Seasonal and inter-annual changes of volume density of martian CO₂ snow from time–variable elevation and gravity

Koji Matsuo, Kosuke Heki *

Dept. Natural History Sci., Hokkaido University, N10 W8, Kita-ku, Sapporo-City, Hokkaido 060-0810, Japan

Abstract

The martian atmosphere seasonally exchanges CO₂ with the surface by repeating condensation and sublimation, causing seasonal growth and decay of the polar CO₂ snowcaps. These processes leave two kinds of geodetic signatures, i.e. seasonal changes of the martian gravity field and of surface elevation of the snow-covered regions. Here we study gradual increase of the volume density of the martian snow due to compaction, by combining two data sets during 1999–2001 covering three martian winters. We found that light fresh snow of \(\sim \)0.1 \(\times \)10³ kg m⁻³ slowly becomes denser reaching \(-1.0 \times 10³ \) kg m⁻³ or more immediately before it thaws. The maximum snow density varies slightly from year to year, and between hemispheres. In the second southern winter, the density became as high as \(-1.6 \times 10³ \) kg m⁻³. This might have been caused by a dust storm activity, e.g. increased mixing of silicate particles and/or enhancement of sintering.

1. Introduction

Ninety-five percent of the current atmosphere of Mars is carbon dioxide (CO₂). Up to one third of the total CO₂ is considered to solidify every martian year, i.e. it accumulates as “snow” in the polar region of the wintry hemisphere where temperature drops below the CO₂ condensation point. It sublimates into atmosphere in late spring. Such seasonal mass redistribution can be measured by two independent geodetic techniques, i.e. altimetry and gravimetry.

The observations of topography by the Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) spanned more than a full martian year. In addition to stationary topography, they revealed changes in the surface elevation in specific high-latitude (65.5–86.5 degrees) regions due to seasonal growth and decay of the polar snowcaps. Smith et al. (2001) collected over 66 million altitude data, and applied profile analysis to obtain a longitude-averaged data set with an accuracy of 5–6 cm. Increases of elevation more than a meter in winter hemispheres are clear there. Apart from that, Doppler tracking of the spacecraft revealed seasonal redistribution of CO₂ in terms of temporal changes of certain low degree Stokes’ coefficients of the martian gravity field (Yoder et al., 2003; Konopliv et al., 2006).

Such seasonal altitude and gravity changes occur in phase, and we can compare the two quantities to infer average volume density of the polar snow packs. Smith et al. (2001), by comparing the MOLA surface altitude data with the changes of the martian oblateness (the \(J_2 \) component of the gravity field), estimated the average density of the snow as \(\sim 0.91 \pm 0.23 \times 10³ \) kg m⁻³. This value is \(-40\% \) less than CO₂ ice \(\sim 1.5 \times 10³ \) kg m⁻³. There they assumed that the snow density remains constant throughout the year.

In the Earth, water snow density is known to change in time; light freshly-fallen snow \(\sim 0.08 \times 10³ \) kg m⁻³ often becomes as dense as \(0.5 \times 10³ \) kg m⁻³ before snow thaw (e.g., Heki, 2004). Feldman et al. (2003) inferred the amount of the martian CO₂ snow by neutron spectrometry and compared it with the MOLA elevation results. They found that their results were often smaller than those inferred from altimetry data. Hence they suggested that snow density was, at that time, substantially lower than \(\sim 0.91 \times 10³ \) kg m⁻³, the value they assumed after Smith et al. (2001) in order to compare their snow weight data and the MOLA elevation changes. They speculated that the martian snow density might continuously increase due to compaction and re-crystallization. Here we try to reveal such temporal changes of snow density by combining the available elevation and gravity data sets.

2. Estimation of time–variable snow density

2.1. Gravimetric and altimetric \(\Delta J_3 \)

We use the elevation (snow depth) changes from MOLA given in Fig. 2 of Smith et al. (2001). The differences of elevations from reference values, at 20 latitude bands from 65.5 to 86.5 degrees, are given at every 15 degrees in the solar longitudes \(L_s \) (\(L_s \) starts from the vernal equinox and changes by 360° in a martian year). Fig. 1 illustrates such snow depth snapshots between \(L_s \) 105° and...
Compaction of martian CO$_2$ snow

Fig. 1. Time series of changes in latitudinal profiles of snow depth at every 15 degrees of solar longitude L_s between 105$^\circ$ and 525$^\circ$ expressed as the sum of zonal spherical harmonics with degrees 2–10. The left and right panels show south and north regions, respectively. Snow depth attains the largest value (\sim1.5 and \sim1.0 m in north and south regions, respectively) from late winter to early spring.

Fig. 2. (Upper panel) Time series of changes in gravity coefficient J_3 (ΔJ_3). The black dots with 1-σ error bars show gravimetric ΔJ_3 observed by MGS (Konopliv et al., 2006). The three curves show altimetric ΔJ_3 calculated from MOLA snow depth data (Smith et al., 2001), where the average density of snow pack is assumed constant (model 1, blue), time–variable without inter-annual difference (model 2, green), and time–variable with inter-annual difference (model 3, red). Improvement of normalized root-mean-squares (NRMS) of post-fit residuals is shown in the inset (their colors correspond to those of the curves). (Lower panel) Time series of average snow density in the northern (solid lines) and southern hemispheres (dashed lines). Three colors correspond to the three models shown in the upper panel. The two gray bars indicate regional dust storms (Smith, 2004), and the second one that started at $L_s \sim 270^\circ$ in the south polar region may have increased the snow density in the second southern winter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
expressed as the sum of zonal spherical harmonics with degrees up to 10. For the gravity data, we used the \(J_3 \) (a component representing “pear shape” of the planet) time series obtained by the Earth-based two-way Doppler measurements (the data shown in Fig. 10a of Konopliv et al., 2006). Because it is difficult to discriminate low degree odd zonal coefficients, such \(\Delta J_1 \) actually represents the sum of contributions from changes in all odd zonal coefficients, \(\delta J_1, \delta J_3, \delta J_5, \ldots \). Konopliv et al. (2006) gives the combination for the case of MGS as

\[
\Delta J_3 \equiv \delta J_3 + 1.26\delta J_5 + 1.31\delta J_7 + 1.25\delta J_9 + \cdots
\]

(1)

Their “\(\Delta J_3 \)” also represent the sum of contributions from all even zonal coefficients, \(\delta J_2, \delta J_4, \delta J_6, \ldots \).

Both the “\(\Delta J_3 \)” and “\(\Delta J_1 \)” components are available as time-variable gravity coefficients in Konopliv et al. (2006). We here used only the “\(\Delta J_3 \)” time series that are more suitable to explore asymmetric mass redistribution such as seasonal mass exchange between polar caps. Moreover, because MGS operates in a near polar orbit, odd zonal coefficients are more accurately determined, i.e., the signal to noise ratio of “\(\Delta J_3 \)” in seasonal changes is ten times as good as that of “\(\Delta J_1 \)” (Konopliv et al., 2006). We took out time span between 28 February 1999 and 25 May 2001 when both elevation and gravity data are available. Because the gravity and elevation data are not synchronously given, we interpolated the elevation data to obtain those at the same epochs as the gravity data using the third order spline function. It should be noted that we may have underestimated the formal errors of the snow densities discussed in the later sections because we did not consider errors of the interpolated elevation data. In this study, we scale the formal errors of the estimated parameters with post-fit residuals to get realistic errors.

The observed elevation change can be converted into change in \(J_1 \) (altimetric \(\delta J_1 \)) by

\[
\delta J_1 = -\bar{C}\sigma_{\bar{a}} \delta \sigma = \frac{3}{2\rho_{\text{ave}}(2n+1)} \int \Delta \sigma(\theta, \phi) \tilde{P}_{\bar{a}}(\sin\theta) \cos\theta d\theta, \quad (2)
\]

where \(\sigma \) and \(\rho_{\text{ave}} \) are the martian radius and average density, and \(\Delta \sigma \) is the surface mass (i.e. snow volume multiplied by its average density \(\rho_{\text{snow}} \)) at latitude \(\theta \) and longitude \(\phi \) over a unit area (Wahr et al., 1998). The integration is performed over the entire martian surface, and we get “\(\Delta J_1 \)” (we simply refer to this as \(\Delta J_3 \) hereafter) by combining calculated coefficients using Eq. (1). There we neglected coefficients with degrees higher than 9 because their coefficients are not given in Eq. (1) (Konopliv et al., 2006). Although they are generally small (e.g., \(\delta J_{11} \) is \(\sim 10\% \) of \(\delta J_3 \)), they tend to have the same sign as the lower degree coefficients and this neglect may cause overestimate of the snow density by up to 20% if coefficients for higher terms are similar to those in Eq. (1). This, however, hardly affects the discussion on temporal density changes, the main target of the study.

By comparing the gravimetric \(\Delta J_3 \) and the altimetric \(\Delta J_3 \), we can estimate the average density of the snow. First, we assumed that this density does not depend on time (model 1). The blue curve in Fig. 2 shows the altimetric \(\Delta J_3 \) with the fixed density \(0.91 \times 10^3 \) kg m\(^{-3}\) (Smith et al., 2001). It agrees fairly well with the gravimetric \(\Delta J_3 \), but the disagreements appear largely systematic, e.g. gravimetric \(\Delta J_3 \) are continuously larger than altimetric \(\Delta J_3 \) after \(L_s \sim 180^\circ \) but this reverses at \(L_s \sim 240^\circ \). Next we will show that such disagreements come from the wrong assumption of constant snow density.

2.2. Time-variable snow density

Terrestrial H\(_2\)O snow usually changes its density seasonally, i.e. it starts with a small density as freshly fallen snow, and gradually becomes denser by compaction due to its own mass as it thickens.
This may reflect the diversity of the “crocus day” (the day when old snows disappear) at places with different latitudes and sunlight conditions. Although transitions from old to new snow may occur in one epoch at individual places, hemispheric average apparently shows such two-epoch behavior. The average of these two epochs is fairly well constrained at $\sim -75^\circ$, but their separation is only weakly constrained as seen in the diagonally right down pattern of the bright part in Fig. 3 (i.e. 50°/100° combination provides almost as good fit as 60°/90°). Here we plot the results assuming the 60°/90° pair assuming tentatively that the thawing takes \sim30 degrees in solar longitude (\sim1 month).

2.3 Difference between winters

Next, we allowed the maximum snow density ρ_{max} to take different values in different winters and hemispheres (model 3), and performed the least-squares estimation for four parameters in total (one northern winter and two southern winters, plus the initial density). The normalized root-mean-squares of the atmospheric mass, and deformation of the martian equipotential surface, the orbital laser altimeter may underestimate the true snow depth, the relationship between vertical displacement Δu and the observed ΔJ_3 is

$$\Delta u(\theta) = R \left(\frac{h_i}{1 + k_i^2} \right) \Delta J_3^{\text{obs}} \tilde{P}_3(\sin \theta),$$

where $P_3(\sin \theta)$ is the normalized spherical harmonics with degree 3 and order 0, and θ is the latitude (e.g., Davis et al., 2004). There h_i is the load Love number of degree 3 for vertical, and Mérivier et al. (2008) suggested it to be between -0.21 and -0.30. Thus Δu would remain smaller than a centimeter under the observed amplitudes of ΔJ_3. This is much smaller than the elevation errors (Smith et al., 2001), and would not influence our conclusion. Systematic error in MOLA data due to orbital uncertainty could also cause errors in snow density. MOLA data in Smith et al. (2001) show that the maximum elevation change is slightly more than 1 m in the north and slightly less than 1 m in the south. Aharonson et al. (2004) reprocessed the MOLA crossover data at latitudes 86° north and south, and showed that the snow depth variation reach \sim1.5 m in the north and \sim2.5 m in the south, values much larger and more asymmetric than Smith et al. (2001). Here we see how this revision may influence our results.

First we extrapolated the snow depth data at 86° north/south (Aharonson et al., 2004) to lower latitude regions assuming that the depth linearly decreases to zero at 65°. We then followed the same procedure as in Section 2, and obtained ρ_{max} of $(0.44 \pm 0.05) \times 10^3$, $(0.56 \pm 0.1) \times 10^3$, and $(0.61 \pm 0.01) \times 10^3$ kg m$^{-3}$ for the first southern winter, the northern winter, and the second southern winter (the value at the end of the data set, i.e. $L_s = 525$), respectively. Although the absolute values of the density decreased by half, the essence of the present study remains the same, i.e. density increase toward the end of winter and the larger density in the second southern winter. In fact, time-variable density gives much better fit than the constant density of 0.5×10^3 kg m$^{-3}$ given by Aharonson et al. (2004).
4. Conclusion

We compared the gravimetric ΔJ_3, observed by Doppler tracking, and altimetric ΔJ_3, inferred from the snow depth measured by MOLA, and estimated the average volume density of the snow pack. In doing so, we found that they agree better by allowing the snow density to increase in time, i.e. freshly sublimated light snow gets denser until it thaw in late spring and early summer. From analogy to terrestrial H_2O snow (Maeno and Kuroda, 1986), we suggest possible densification mechanisms such as gravity-driven compaction and/or sintering of CO_2 crystals.

Next we discussed the difference in the maximum snow densities among the three winters. The second southern winter showed maximum density significantly larger than the others. We speculate that it reflects dust storm activities during the growth of the snow pack, i.e. incorporation of significant amount of dust particles into snow, and enhanced sintering related to dust storms. Evaluation of systematic errors caused by elastic deformation of Mars and by the neglect of snow distribution expressed by spherical harmonics of degrees >10, suggested that the obtained snow density might be overestimated by 10% (or a little more) in total. As suggested by revised estimate of snow depth by Aharonson et al. (2004), improved measurements of snow depths in future Mars exploration missions may call for major modifications of absolute values of the density.

Acknowledgments

We thank Alex Konopliv, JPL, for sending gravity data, Sander Goossens, NAO, for comments, and Akira Kouchi and Masatsugu Odaka, Hokkaido University, Ben Chao, National Central University, Taiwan, for their advises on martian snow and atmosphere. Critical reviews by two anonymous referees also improved the manuscript.

References