時間差分スキームのまとめ

振動方程式

$$\frac{dU}{dt} = i\pi U, \quad U(0) = 1 \tag{1}$$

について,様々な時間差分スキームを適用して数値的に計算した結果をまとめる. 計算は全て単精度で行い,計算時間は $0 \le t \le 4$ とした. グラフは実線が数値解,破線が解析解を表す.なお $p = \pi \Delta t$ とする.

オイラースキーム

式(1)にオイラースキームを用いて差分化した式は

$$U^{n+1} = (1+ip)U^n.$$

よって増幅係数は

$$\lambda = 1 + ip.$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ス テップ目を計算した値)を以下に示す. ただし, 絶対誤差については位相のずれの影 響を少なくするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	增幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	1.4827092	1.0019721	1.0019720	-1.63158774E-2
4×10^{-2}	1.00000000	2.1842029	1.0078648	1.0078648	-2.80020535E-2

時間の刻み幅が2倍になると,絶対誤差が約2倍になっている. これは誤差が $O(\Delta t)$ のオーダーを持つ事による. 増幅係数の1からのずれは約4倍になっている. これ $|\lambda| = 1 + O(\Delta t^2)$ だからである. また

$$\frac{\theta}{p} \approx 1 - \frac{1}{3}p^2 < 1$$

となるから, 数値解の位相は解析解の位相より遅く進んでいる. このことは $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 2) を参照.

図 1: オイラースキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した結果.

図 2: オイラースキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した結果.

後退スキーム

式(1)に後退スキームを用いて差分化した式は

$$U^{n+1} = U^n + ipU^{n+1}.$$

増幅係数は

$$\lambda = \frac{1+ip}{1+p^2}.$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ス テップ目を計算した値)を以下に示す. ただし, 絶対誤差については位相のずれの影 響を少なくするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	增幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	0.67425215	0.99803191	0.99803185	1.99537575E-2
4×10^{-2}	1.00000000	0.45586878	0.99219650	0.99219662	4.25848961E-2

時間の刻み幅を2倍にすると,絶対誤差が約2倍になる.これは誤差が $O(\Delta t)$ のオーダーを持つ事による. 増幅係数の1からのずれが約4倍になっている. これは増幅係数が

$$|\lambda| = \frac{1}{\sqrt{1+p^2}} \approx 1 - \frac{1}{2}p^2$$

となっているからである. 位相については

$$\frac{\theta}{p}\approx 1-\frac{1}{3}p^2<1$$

となるので、オイラースキームと同様に数値解は解析解よりも遅くなる. このこと は $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 4) を参照.

図 3: 後退スキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した結果.

図 4: 後退スキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した結果.

台形スキーム

式(1)に台形スキームを用いて差分化した式は

$$U^{n+1} = U^n + \frac{ip}{2}(U^n + U^{n+1}).$$

増幅係数は

$$\lambda = \frac{1}{1 + \frac{p^2}{4}} \left(1 - \frac{1}{4}p^2 + ip \right).$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ス テップ目を計算した値)を以下に示す. ただし, 絶対誤差については位相のずれの影 響を少なくするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	増幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	1.0000066	1.0000000	1.0000000	5.88953495E-4
4×10^{-2}	1.00000000	0.99986190	1.0000000	1.0000000	2.35441327E-3

時間の刻み幅を2倍にすると,絶対誤差が約4倍になる.これは $O(\Delta t^2)$ のオーダーを持つ事による.ただし解が1や-1となるところでは誤差が理論通りの精度にならない.解析解と数値解の値が近いので,グラフでは解析解の線と数値解の線が重なってしまう.位相については

$$\frac{\theta}{p} \approx 1 - \frac{1}{12}p^2 + O(p^4) < 1$$

となるので数値解の位相は解析解の位相より遅くなる. このことは $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 6) を参照.

図 5: 台形スキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した結果.

図 6: 台形スキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した結果.

松野スキーム

式(1)に松野スキームを用いて差分化した式は

$$U^{n+1} = (1 + ip - p^2)U^n.$$

増幅係数は

$$\lambda = 1 + ip - p^2.$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ステップ目を計算した値)を以下に示す. ただし, 絶対誤差については位相のずれの影響を少なくするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	增幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	0.67398202	0.99803185	0.99803191	1.32847726E-2
4×10^{-2}	1.00000000	0.45291054	0.99219859	0.99219859	1.74482167E-2

時間の刻み幅を2倍にすると,絶対誤差は大きくなるものの2倍にはならなかった. 松野スキームでは絶対誤差が理論通りにならないケースがある. 増幅係数の1から のずれが約4倍になっている. これは増幅係数の絶対値が

$$|\lambda|=\sqrt{1-p^2+p^4}=1-O(\Delta t^2)$$

となるためである. 位相については

$$\frac{\theta}{p}\approx 1+\frac{2}{3}p^2+O(p^3)>1$$

となるので数値解の位相は解析解の位相より速くなる. このことは $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 8) を参照.

図 7: 松野スキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した結果.

図 8: 松野スキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した結果.

ホインスキーム

式(1)にホインスキームを用いて差分化した式は

$$U^{n+1} = \left(1 + ip - \frac{p^2}{2}\right)U^n.$$

増幅係数は

$$\lambda = 1 + ip - \frac{p^2}{2}.$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ステップ目の値)を以下に示す. ただし, 絶対誤差については位相のずれの影響を少な くするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	增幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	1.0003552	1.0000020	1.0000019	-1.19614601E-3
4×10^{-2}	1.00000000	1.0025758	1.0000310	1.0000311	-4.83867526E-3

時間の刻み幅を2倍にすると, 誤差は約4倍になった. これは誤差が $O(\Delta t^2)$ のオーダーを持つ事による. また増幅係数の1からのずれが約16倍になっている. これは 増幅係数の絶対値が

$$|\lambda| = \sqrt{1 + \frac{1}{4}p^4} \approx 1 + \frac{1}{8}p^4$$

となっているからである. 位相については

$$\frac{\theta}{p}\approx 1+\frac{1}{6}p^2+O(p^4)>1$$

となるので数値解の位相は解析解の位相より速くなる. このことは $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 10) を参照.

図 9: ホインスキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した結果.

図 10: ホインスキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した結果.

リープフロッグスキーム

式(1)にリープフロッグスキームを用いて差分化した式は

$$U^{n+1} = U^{n-1} + 2ipU^n.$$

物理モードの増幅係数は

$$\lambda = \sqrt{1 - p^2} + ip.$$

計算モードの増幅係数は

$$\lambda = -\sqrt{1 - p^2} + ip.$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ステップ目を計算した値)を以下に示す. ただし, 絶対誤差については位相のずれの影響を少なくするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	增幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	0.99996626	0.99999309	0.99999994	-1.12247467E-3
4×10^{-2}	1.00000000	0.99946183	0.99990833	0.99999994	-4.76795435E-3

精度を良くするために, U^0 から U^1 を計算するときに台形スキームを用いた. 時間 の刻み幅を 2 倍にすると, 絶対誤差は約 4 倍になる. これは誤差が $O(\Delta t^2)$ のオー ダーを持つことによる. 台形スキームのときと同じように, 解が 1, -1 になるとこ ろでは誤差が理論通りにならない. 増幅係数はステップごとに 1 を中心に振動する ような振る舞いをする¹. 具体的には, 刻み幅が $\Delta t = 2 \times 10^{-2}$ のとき, 増幅係数は $\lambda = 1 \pm 5.0 \times 10^{-5}$ となり, $\Delta t = 4 \times 10^{-2}$ のとき, 増幅係数は $\lambda = 1 \pm 5.0 \times 10^{-4}$ となる. これはわずかに計算モードの影響があるからである. 位相については

$$\frac{\theta}{p} = \arctan\left(\frac{p}{\sqrt{1-p^2}}\right) \approx 1 + \frac{p^2}{6} > 1$$

となるので数値解の位相は解析解の位相より速くなる. このことは $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 12) を参照.

¹「振動するような」と書いたのは, 基本的に振動するが, たまに 2 ステップ連続で 1 を下回った り, 上回ったりする場合があるからである.

図 11: リープフロッグスキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した 結果.

図 12: リープフロッグスキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した 結果.

アダムス・バッシュフォーススキーム

式(1)に二次のアダムス・バッシュフォーススキームを用いて差分化した式は

$$U^{n+1} = U^n + ip\left(\frac{3}{2}U^n - \frac{1}{2}U^{n-1}\right).$$

物理モードの増幅係数は

$$\lambda = \frac{1}{2} \left(1 + \frac{3}{2}ip + \sqrt{1 - \frac{9}{4}p^2 + ip} \right).$$

計算モードの増幅係数は

$$\lambda = \frac{1}{2} \left(1 + \frac{3}{2}ip - \sqrt{1 - \frac{9}{4}p^2 + ip} \right).$$

 $\Delta t = 2 \times 10^{-2}, \Delta t = 4 \times 10^{-2}$ で計算した結果 (それぞれ 200 ステップ目, 100 ステップ目を計算した値)を以下に示す. ただし, 絶対誤差については位相のずれの影響を少なくするため, それぞれ 30 ステップ目, 15 ステップ目の値を表記している.

Δt	解析解	数值解	增幅係数	增幅係数解析值	絶対誤差
2×10^{-2}	1.00000000	1.0005734	1.0000039	1.0000038	-2.87300348E-3
4×10^{-2}	1.00000000	1.0030313	1.0000644	1.0000644	-1.12338066E-2

精度を良くするために, U^0 から U^1 を計算するときに台形スキームを用いた. 時間 の刻み幅を2倍にすると, 誤差は約4倍になる. これは誤差が $O(\Delta t^2)$ のオーダーを 持つことによる. ただし, 解が 1, -1 になるところでは誤差が理論通りにならない. また増幅係数の1からのずれが約 16倍になっている. これは物理モードの増幅係 数の絶対値が

$$|\lambda| = 1 + O(\Delta t^4)$$

となっているからである. なお |p| < 1 であるから計算モードは減衰するので, 計算 モードの増幅係数は無視できる. 位相については

$$\frac{\theta}{p}\approx 1+\frac{5}{12}p^2+O(p^3)>1$$

となるので²数値解の位相は解析解の位相より速くなる. このことは $\Delta t = 2 \times 10^{-1}$ で計算した結果のグラフ (図 14) を参照.

2011_1006-fukushi.tex

²導出は付録参照.

図 13: アダムス・バッシュフォーススキームを用いて, $\Delta t = 2 \times 10^{-2}$ で 200 ステップ計算した結果.

図 14: アダムス・バッシュフォーススキームを用いて, $\Delta t = 2 \times 10^{-1}$ で 20 ステップ計算した結果.

付録: アダムス・バッシュフォーススキームの位相比

ここでは二次のアダムス・バッシュフォーススキームの物理モードの位相比を導 出する.

物理モードの増幅係数は

$$\lambda = \frac{1}{2} \left(1 + \frac{3}{2}ip + \sqrt{1 - \frac{9}{4}p^2 + ip} \right)$$

である. 今, |p| <1 であることより, 根号の部分をテイラー展開し計算すると,

$$\lambda = 1 + ip - \frac{1}{2}p^2 + \frac{1}{4}ip^3 - \frac{1}{4}p^4 + \cdots$$

実部と虚部に分けると,

$$\lambda = \left(1 - \frac{1}{2}p^2 - \frac{1}{4}p^4 + \cdots\right) + i\left(p + \frac{1}{4}p^3 + \cdots\right).$$

位相比 θ/p を求める.

$$\frac{\theta}{p} = \frac{1}{p} \arctan\left(\frac{\lambda_{im}}{\lambda_{re}}\right)$$
$$= \frac{1}{p} \arctan\left(\frac{p + \frac{1}{4}p^3 + \cdots}{1 - \frac{1}{2}p^2 - \frac{1}{4}p^4 \cdots}\right)$$

|p| < 1 であるから, () の中は三次までを有効とすると

$$\frac{\theta}{p} \approx \frac{1}{p} \arctan\left(\frac{p + \frac{1}{4}p^3}{1 - \frac{1}{2}p^2}\right).$$

arctanの()の中身をテイラー展開して

$$\frac{\theta}{p} \approx \frac{1}{p} \arctan\left(p + \frac{3}{4}p^3 + O(p^4)\right).$$

次に, arctan をテイラー展開して計算すると

$$\begin{split} &\frac{\theta}{p} \approx \frac{1}{p} \left\{ \left(p + \frac{3}{4}p^3 + O(p^4) \right) - \frac{1}{3} \left(p + \frac{3}{4}p^3 + O(p^4) \right)^3 + \frac{1}{5} \left(p + \frac{3}{4}p^3 + O(p^4) \right)^5 + \cdots \right\} \\ &\approx \frac{1}{p} \left\{ p + \frac{5}{12}p^3 + O(p^4) \right\} \\ &= 1 + \frac{5}{12}p^2 + O(p^3). \end{split}$$