Silent fault slip following an interplate thrust earthquake at the Japan Trench

Kosuke Heki, Shin’ichi Miyazaki† & Hiromichi Tsuji‡

* National Astronomical Observatory, 2–12 Hoshigaoka, Mitaka-shi, Tokyo, Japan
† Geological Survey Institute, 1 Kitasato, Tsuchiura-ken, Ibaraki 305, Japan
‡ Ministry of Construction, 2–13 Kasumigaseki, Chiyoda-ku, Tokyo 100, Japan

Recent global space geodetic measurements have revealed that the velocities of tectonic plates over timescales as short as a decade are consistent with models of velocities averaged over the past few million years. The slip inferred from interplate thrust earthquakes at deep sea trenches and in number of earthquakes, however, often falls short of that predicted from these observed plate convergence rates. Here we report transient crustal movements recorded by a permanent Global Positioning System (GPS) network in northeastern Japan following a typical interplate earthquake that occurred in December 1994 at the Japan Trench. Cumulative fault slip was estimated from the postseismic displacements at the GPS points over the first year after the event, and the inferred amount of seismic moment released by the afterslip was comparable to that released in the high-speed rupture. Such seismically ‘invisible’ slip may therefore account for the shortage of seismic slip relative to that required by time-averaged plate velocities.

Slips associated with modern and historical interplate earthquakes at the Japan Trench (off the Sanriku coast, northeastern Japan) account for only one-fifth of the time-averaged rate of the Pacific plate subduction. Kawasaki et al. recently discovered there is a ‘ultra-slow earthquake’ with source time of ~1 day in extensometer records and hypothesized that the deficiency is taken up by such slow processes which are difficult to detect by conventional seismometric observations. The Sanriku–Haruka–Oki earthquake (moment magnitude $M_w = 7.6$) occurred there on 28 December 1994 as a typical interplate thrust event (Fig. 1). The hypocentral depth is very shallow and the aftershock area of about 150×70 km (east-west × north-south) dips to the west along the boundary between the subducting slab and the overriding plate. The focal mechanism solutions indicate that major slip occurred in the central part of the aftershock area, which is consistent with the slip distribution (Fig. 1) inferred by joint inversion of tsunami waveforms and coseismic displacements observed by the Japanese nationwide permanent GPS network.

This GPS network was established in October 1994 by the Geographical Survey Institute (GSI) of Japan with about 200 dual-band P-code receivers that cover most parts of Japan. We analysed the data of 16 stations located in northeastern Honshu and southern Hokkaido, October 1994 to December 1995; we used release 9.28 of the GAMIT software with International GPS Service for Geodynamics (IGS) precise ephemerides and Earth orientation parameters from the International Earth Rotation Service (IERS) Bulletin B. Tropospheric delays are estimated at each station in every 3-hour period. Daily horizontal site positions with respect to the Tsukuba IGS station ~500 km south of the epicentre (Fig. 1), were used to study postseismic crustal movements. Figure 2 shows the time series of three sites, Mutsu, Aomori and Kujū; the locations of these sites are shown in Fig. 1. Their coordinates change little before the earthquake (time $t = -0.2$ to 0.0 yr), then coseismic displacements are clearly seen as discontinuities at $t = 0$ (maximum displacement of 9.2 cm at Kujū). Postseismic crustal movements are characterized by step onsets and gradual decay over $t = 0.0$ to 1.0 yr (maximum displacement of 5.8 cm after 1 year at Kujū).

Thatcher et al. derived a viscosity of 1×10^{17} Pas for the uppermost asthenosphere in this region, which implies that viscous relaxation governs processes only with timescales of a few tens of years or longer. We assume here that the observed postseismic crustal movements are generated by a slow afterslip somewhere on the fault plane that ruptured in the mainshock, and we rule out viscous effects. Direct field observation of the fault afterslip and theoretical studies based on rate- and state-dependent friction laws suggest that afterslip obeys logarithmic decay approximated by $\alpha(t + \beta)$; this equation is a simplified form of equation (5) in ref. 11, where t is the time after an earthquake, and α and β are parameters defining overall amplitude and temporal decay, respectively. (\(\beta\) reflects, for example, coseismic rupture time, degree of velocity-strengthening and proportion of the stable/unstable fields; ref. 12.) We estimated α and β from GPS point horizontal displacement time series using iterative nonlinear curve-fitting techniques. We estimated α as arc parameters for individual components/sites (actually we estimated one-year cumulative displacements which are proportional to α) while β was estimated as the common global parameter because surface crustal movements would have the same...
temporal decay property as the afterslip at depth. Using 3,840 measurements from 11 stations, β was estimated as 6.5 ± 0.6 yr$^{-1}$, that is, about half of the motion of the first year is achieved in the first 100 days. This is somewhat longer than reported in the strike-slip cases1 where half of the first-year movement is often achieved in a few tens of days. We obtained a post-fit residual of 4.4 mm, a value not so different from those we usually obtain in fitting lines to the secular movements of GPS stations in Japan. Displacements of an additional five stations, farthest from the epicentre with displacements of a few millimetres, were obtained by simple linear regression.

Horizontal displacement vectors over the one-year postseismic period of the 16 GPS sites were used to derive the amount of fault slip using the dislocation theory in an elastic half-space formulated by Okada10. Vertical components were not used because the largest expected displacement (one-year cumulative uplift of \sim1 cm at Kujū) is as small as their day-to-day repeatability. It was almost impossible to reproduce the displacement directions when using only the afterslip in the updip and/or downdip extensions of the aftershock area, so we assumed that most afterslip occurred in the same part of the rupture plane as the mainshock (although we cannot rule out minor afterslips in its downdip and/or updip extensions). We used the aftershock distribution13 to delimit the size and the location of the faulted slip surface and divided it into two segments, the shallowly dipping eastern part and the moderately dipping western part (Fig. 1). Because GPS points exist only on one side of the fault (the land area), interparameter correlation makes it difficult to resolve detailed slip distribution by dividing it into small segments (if we split the eastern segment into two, their correlation becomes $>95\%$ and the formal errors exceed 1 metre). Slip direction could be fixed to an a priori value if we knew on which plate northeastern Japan resides. Because this is not the case at the moment14, we estimated the slip direction common for the two segments, together with the individual slips.

The weighted root-mean-squares of the displacement after estimating these three parameters (the slip amounts of the eastern and western fault segments, and their direction) was 4.3 mm and the estimated slip direction was N97.2E (Fig. 1) with a formal error of 2.6°. This deviates by $\sim15°$ ($\sim10°$) anticlockwise from the direction that the NUVEL1 model13 predicts for the North American (Eurasian)–Pacific plate convergence there. The estimated fault slips were 88.5 \pm 0.8 cm and 69.4 \pm 8.9 cm for the western and the eastern segments, respectively. Assuming a shear modulus of 40 GPa, they correspond to the seismic moment of 4.2×10^{20} N m, larger than the total moments released by the aftershocks13 by an order of magnitude, indicating that the slip was largely aseismic. It is relatively poor (that is, observed eastward velocities are too large) for the stations along the Japan Sea coast. The amount and the sense of these misfits seem consistent with the interseismic east–west shortening in this region13 because the easternmost sites of the network are situated at similar distances from the trench axis to Tsuchuba, the fixed reference. If we eliminate interseismic east–west shortening of 3×10^{-8} yr$^{-1}$ (ref. 16) fixing Kujū, the weighted root-mean-squares of the residuals decreases to 3.5 mm. This, however, does not change the estimated seismic moment more than a few per cent.

In October 1994, the Hokkaido–Tohoku–Oki earthquake, an 'intraplate' earthquake, occurred within the subducting slab ~400 km northeast of the Sanriku–Haruka–Oki earthquake. Although it brought larger coseismic movements of GPS points in Hokkaido4, our preliminary analyses show that the postseismic movements are insignificant. This suggests that the distinct afterslip was peculiar to 'intraplate' earthquakes, and attributable to the nature of the fault surface such as the existence of unconsolidated sediments. Pacheco et al.6 supposed that convergent plate interfaces are made up of three parts, patches of unstable (velocity-weakening) field (that is, asperities), stable (velocity-strengthening) field and compliant (conditionally stable) field, and earthquakes nucleate only in the first field. The unstable field may be dominant in 'strongly coupled' subduction zones such as Chile, but exist only as small patches in 'weakly coupled' zones such as Sanriku where seismic coupling coefficients are small. In the present case, the major part of the after slip seems to have occurred in the same part as the coseismic rupture, in contrast with the two cases in Chile where afterslips were suggested in the updip15 or downdip18 extensions. This case might be understood as a sequence with the instantaneous coseismic slip 'mainly' in the unstable field (that is, it might have propagated into the stable field), and the postseismic slow fault
movement ‘mainly’ in the compliant/stable fields with complementary slip distribution that equalizes the total slip throughout the fault plane. Although the present GPS network does not have enough resolution to derive detailed postseismic slip distribution, we can notice some differences between the coseismic and postseismic movements in Fig. 1; for example, the coseismic displacement of Kuki is more than twice as large as Aomori and deflected anticlockwise by ~30° from it, while postseismic displacement vectors of these points are more alike. This suggests that the afterslip distribution is relatively even throughout the fault surface while the coseismic slip concentrates more or less in a small central part corresponding to the asperity.

Postseismic moment release of 4.2×10^{20} N m corresponds to $M_w = 7.7$, larger than the coseismic release of 3.1×10^{20} N m ($M_w = 7.6$) suggested by the slip distribution of ref. 6. The whole sequence corresponds to an earthquake of $M_w = 7.8$ with a source time of one year (Fig. 3), much longer than ~1 day found in the same region10, and ~1 week found in California18. Together with the 1992 ultra-slow earthquake16, and the 1896 Tsunami earthquake20, this case shows that it is not unusual in this region for a slow fault slip to follow a brittle fracture. Small seismic coupling coefficients found worldwide in deep sea trenches1 suggest that interplate thrust earthquakes have an aspect invisible to conventional seismometric observations. Geodetic measurements of crustal deformation (especially those by GPS with sufficient temporal and spatial coverage/density) will be important in understanding interplate thrust earthquakes over a wide range of time scales and, above all, in allowing proper seismic hazard assessments based on seismic moment budget.

Received 11 November 1996; accepted 14 February 1997.

Compression of visual space before saccades

John Ross*, M. Concetta Morrone† & David C. Burr†‡

* Department of Psychology, Vision Laboratory, University of Western Australia, Nedlands, Western Australia 6007, Australia
† Istituto di Neurofisiologia del CNR, Pisa 56127, Italy
‡ Department of Psychology, Università di Roma, "La Sapienza", Via dei Marsi 78, Rome 00185, Italy

Saccadic eye movements, in which the eye moves rapidly between two resting positions, shift the position of our retinal images. If our perception of the world is to remain stable, the visual directions associated with retinal sites, and others they report to, must be updated to compensate for changes in the point of gaze. It has long been suspected that this compensation is achieved by a uniform shift of coordinates driven by an extra-retinal position signal, although some consider this to be unnecessary. Considerable effort has been devoted to a search for such a signal and to measuring its time course and accuracy. Here, by using multiple as well as single targets under normal viewing conditions, we show that changes in apparent visual direction anticipate saccades and are not of the same size, or even in the same direction, for all parts of the visual field. We also show that there is a compression of visual space sufficient to reduce the spacing and even the apparent number of pattern elements. The results are in part consistent with electrophysiological findings of anticipatory shifts in the receptive fields of neurons in parietal cortex and superior colliculi.

For most experiments, observers made 20° left-to-right saccades in a dimly lit room from a fixation point F₀ (at −10°) on an otherwise featureless red screen, to a target F₁ presented at +10° after a ready signal. Green equiluminant vertical bars were briefly flashed at various positions, and observers reported their location with reference to a ruler that appeared on the screen shortly after the end of each saccade. The results in Fig. 1 show that bars displayed at physical positions of either 0° or −20° (squares and triangles, respectively) were systematically mislocalized in the direction of the saccade. The shift effects begin 50 ms before the saccade, rising to a maximum about 10° in a critical period just before the saccade onset (−25 < t < 0 ms). After the saccade had finished, localization of the bar was again veridical, although it now fell on a different retinal location from before. The results were quite different for bars displayed to the right of the target F₁ at +20° (circles in Fig. 1). Here the apparent position was displaced against the direction of saccades before the eye movement. The apparent length of the long bars (50°) did not change significantly under any condition (data not shown). The continuous curves in Fig. 1 and in all other figures come from the simple model described in Methods, which assumes a change in the origin of perceptual space from F₀ to F₁ and a perceptual compression.

Figure 2 describes the pattern of results found within the critical period, −25 to 0 ms (relative to saccade onset), for bars displayed over a wide range of spatial positions. Bars displayed to the left of F₁ were displaced in the direction of the saccade, whereas those to the right were displaced in the opposite direction, with a tendency for the data to cluster around F₀ and F₁ (dotted lines). Bars falling over a wide range (−5 to 30°) were mostly perceived near F₁, the saccade target. A similar pattern of results was observed for right–left, vertical and smaller (10°) saccades. These findings imply a compression of space within the critical interval. To confirm that the compression was real, we measured the vernier displacement of two half bars, first when spatially separated but displayed simultaneously and briefly. In this situation, the individual upper and lower bars behaved exactly like the full bars, resulting in the impression of...