12.1 多価関数の分枝と分岐点

関数 w=f(z) において,z の1 つの値に対し w の値が複数個存在する場合,w を z の多価関数とよぶ.

多価関数の例として関数 $w=z^{1/2}$ を考える.この場合 $z=re^{i\theta}~(0\leq\theta\leq2\pi)$ に対して 2 つの異なる関数値 w_1,w_2

$$w_1 = r^{1/2} e^{i\theta/2}, w_2 = r^{1/2} e^{i(\theta/2 + \pi)}$$

が対応する.これより $w=z^{1/2}$ は z の 2 価関数であることがわかる.この w_1,w_2 を, $w=z^{1/2}$ の分枝 (ぶん $\dot{\sf U})$ と呼ぶ.

(1) 次の関数の分枝を求めよ. ただし $a,b \in \mathbb{R}$ とする.

(i)
$$w = z^{1/3}$$
 (ii) $w = (z-1)^{1/2}$ (iii) $w = \sqrt{(z-a)(z-b)}$ (iv) $w = \log z$

さらに $w=z^{1/2}$ を例に話を進める.z 平面上で与えられた点 P から出発し,原点を反時計周りに 1 周して元の点 P に戻ると z の偏角は 2π 増える.このとき各分枝の偏角は π 増えるので, w_1 は w_2 に, w_2 は w_1 に移る.一般に z 平面上のある点を 1 周することによりある分枝から別の分枝へ移るとき,この点を分岐点(ぶんきてん)と呼ぶ.z=0 は $w=z^{1/2}$ の分岐点である.

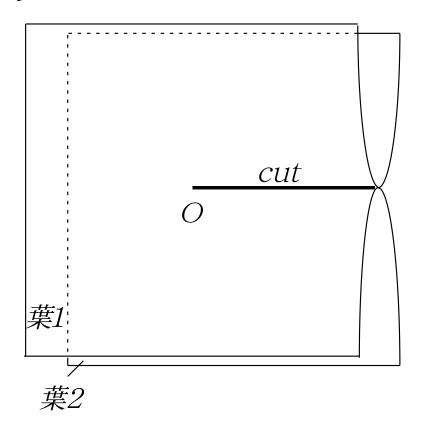
 $z=\infty$ (無限遠点) も $w=z^{1/2}$ の分岐点である.これは原点を 1 周することが無限遠点の周りを 1 周することにもなっているからである.一般に十分半径の大きな円周を 1 回転することで別の分枝へ移ると,無限遠点は分岐点である.

分岐点を n 周して最初の分枝に戻る時 , その分岐点を n-1 位の分岐点 と呼ぶ . $w=z^{1/2}$ の例では $z=0,\infty$ は共に 1 位の分岐点である . n が有限の分岐点は代数的分岐点 , 無限大の分岐点は対数的分岐点と呼ばれる .

(2) (1) の i) ~ iv) の関数の分岐点を求めよ、それぞれ何位の分岐点か、

12.2 リーマン面

z 平面を複数枚,分枝の数だけ用意し,1 枚 1 枚の z 平面上の点はそれぞれ相異なる 1 つの分枝に写像されるものとする.また各平面には切れ目が入っており,切れ目を介して他の面へ連続的に乗り移れるものとする.このように複数枚の z 平面をつなぎ合わせた平面を Riemann 面という.このとき Riemann 面上の点と関数値とは 1 対 1 対応する.切れ目は切断 (cut) と呼び,おのおのの z 平面を葉 (よう) という.



再び $w=z^{1/2}$ を例に取って Riemann 面の作り方を説明する.この場合分枝は 2 つあるので z 平面を 2 枚用意する.葉 1 では w_1 へ写像され,葉 2 では w_2 へ写像される.切れ目は分岐点を繋ぐようにいれる.ただし繋ぎ方は一意ではなく任意性がある.この場合 $z=0,\infty$ が分岐点だった.そこで実軸の正の部分 x>0 を切断に選ぶ.葉 1 上にあった点を原点の周りに反時計周りに動かす.このとき最初に切断をまたぐとき葉 2 へ移り,次に切断をまたぐ時は葉 1 に移ると約束する.結局原点を 2 周してもとの点に帰ることになる.

12.3 多価関数の積分

次の積分を求めよ.

(1)
$$\int_{a}^{b} \frac{1}{\sqrt{(x-a)(b-x)}} dx \quad (a, b \in \mathbf{R}, b > a)$$

(2)
$$\int_0^\infty \frac{x^{a-1}}{1+x} \, dx \quad (0 < a < 1)$$

12.4 等角写像

 $t \in \mathbf{R}, \alpha \leq t \leq \beta$ の変数 t に対し, $z = \varphi(t)$ は微分可能とし, その導関数 $\varphi'(t)$ は連続でかつ 0 にならないと仮定する. このとき

$$z = \varphi(t) = x(t) + iy(t), \quad t \in [\alpha, \beta]$$

は z 平面上のなめらかな曲線 C となる. z の t に対する微分

$$\frac{dz}{dt} = \varphi'(t) = a(t)e^{i\theta(t)}$$

は *C* の接線ベクトルを表し.

$$arg \varphi'(t)$$

は接線の傾きを表す.

z 平面上の点から w 平面上への写像 w=f(z) を考える. f(z) が z 平面内の D 上で正則とし、曲線 C が D に含まれるとき、

$$w = f(\varphi(t)), \quad t \in [\alpha, \beta]$$

は w 平面上のなめらかな曲線 Γ を与える. このとき $w_0=f(\varphi(t_0))$ における Γ の傾きは

$$\arg w'(t_0) = \arg f'(z_0) + \arg \varphi'(t_0)$$

となる.

(1) 点 z_0 を通る 2 つの曲線 C_1,C_2 が $\varphi_1(t),\varphi_2(t)$ で表され,f(z) によるそれらの像 Γ_1,Γ_2 は $w_1(t),w_2(t)$ で表されるとする. Γ_1,Γ_2 の交点 $w_0=f(z_0)$ において Γ_2 の接線と Γ_1 の接線とのなす角 $\Delta \theta$ は

$$\Delta \theta = \arg w_2'(t_0) - \arg w_1'(t_0) = \arg \varphi_2'(t_0) - \arg \varphi_1'(t_0)$$

と表されることを示せ.

(2) z 平面上の点 z_0,z_1,z_2 によって作られる三角形と、それらの点の f(z)=u(x,y)+iv(x,y) による像 w_0,w_1,w_2 によって作られる三角形は相似であること、およびそれらの三角形の面積比は

$$|f'(z)|^2 = \frac{\partial(u,v)}{\partial(x,y)}$$

で与えられることを示せ.

- (3) (1) の Γ_1, Γ_2 の交点を与える z_0 において $f'(z_0) = 0$ となり, n 階導関数 $f^{(n)}(z_0)$ が最初に 0 でない導関数とする. このとき Γ_2 の接線と Γ_1 の接線と のなす角は C_2 の接線と C_1 の接線とのなす角の n 倍となることを示せ.
- (4) $w = \frac{az+b}{cz+d}$ はどのような写像の組合せであるか.

12.5 複素速度ポテンシャル

摩擦や外力の働いていない 2 次元非圧縮性流体の運動は、以下の式によって記述される.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x},\tag{12.1}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y}, \tag{12.2}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. {12.3}$$

ここで u,v は速度成分, ρ は密度, p は圧力である. 以下では流れが時間に陽によらない定常な流れについて考える.

(1) (12.3) が満たされることから、

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$

を満たす関数 ψ を導入できることを示せ (ヒント: 問題 4.5 「平面における グリーンの定理」を参照).

(2) 渦無しの流れの場合、

$$u = \frac{\partial \phi}{\partial x}, \quad v = \frac{\partial \phi}{\partial y}$$

と満たす関数 ϕ を導入できることを示せ (ヒント: 問題 6.3 「スカラーポテンシャル」を参照).

- (3) 上記の ψ, ϕ は、コーシー・リーマンの関係式を満たすことを確かめよ.
- (3) より関数

$$f(z) = \phi(x, y) + i\psi(x, y)$$

は正則な複素関数を表す. この導関数

$$\frac{df(z)}{dz} = \frac{\partial \phi(x,y)}{\partial x} + i \frac{\partial \psi(x,y)}{\partial x} = u - iv$$

は複素速度と呼ばれる. この意味で f(z) は複素速度ポテンシャルと呼ばれる. 以上より, 任意の正則関数はとある非圧縮で渦無しの 2 次元流れを表すことがわかる.

- (4) f(z) = Uz $(U \in \mathbf{R})$ は x 方向に一様な流れを表すことを示せ.
- (5) $f(z)=U\left(z+rac{a^2}{z}
 ight)$ $(U,a\in \emph{\textbf{R}})$ は xy 面に垂直な半径 a の円筒を横切る流れを表すことを示せ.