 130 | 4 | U | 1.00 | 25-3 | 0.77 |
| 59 | 20090711050347 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ъ | В | 0.99 | 26-1 | 1.12 |
| 60 | 20090711051544 | 125.3 | 23.9 | 3.9 | 20 | 20  | 60 | 70  | 236 | 36 | 121 | ъ | В | 0.99 | 26-2 | 0.99 |

| 61         | 20090716144520 | 125.2 | 23.9 | 4.1 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | 9 | в | 0.99             | 26-3 | 1.8       |
|------------|----------------|-------|------|-----|----|-----|----|------|-----|----|-----|---|---|------------------|------|-----------|
| 62         | 20090813042022 | 125.2 | 23.9 | 4.0 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | 9 | в | 0.99             | 27-1 | 1.2       |
| 63         | 20090919032831 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | 7 | В | 0.99             | 28-1 | $1.3^{2}$ |
| 64         | 20091028144249 | 125.2 | 23.9 | 4.1 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | ∞ | ۷ | 0.95             | 29-1 | 2.06      |
| 65         | 20091028144929 | 125.2 | 23.9 | 4.0 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | 7 | В | 0.98             | 29-2 | 1.06      |
| 99         | 20091215165807 | 125.2 | 23.9 | 4.1 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | 7 | В | 0.97             | 30-1 | 1.57      |
| 67         | 20091215170305 | 125.2 | 23.9 | 3.9 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | 7 | В | 1.00             | 30-2 | 1.02      |
| 68         | 20100109162125 | 125.0 | 23.9 | 4.1 | 10 | 62  | 75 | 103  | 200 | 20 | 50  | 7 | В | 0.97             | 31-1 | 1.78      |
| 69         | 20100207115443 | 125.1 | 23.9 | 3.9 | 20 | 14  | 71 | 54   | 260 | 40 | 150 | 7 | В | 0.98             | 32-1 | 0.82      |
| 70         | 20100623111918 | 125.2 | 23.9 | 3.9 | 20 | 40  | 60 | 06   | 220 | 30 | 06  | 7 | В | 0.98             | 33-1 | 0.95      |
| 71         | 20100627053506 | 125.3 | 23.9 | 4.1 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | ∞ | ۷ | 0.99             | 33-2 | 1.89      |
| 72         | 20100627054038 | 125.2 | 23.9 | 3.9 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | 9 | В | 1.00             | 33-3 | 0.81      |
| 73         | 20100728182002 | 125.2 | 23.9 | 4.0 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | പ | В | 0.99             | 34-1 | 1.12      |
| 74         | 20100728191232 | 125.2 | 23.9 | 3.9 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | ∞ | A | 0.99             | 34-2 | 06.0      |
| 75         | 20100729062012 | 125.1 | 23.9 | 3.9 | 20 | 14  | 71 | 54   | 260 | 40 | 150 | 7 | В | 0.78             | 34-3 | 0.80      |
| 76         | 20100918042155 | 125.3 | 24.0 | 4.1 | 20 | 240 | 40 | 150  | 354 | 71 | 54  | 4 | ပ | 0.99             | 35-1 | 2.05      |
| 77         | 20101212053619 | 125.2 | 23.8 | 4.0 | 20 | 14  | 71 | 54   | 260 | 40 | 150 | 4 | υ | 0.95             | 36-1 | 1.12      |
| 78         | 20101216225239 | 125.2 | 23.9 | 4.0 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | 9 | В | 0.99             | 36-2 | 1.36      |
| 79         | 20110206052236 | 125.1 | 23.8 | 4.0 | 20 | 14  | 71 | 54   | 260 | 40 | 150 | ∞ | ٩ | 0.56             | 37-1 | 1.37      |
| 80         | 20110206053115 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | ∞ | ۷ | 0.99             | 37-2 | 1.44      |
| 81         | 20110214013319 | 125.2 | 23.9 | 4.1 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | 4 | U | 0.98             | 37-3 | 1.79      |
| 82         | 20110825051208 | 125.0 | 23.9 | 4.1 | 10 | 58  | 75 | 77   | 280 | 20 | 130 | ŝ | U | 06.0             | 38-1 | 2.04      |
| 83         | 20111012160404 | 125.1 | 23.9 | 4.0 | 20 | 0   | 80 | 50   | 258 | 41 | 165 | 6 | ٩ | 0.97             | 39-1 | 1.33      |
| 84         | 20111012161427 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | ∞ | ۷ | *<br>*<br>*<br>* | 39-2 | 1.32      |
| 85         | 20111012161910 | 125.2 | 23.9 | 3.8 | 20 | 20  | 60 | 70   | 238 | 36 | 121 | ∞ | ۷ | 0.99             | 39-3 | 0.69      |
| 86         | 20111019181343 | 125.1 | 23.9 | 4.1 | 20 | 14  | 71 | 54   | 260 | 40 | 150 | б | ۷ | 0.91             | 39-4 | 1.55      |
| 87         | 20111220102024 | 125.0 | 23.9 | 4.0 | 10 | 62  | 75 | 103  | 200 | 20 | 50  | 7 | в | 0.99             | 40-1 | 1.23      |
| 88         | 20120302061428 | 125.2 | 23.9 | 4.0 | 20 | 14  | 71 | 54   | 260 | 40 | 150 | 9 | в | 0.95             | 41-1 | 1.26      |
| 89         | 20120511065139 | 125.0 | 23.9 | 4.0 | 10 | 62  | 75 | 103  | 200 | 20 | 50  | 4 | U | 0.92             | 42-1 | 1.25      |
| 60         | 20120511065807 | 125.3 | 23.9 | 3.9 | 20 | 20  | 60 | 70   | 238 | 36 | 121 | ∞ | A | 1.00             | 43-1 | 0.97      |
| 91         | 20120511083028 | 125.3 | 23.9 | 4.0 | 20 | 20  | 60 | 70   | 236 | 36 | 121 | 6 | A | 1.00             | 43-2 | 1.35      |
| 92         | 20120522212813 | 125.1 | 23.9 | 3.9 | 20 | 14  | 71 | -126 | 260 | 40 | -30 | 7 | в | 0.91             | 43-3 | 0.86      |
| <b>6</b> 3 | 20120621081035 | 125.0 | 23.9 | 4.0 | 20 | 18  | 80 | 73   | 260 | 20 | 150 | ഹ | в | 0.99             | 44-1 | 1.43      |
| 94         | 20120727204612 | 125.0 | 23.6 | 4.1 | 20 | 60  | 60 | 06   | 240 | 30 | 06  | 4 | U | 0.92             | 45-1 | 2.09      |

| 1.23             | 1.16                    | 0.94             |
|------------------|-------------------------|------------------|
| 45-2             | 45-3                    | 45-4             |
| 1.00             | 1.00                    | 0.96             |
| U                | ပ                       | U                |
| 4                | 4                       | 4                |
| 06               | 06                      | 06               |
| 30               | 30                      | 30               |
| 240              | 240                     | 240              |
| 06               | 06                      | 60               |
| 60               | 60                      | 60               |
| 60               | 60                      | 60               |
| 20               | 20                      | 20               |
| 4.0              | 4.0                     | 3.9              |
| 23.6             | 23.6                    | 23.7             |
| 125.0            | 125.0                   | 125.0            |
| 5 20120727205444 | <b>5</b> 20120727211153 | 7 20120727225209 |
| <u> 1</u> 6      | 6                       | 6                |

 $^{***}$  The master event for the calculation of cross-correlation coefficients (y)