学位論文

初期火星大気を想定した 主成分凝結対流の二次元数値実験 ~臨界飽和比と凝結核数混合比 に対する依存性~

Two-dimensional numerical experiments of atmospheric convection with condensation of the major component on the supposition of early Mars condition : Dependence on critical saturation ratio and number mixing ratio of condensation nuclei

山下 達也

YAMASHITA Tatsuya

北海道大学理学院宇宙理学専攻

地球流体力学研究室

Geophysical Fluid Dynamics Laboratory, Department of Cosmosciences,

Faculty of Science, Hokkaido University

2014年6月

要旨

定常熱強制と単純化された雲物理を考慮した2次元雲解像モデルを開発し、それを 用いて初期火星を想定した条件の下で実現される主成分凝結対流に伴う流れ場と 雲分布の性質を調べた,本研究では臨界飽和比(凝結が始まるときの飽和蒸気圧に 対する圧力の比)、凝結核数混合比に着目し、それらに対する流れ場と雲分布の依存 性を調べた. 臨界飽和比が 1.0 の場合. 流れ場や雲分布が時間的に大きく変動しな い準定常的な解が実現された. この解においては凝結高度より下に細胞状の対流 が生じ、凝結高度付近には対流に伴う上昇流により密度の大きい雲が形成される、 このとき気塊は凝結層で熱的な浮力を獲得できず、対流に伴う上昇流は凝結層に数 km 程度しか貫入しない. 臨界飽和比が 1.0 よりも大きい場合. 凝結核数混合比の値 によって流れ場や雲の時空間分布は大きく異なる. 凝結核混合比が相対的に大きい 場合には準定常的な解、凝結核数混合比が相対的に小さい場合には凝結が生じない 時期と生じる時期が交互に出現し、流れ場や雲分布が準周期的に変動する解が実現 された、準周期的な解においては、凝結が生じない時期には厚い雲は存在せず、準 定常解と同様に対流に伴う上昇流は凝結層に数 km 程度しか貫入しない. 一方凝結 が生じる時期には凝結層に厚い雲が発生し、凝結核数混合比の値次第では凝結層で 強い鉛直流が生じうる. これは気塊が過冷却状態にある凝結層で熱的な浮力を獲得 する為である.しかし雲粒による引きずりの力が熱的な浮力を相殺し.強い鉛直流 が凝結層全体にわたって生じることはない. 臨界飽和比が 1.0 よりも大きく, 凝結 核数混合比が相対的に小さい場合に準周期的な解が実現されるのは、雲粒の重力落 下速度が十分大きく,雲粒が凝結層から完全に取り除かれることで過冷却状態が実 現・維持される為である。

目 次

第1章	序論	7
第2章	雲解像モデルの概要	9
2.1	定式化	9
2.2	雲微物理過程	11
2.3	離散化	12
第3章	計算設定	13
第4章	計算結果	15
4.1	$S_{cr} = 1.0$ の場合	15
4.2	$S_{cr} = 1.35 $ の場合	17
第5章	結果の考察と解釈	19
5.1	準周期解実現の指標	19
5.2	準定常解で実現される雲密度の鉛直分布の解釈	20
第6章	Concluding Remarks	22
参考文南	λ	24
図集		28

		目次	2
付録A	運動量	量の式の導出	45
付録B	圧力力	「程式の導出	48
付録C	凝結率	率 M _{cond} の導出	51
付録 D	Stoke	s-Cunningham 則に基づく終端速度の導出	54
D.1	Stokes	の法則の導出	. 54
	D.1.1	支配方程式	. 54
	D.1.2	境界条件	. 55
	D.1.3	Stokes の法則の導出	. 55
D.2	Cunnir	ngham 補正の導出	. 61
D.3	補遺		. 63
	D.3.1	式 (D.13), (D.14) が式 (D.9), (D.10) を満たすことの確認	. 63
	D.3.2	式 (D.18), (D.19) の導出	. 64
	D.3.3	式 (D.40), (D.41), (D.42), (D.43), (D.44) の導出	. 68
	D.3.4	式 (D.46)の導出	. 70
	D.3.5	式 (D.54) の導出	. 73
付録E	離散化	Ľ	77
E.1	格子の	配置	. 77
E.2	空間方	「向の離散化	. 77
	E.2.1	平均操作	. 77
	E.2.2	空間微分の離散化	. 78
	E.2.3	準圧縮方程式系の空間方向の離散化	. 80
E.3	時間方	「向の離散化	. 83

	E.3.1	モード別時間分割法	83
	E.3.2	音波減衰項	84
	E.3.3	数值粘性項	84
	E.3.4	準圧縮方程式系の時間方向の離散化	84
	E.3.5	Robert, Asselin の時間フィルター	89
E.4	負の雲	密度の発生を防ぐ処置に関して	89
付録 F	定常状	態における平均鉛直流の鉛直分布	92
付録G	重力落	客下,冷却のタイムスケールの導出	96
付録Ⅱ	\mathbf{CO}_2 ?	水静的エネルギー及びそれに基づく雲密度分布の導出	98
付録I	重力落 の導出	下と凝結,潜熱潜熱加熱と放射冷却のバランスに基づく雲分布	100
付録J	変数・	定数リスト	103
謝辞			106

図目次

2	.8
0^{8} = 35, 展. ンル	29
.0 ⁸ = 35, 量 (f) 意 3	60
(a) 空 そ い. 3	51
cm 力 平 00	52
雲 m, の 熱 移 い 00 3	33
刀平00 . 雲 m,の熱移い 00 .	. 3

7	(a) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (b) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (c) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合の 100 モデル日にお ける鉛直流速と雲密度の空間分布. (*1), (*2) はそれぞれ鉛直流速, 雲密度の空間分布である.	34
8	S _{cr} = 1.35, N _* = 5.0 × 10 ⁶ kg ⁻¹ の場合の非凝結期 (約 143.50 モデ ル日目) における (a) 鉛直流速, (b) 温位の水平平均からの偏差, (c) 雲 密度, (d) 飽和比の空間分布.	35
9	S _{cr} = 1.35, N _* = 5.0 × 10 ⁶ kg ⁻¹ の場合の凝結期 (約 143.55 モデル 日目) における (a) 鉛直流速, (b) 温位の水平平均からの偏差, (c) 雲 密度, (d) 飽和比の空間分布.	36
10	<i>S_{cr}</i> = 1.35, <i>N</i> _* = 5.0×10 ⁶ kg ⁻¹ の場合の (a) 約 143.50 モデル日, (b) 約 143.53 モデル日, (c) 約 143.55 モデル日, (d) 約 143.63 モデル日, (e) 約 143.89 モデル日, (f) 約 150.0 モデル日における鉛直流速, 雲密 度の空間分布. (*1), (*2) はそれぞれ鉛直流速, 雲密度の空間分布で ある. 図 10a1, a2 は図 8a, c, 図 10c1, c2 は図 9a, c と同時刻であるこ とに注意されたい.	37
11	$S_{cr} = 1.35, N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の上昇域 (水平座標 $x = 70$ km から 80 km) における (a) 非凝結期の末期, (b) 凝結期の初期, (c) 凝結期初期以降の熱的浮力 (実線) と雲粒による引きずりの力 (破線) の水平平均からの偏差, 熱的浮力・引きずりの力の水平平均からの 偏差の和を最下層から鉛直積分したもの. (*1) は熱的浮力 (実線) と 雲粒による引きずりの力 (破線) の水平平均からの偏差, (*2) は熱的 浮力・引きずりの力の水平平均からの偏差の和を最下層から鉛直積 分したものである. 非凝結期については 143.48 – 143.51 モデル日, 凝結期初期については 143.60 – 143.66 モデル日において時間平均を行なっている.	38
12	<i>S_{cr}</i> = 1.35, <i>N</i> _* = 5.0×10 ⁴ kg ⁻¹ の場合の (a) 約 113.22 モデル日, (b) 約 113.47 モデル日, (c) 約 113.50 モデル日, (d) 約 113.63 モデル日, (e) 約 113.68 モデル日, (f) 約 115.14 モデル日における鉛直流速, 雲 密度の空間分布. (*1), (*2) はそれぞれ鉛直流速, 雲密度の空間分布	

13	$S_{cr} = 1.35, N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の 100 – 150 モデル日にお ける (a) 水平平均雲密度, (b) 凝結高度付近 ($z = 22.2 \text{ km}$) での水平 平均温度の時間変化. $\tau_{fall}, \tau_{cool}, D_{cloud}, T(S = 1.0), T(S = 1.35)$ は それぞれ重力落下のタイムスケール,冷却のタイムスケール, 雲の鉛 直長さスケール, 飽和温度, 臨界飽和比における温度であり, $\Delta T = T(S = 1.0) - T(S = 1.35)$ である.	40
14	$S_{cr} = 1.35$ の場合における重力落下のタイムスケールの常用対数値 $\log_{10} \tau_{fall}$ (実線) と冷却のタイムスケールの常用対数値 $\log_{10} \tau_{cool}$ (破 線). 横軸が $\log_{10}(N_*/5)$ であることに注意されたい.	41
15	(a) $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (b) $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (c) $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合の水平・時間平均された雲密度 (実線), CO ₂ 氷静的エネルギー一定の仮定の下で得られる雲密度 (破線), 凝結・重力落下のバランス及び凝結加熱・放射冷却のバランスによって決まる雲密度 (点線). いずれも $S_{cr} = 1.0$ の場合であり, 時間平均は 90-100 モデル日目の期間で行なった.	42
E.1	格子点の配置. Sugiyama (2006) より引用した	43
E.2	モード別時間分割法の概念図. Kitamori (2006) より引用した	43
F.1	式 (F.18) から得られる $w(z)$ (青線) と準定常解 ($S_{cr} = 1.0, N_* = 5.0 \times 10^6 \text{ kg}^{-1}$) の平衡状態における平均鉛直流 (赤線). $Q_{rad} = 0.1$ K s ⁻¹ , $z_{LCL} = 2.0 \times 10^4$ m としている.	44
F.2	式 (F.18) から得られる温位移流項 (赤破線), 凝結加熱項 (緑破線), 放 射冷却項 (青実線) 及び準定常解 (<i>S_{cr}</i> = 1.0, <i>N</i> _* = 5.0 × 10 ⁶ kg ⁻¹) の 平衡状態における温位移流項 (赤実線), 凝結加熱項 (緑実線), 放射冷 却項 (青実線).	44

第1章 序論

CO₂ の凝結を伴う対流は, 初期 (約 38 億年前)の火星の気候の研究において, 重要 な研究ターゲットの 1 つである. **CO**₂ 氷雲による散乱温室効果が, 初期火星の温 暖な気候の維持に重要な役割を果たしていた可能性が議論されているからである (Forget and Pierrehumbert, 1997; Mischna et al., 2000; Mitsuda, 2007).

CO₂ 氷雲による散乱温室効果の強度は, CO₂ 氷雲の粒径 (Forget and Pierrehumbert, 1997), 雲の光学的厚さ, 雲量, 雲の高度 (Mischna et al., 2000) に強く依存することが 指摘されている. そのため, これらの CO₂ 氷雲に関する基本的な知見に加えて, 火 星大気の主成分である CO₂ の凝結に伴う流れ場の様相や雲の時空間分布を理論的 に調べる必要がある. しかしながら, 従来の研究では大気主成分凝結を伴う対流運 動の特徴は十分調べられているとは言えない. 従来の 1 次元放射対流平衡モデルを 用いた研究 (Forget and Pierrehumbert, 1997; Mischna et al., 2000; Mitsuda, 2007) で は, 大気の運動は陽に解いていない. 近年では大気大循環モデルを用いた研究がい くつか行われているものの (Sabato, 2008; Forget et al., 2013), これらの研究では鉛 直運動を陽に解かずに, 雲が静力学的に形成されることを想定している.

CO₂ 氷雲の雲物理と鉛直運動を考慮した唯一の研究として, Colaprete et al. (2003) が挙げられる. 彼らは鉛直 1 次元エントレイニングプリュームモデルを用いて, 主 成分が凝結する系での鉛直運動について論じた. 彼らの示したことの 1 つは, 平均 場の過冷却を許さない場合には凝結する気塊は浮力を得られず, 強い鉛直流は生じ ないことである. これは主成分が凝結する系においては, 上昇域と下降域の温度分 布が飽和蒸気圧曲線に拘束されて等しくなるためである. 彼らの示したことのもう 1 つは, 平均場の過冷却が許容される場合, 過冷却領域で凝結した気塊は浮力を獲 得することができ, CO₂ 氷雲の発生を伴う強い鉛直運動が駆動されることである. しかしながら彼らの研究は鉛直 1 次元モデルを用いたものであり, 主成分凝結系に おいてどのような流れ, 温度分布, 雲分布が自然に実現されるのかが分からない.

そこで我々は,初期火星環境を念頭において雲微物理と対流運動を陽に扱った長時間の数値実験を行う.その目的は,統計的平衡状態での主成分凝結対流に伴う流れ場と雲分布を定性的に調べることである.平衡状態に至るまで数値積分を行うのは,個々の雲の生成・消滅を調べるだけでなく,雲の生成・消滅が繰り返された結果として自然に実現される流れ場,雲分布も同時に得るためである.用いる数値モデ

ルは我々の開発した水平鉛直 2 次元の雲解像モデルであり, 従来の研究 (e.g. Tobie et al., 2003) で利用されてきたのと同様の単純化された CO₂ の雲微物理過程が組 み込まれている. 数値実験においては, 雲の生成・発達に大きな影響を与えると考 えられている臨界飽和比 (凝結が始まるときの飽和蒸気圧に対する圧力の比) と凝 結核数混合比の値を数通り与える. 臨界飽和比の与え方については, Colaprete et al. (2003), Forget et al. (2013) に従い, 過冷却を許す場合と許さない場合の 2 通りを考 える. 凝結核数混合比は Tobie et al. (2003), Forget et al. (2013) に従って, 現在火星 のダスト数密度と地球の凝結核数混合比を参考に 3 通り用いる.

以下,第2章では開発した2次元雲解像モデルについて述べる.第3章では計算設 定について述べる.第4章では雲が生成・消滅を繰り返した結果得られる統計的平 衡状態において,どのような流れ場・雲分布が得られるかについて述べる.第5章 では第4章で得られた計算結果に関する考察と議論を行なう.最後に第6章で結論 を述べる.

第2章 雲解像モデルの概要

ここでは開発した数値モデルの概要について述べる.用いるモデルは地球流体電 脳倶楽部の非静力学モデル deepconv/arare4 である.これは木星など様々な惑星大 気における雲対流に関する数値実験の為に開発されている数値モデルである (e.g. Sugiyama et al., 2009, 2011, 2013).なお,開発した数値モデルは関連ドキュメント とともに, http://www.gfd-dennou.org/library/deepconv/以下に公開している.

2.1 定式化

大気は CO₂ のみからなるとする. 支配方程式系は 2 次元準圧縮方程式系である. 具体的には運動量の式, 圧力方程式, 熱力学の式, CO₂ 氷の保存の式であり, 以下のように表される¹⁾.

$$\frac{du'}{dt} = -c_p \overline{\theta} \frac{\partial \Pi'}{\partial x} + D_m(u'), \qquad (2.1)$$

$$\frac{dw'}{dt} = -c_p \overline{\theta} \frac{\partial \Pi'}{\partial z} + g \frac{\theta'}{\overline{\theta}} - g \frac{R}{p_0} \frac{\theta}{\overline{\Pi}^{c_v/R}} \rho'_s + D_m(w'), \qquad (2.2)$$

$$\frac{\partial \Pi'}{\partial t} + \frac{\overline{c^2}}{c_p \overline{\rho} \overline{\theta}^2} \left[\frac{\partial (\overline{\rho} \overline{\theta} u')}{\partial x} + \frac{\partial (\overline{\rho} \overline{\theta} w')}{\partial z} \right] = \frac{\overline{c^2} L}{c_p^2 \overline{\rho} \overline{\theta}^2 \overline{\Pi}} M_{cond} - \frac{\overline{c^2}}{c_p \overline{\rho} \overline{\theta}} M_{cond}, \quad (2.3)$$

$$\frac{d\theta'}{dt} + w'\frac{\partial\theta}{\partial z} = \frac{1}{\overline{\Pi}} \left(\frac{LM_{cond}}{\overline{\rho}c_p} + Q_{dis} + Q_{rad}\right) + D_h(\theta'), \tag{2.4}$$

$$\frac{\partial \rho'_s}{\partial t} + \frac{\partial (\rho'_s u')}{\partial x} + \frac{\partial (\rho'_s w')}{\partial z} = M_{cond} + M_{fall} + D_h(\rho_s).$$
(2.5)

ここで

$$\frac{d}{dt} = \frac{\partial}{\partial t} + u'\frac{\partial}{\partial x} + w'\frac{\partial}{\partial z},$$
(2.6)

$$D_m(\cdot) = \frac{\partial}{\partial x} \left[K_m \frac{\partial(\cdot)}{\partial x} \right] + \frac{1}{\overline{\rho}} \frac{\partial}{\partial z} \left[\overline{\rho} K_m \frac{\partial(\cdot)}{\partial z} \right], \qquad (2.7)$$

¹⁾運動量の式 (2.1), (2.2) 及び圧力方程式 (2.3) の導出についてはそれぞれ付録 A, B を参照されたい.

	$S \leq 1$	$1 < S \le S_{cr}$	$S > S_{cr}$
$\rho_s > \rho_s^T$	蒸発	凝結	凝結
$0 < \rho_s \le \rho_s^T$	蒸発	凝結・蒸発なし	凝結
$\rho_s = 0$	凝結・蒸発なし	凝結・蒸発なし	凝結

表 1: 凝結・蒸発の判定.

$$D_h(\cdot) = \frac{\partial}{\partial x} \left[K_h \frac{\partial(\cdot)}{\partial x} \right] + \frac{1}{\overline{\rho}} \frac{\partial}{\partial z} \left[\overline{\rho} K_h \frac{\partial(\cdot)}{\partial z} \right].$$
(2.8)

である. u, w は速度の水平成分と鉛直成分, ρ は CO₂ 大気の密度, ρ_s は CO₂ 氷雲密 度である. Π, θ はそれぞれエクスナー関数, 温位であり,

$$\Pi = \left(\frac{p}{p_0}\right)^{R/c_p},\tag{2.9}$$

$$\theta = \frac{T}{\Pi} \tag{2.10}$$

である. ここで T は温度である. c は音速であり,

$$\overline{c^2} = \frac{c_p}{c_v} R \overline{\theta} \overline{\Pi}$$
(2.11)

である. (\cdot) を付けた変数は高度のみに依存する基本場の量であり, $(\cdot)'$ の付いた変数は擾乱成分であることを表す. 基本場の具体的な与え方については, 第3章で述べる. K_m, K_h はそれぞれ運動量とスカラー量に対する乱流拡散係数であり, Q_{dis} は散逸加熱, Q_{rad} は放射強制である. 式 (2.2)の右辺第2項, 第3項はそれぞれ熱的浮力, 雲粒による引きずりの力を表す項である. 式 (2.3)の右辺第1項, 第2項はそれぞれ潜熱加熱に伴う圧力変化, 気相の質量減少に伴う圧力変化を表す項である.

 K_m, K_h, Q_{dis} は 1.5 次のクロージャー法 (Klemp and Wilhelmson, 1978) で計算する. 地表面の運動量, 熱フラックスについては, Louis (1979) によるバルク法に基づいて 計算する. 但し簡単の為, Louis (1979) の式 (20) における係数 C_* の値を本研究では 運動量, 熱フラックスともに 7.4 としている. Q_{rad} は高度の関数として与える (具体 的な与え方については第 3 章を参照されたい). M_{cond} は凝結・蒸発率, M_{fall} は重力 落下率, $L = 5.86 \times 10^5$ J kg⁻¹ は昇華潜熱, $c_p = 860.0$ J K⁻¹ kg⁻¹, $c_v = 671.1$ J K⁻¹ kg⁻¹ はそれぞれ定圧比熱と定積比熱, R = 188.9 J K⁻¹ kg⁻¹ は気体定数, g = 3.72m s⁻² は重力加速度, $p_0 = 2.0 \times 10^5$ Pa は基準圧力である.

2.2 雲微物理過程

雲の存在の有無に関わらず, 飽和比 (飽和蒸気圧 p_* に対する圧力の比) S が臨界飽 和比 S_{cr} を上回ったら凝結が生じるものとし, 雲が存在し, 飽和比が 1 を下回った ら蒸発が生じるものとする. $1 < S \leq S_{cr}$ の場合については, 雲密度 ρ_s が閾値 ρ_s^T より大きい領域では凝結が生じ, 閾値 ρ_s^T より小さい領域では凝結も蒸発も生じな いものとする. 凝結過程において雲密度の閾値を導入する理由は, 次のような数値 計算上の技術的な問題に対処する為である. 空間・時間的に離散化された系では, 過飽和領域において一度凝結が生じると雲密度の数値誤差の伝播に伴って凝結領 域が拡大し, その拡大速度は時間ステップと格子間隔に依存してしまう. 雲密度の 閾値を導入すると, 以上のような非物理的な凝結を防ぐことが出来る. 予備的な数 値実験に基づき本研究では $\rho_s^T = 1.0 \times 10^{-6}$ kg m⁻³ と定めた. 凝結・蒸発過程をま とめたものを表1に示す. 飽和蒸気圧 p_* については Antoine (1888) に基づき,

$$p_* = A_{ant} \exp\left(-\frac{B_{ant}}{T}\right) \tag{2.12}$$

とする. ここで $A_{ant} = 7.94 \times 10^{11}$ Pa, $B_{ant} = 3103.0$ K である (SCEJ, 1999).

雲粒は球形の凝結核を核として形成され, 雲粒自身も球形となると仮定する. 凝結 核の数密度は空間・時間的に一様と仮定する. また雲粒の半径は各格子内において 空間的に一定であると仮定する. このとき, 雲粒半径を *r_c* とすると,

$$r_{c} = \left(r_{aero}^{3} + \frac{3\rho_{s}}{4\rho_{I}\pi\bar{\rho}N_{*}}\right)^{1/3}$$
(2.13)

と表される. ここで N_* は凝結核数混合比, ρ_I は CO₂ 氷の密度, r_{aero} は凝結核の半 径であり, Tobie et al. (2003) 同様 $\rho_I = 1.565 \times 10^3$ kg m⁻³, $r_{aero} = 1.0 \times 10^{-7}$ m と する. M_{cond} は Tobie et al. (2003) 同様, 以下のように表す²).

$$M_{cond} = \frac{4\pi r_c \bar{\rho} N_* k R \theta^2 \Pi^2}{L^2} (S-1).$$
 (2.14)

ここで $k = 4.8 \times 10^{-3} \text{ W m}^{-1} \text{ K}^{-1}$ は熱拡散係数である.

 M_{fall} は

$$M_{fall} = \frac{\partial}{\partial z} \left(\rho_s V_{term} \right) \tag{2.15}$$

と表す. ここで V_{term} は雲粒の終端速度であり, Forget et al. (2013) 同様, Stokes 則に Cunningham 補正を適用したものを用いて表す (Stokes, 1845; Cunningham, 1910).

$$V_{term} = C_{sc} \frac{2r_c^2 g\rho_I}{9\eta}.$$
(2.16)

²⁾式 (2.14) の導出については, 付録 C を参照されたい.

ここで η は粘性係数であり,

$$\eta = \eta_{ref} \left(\frac{T_{ref} + C_{CO_2}}{\overline{\theta \Pi} + C_{CO_2}} \right) \left(\frac{\overline{\theta \Pi}}{T_{ref}} \right)^{3/2}$$
(2.17)

と表現する (Sutherland, 1893). η_{ref} , T_{ref} , C_{CO_2} はそれぞれ粘性係数の基準値, 温度の基準値, CO₂ に関する Sutherland 定数であり, $\eta_{ref} = 1.47 \times 10^{-5}$ Pa s, $T_{ref} = 293$ K, $C_{CO_2} = 240$ K と与える (Kaye and Laby, 1995). C_{sc} は Cunningham 補正係数であり,

$$C_{sc} = 1 + \frac{4}{3}K_n \tag{2.18}$$

と与える (Rossow, 1978; Tobie et al., 2003)³⁾. 但し $K_n = \lambda/r_c$ は雲粒に対する Knudsen 数である. λ は CO₂ の平均自由行程であり,

$$\lambda = \frac{k_B \overline{\theta}}{\sqrt{2\pi\sigma^2 p_0 \overline{\Pi}^{c_v/R}}} \tag{2.19}$$

と与える (Chapman and Cowling, 1970). $k_B = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$ は Boltzmann 定数, $\sigma = 3.3 \times 10^{-10} \text{ m}$ は CO₂ 分子の直径である (Golden and Sircar, 1994).

2.3 離散化

ここでは離散化の概要について述べる⁴⁾. 空間格子として水平方向には Arakawa-C グリッド (Arakawa and Lamb, 1977), 鉛直方向には Lorenz グリッド (Lorenz, 1960) を採用する. 空間微分については, 移流項を 4 次の中心差分を用いて表現し, その 他の項は 2 次の中心差分を用いて表現する. 計算資源の節約の為, モード別時間分 割法 (Klemp and Wilhelmson, 1978) を採用する. 音波と凝結に関連する項は短い時 間ステップで HE-VI 法を用いて時間積分し, それ以外の項は長いタイムステップ でリープフロッグスキームに Asselin の時間フィルター (Asselin, 1972) を適用して 時間積分を行なう.

³⁾Cunningham 補正を行なった Stokes 則に基づく終端速度 V_{term} の導出については, 付録 D を参 照されたい.

⁴⁾離散化の詳細については, 付録 E を参照されたい.

第3章 計算設定

計算領域は水平 100 km, 鉛直 80 km とする. 基本場では静止状態にあり, 雲は存在 しないものとする. 基本場の温度分布は温暖な気候が実現していたことを前提とし て最下層では H₂O の凝固点である 273 K であるとし, Kasting (1991) の図 4 の分 布を参考に高度 20 km 以下で乾燥断熱減率に従い, 高度 20 km から 50 km まで飽 和温度に等しく, 高度 50 km より上で等温 (150 K) という分布を与える (図 1). 基 本場における地表気圧は Kasting(1991) 同様, 2.0 × 10⁵ Pa とする. 対流を励起する 為, 最下層に最大振幅 1 K のランダムな初期温位擾乱を与え, それ以外の擾乱成分 は初期にはゼロであるとする. 地表温度は時間・空間的に一定とし, その値につい ては 273 K に固定する. 高度 0 km から 50 km まで水平一様な冷却を与える. 水平 一様な冷却率の大きさは, 初期火星大気の放射対流平衡計算の結果を参考にして与 えることにする. 初期火星大気の放射対流平衡計算の例として Kasting(1991) が挙 げられるが, この論文には放射冷却率が示されていない. そこで Mitsuda (2007) に よる Kasting (1991) の再計算結果を参考に -0.1 K day⁻¹ とする.

高度 50 km より上空にはニュートン冷却, レイリー摩擦を与える. ニュートン冷却, レイリー摩擦の時定数は 3.0 × 10⁴ s とする. この値は, 上部境界で反射した内部重 力波の反射波が一様冷却している層に影響を及ぼさないように定めたものである.

臨界飽和比 (S_{cr}) は 1.0, 1.35 の 2 通り, 凝結核数混合比 (N_*) は 5.0 × 10⁸, 5.0 × 10⁶, 5.0 × 10⁴ kg⁻¹ の 3 通りとし, これらを組み合わせた 6 通りの数値実験を行なう. $S_{cr} = 1.35$ という値は Glandorf et al. (2002) による室内実験で求められたものである. この実験は現在火星条件で行なわれたものであるものの, 初期火星条件での CO₂ 氷雲の形成を考慮した Forget et al. (2013) でも用いられているので, 本研究で もこの値を採用するものとする. $N_* = 5.0 \times 10^8$ kg⁻¹ という値は現在の火星大気 のダスト数密度の観測で得られる典型的な値である (Tobie et al., 2003). 現在火星 ではダストが主要な凝結核であると考えられている為, この値を凝結核数密度の値 として採用することにした. 初期火星での凝結核数混合比の変動幅がどの程度で あるのかは未知である為, Forget et al. (2013) 同様に地球大気の凝結核の観測結果 (Hudson and Yum, 2002; Demott et al., 2003) を参考にした. ここでは $N_* = 5.0 \times 10^6$, 5.0×10^4 kg⁻¹ という値も採用することにした.

後で述べるように,時間積分は統計的平衡状態が実現されたと判断できるまで実行

する.時間積分のタイムステップは,音波・凝結のモードに対しては 2.0 秒,その他 のモードに対しては 0.25 秒とする.空間格子間隔は水平 500 m,鉛直 400 m である.

第4章 計算結果

6 通りの数値実験における全運動エネルギー, 全雲質量の時間変化をそれぞれ図 2, 3 に示す. $S_{cr} = 1.0$ の場合, 全運動エネルギー, 全雲質量ともに数日スケールの時 間変動は見られるものの, 単調に増加・減少することはなく, おおむね定常となる. 以上より, $S_{cr} = 1.0$ のそれぞれの場合において, 統計的平衡状態が実現されたもの と判断する. 一方 $S_{cr} = 1.35$ の場合, 全運動エネルギー, 全雲質量の時間発展の様 相は N_* の値によって大きく異なる. $N_* = 5.0 \times 10^8$ kg⁻¹ の場合, $S_{cr} = 1.0$ の場合 と同様に全運動エネルギー, 全雲質量はおおむね定常的となる. それ以外の場合, 全 運動エネルギー, 全雲質量は時間とともに単調に増加・減少することはなく, 準周 期的に変動する. $S_{cr} = 1.35$ のそれぞれの場合において, 全運動エネルギー, 全雲質 量の値がほぼ一定となるか, 或いは準周期的な変動の最大値が大きく変化しない状 態に至ることから, 統計的平衡状態が実現されたものと判断する.

以下では $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合を基準として, $S_{cr} = 1.0$, $S_{cr} = 1.35$ それぞれ の場合の流れ場, 雲密度の空間分布と時間変化について述べる. 便宜上以下では, 全 雲質量, 全運動エネルギーがおおむね定常的となる解を「準定常解」, 全雲質量, 全 運動エネルギーが準周期的に変動する解を「準周期解」と呼ぶことにする.

4.1 *S_{cr}* = 1.0 の場合

 $S_{cr} = 1.0$ の場合, 凝結高度である高度約 20 km の上下で運動の様相が大きく異なる. 高度約 20 km よりも下では, 細胞状の対流が生じている (図 4a). 対流に伴う鉛 直流は凝結高度よりも上に貫入しているものの, その貫入距離は 1 – 2 km 程度に 過ぎない. 対流に伴う上昇流が貫入している領域では, 温位の水平平均からの偏差 が負の値となっている (図 4b). このことは後で述べるように, 熱的な浮力が負の値 となっていることを示している. 凝結高度よりも上では, 内部重力波と類似した波 動が生じている. 対流に伴う鉛直流速の典型値が 5 m s⁻¹ 程度であるのに対し, 内 部重力波と類似した波動に伴う鉛直流速の典型値は 0.1 m s⁻¹ 程度と小さい. 雲は 高度約 20 km から 50 km までの領域において形成される (図 4c). 凝結高度付近に は, 下層から貫入した対流に伴う上昇流によって密度の大きい雲が形成される. 実 際,凝結高度から高度 25 km までの高度領域には全雲質量の約 50 % が存在し,雲 密度の水平平均値は高度約 21 km で最大となっている.対流に伴う鉛直流の貫入 領域より上では,内部重力波と類似した波動によって波状の雲が形成される.波状 の雲が存在する領域はおおむね温位の水平平均からの偏差が負の領域(飽和比が 1 よりも大きい領域)に対応している(図 4b, d).

対流に伴う上昇域が存在する水平領域における熱的な浮力(式(2.2)の右辺第2項) 及び雲粒による引きずりの力(式(2.2)の右辺第3項)の水平平均からの偏差を図 5aに示す. 凝結高度付近より上では,熱的な浮力及び雲粒による引きずりの力の水 平平均からの偏差は負の値又はほぼゼロとなっている.熱的な浮力と雲粒による引 きずりの力の水平平均からの偏差の和を最下層から鉛直積分したものを図5bに示 す. 全浮力偏差の鉛直積分値は高度約21kmでほぼゼロとなっており,,鉛直流が 貫入する上限の高度とおおむね一致する.以上のように,対流に伴う鉛直流が凝結 層に1-2km程度しか貫入できないのは,気塊が凝結層内で浮力を得られない為 である.

凝結層での水平・時間平均された温位, 雲密度の tendency の鉛直分布を図 6a, b に 示す.各項の大きさは高度によって大きく異なるので, 高度 25 – 50 km, 高度 19 – 25 km の 2 つの領域に分けてその特徴を述べる.高度 25 – 50 km においては, 温位 についてはおおむね放射冷却と凝結加熱がほぼ釣り合っている (図 6a1). 但し高度 50 km 付近では移流と放射冷却が釣り合っている.高度 50 km 付近で温位の移流 が卓越するのは, 凝結に伴う気相質量収束により, 10⁻⁴ m s⁻¹ 程度の平均下降流が 存在する為である¹⁾. 雲密度については, 凝結と重力落下がほぼ釣り合っている (図 6b1). 5.2 節では, 上で述べた放射冷却と凝結加熱, 及び凝結と重力落下の釣り合い に基づき, 準定常解における雲密度の鉛直分布に関する解釈を与える.高度 19 – 25 km においては, 温位について移流と乱流拡散の和が潜熱加熱・放射冷却とほぼ釣 り合い (図 6a2), 雲密度について移流と乱流拡散の和, 凝結・蒸発, 重力落下が同程 度の大きさとなっている (図 6b2). 即ち凝結層の下層では温位, 雲密度ともに移流 と乱流拡散の和が釣り合いに大きく寄与している.

 $N_* = 5.0 \times 10^8$, 5.0×10^6 , $5.0 \times 10^4 \text{ kg}^{-1}$ の場合の鉛直流速, 雲密度の空間分布をそれぞれ図 7a, b, c に示す. 先に述べた鉛直流速の空間分布は, N_* の値が変わっても定性的にはほぼ変わらない. また図は示さないが, 先に述べた温位, 雲密度の tendency の鉛直分布の特徴についても, N_* の値が変わっても定性的には変わらない. 一方雲密度の空間分布については, N_* の値が小さくなるとともに, 雲密度の最大値及び波状の雲の占める面積が小さくなるという特徴が見られる. これは雲粒の重力落下と関連していると考えられる. N_* の値が小さくなると重力落下速度が大きくなり, 過

¹⁾本実験設定の下では, 温位の擾乱成分の移流項が温位の基本場成分の移流項に比べて小さいと みなせる場合, 定常状態においては高度 50 km 付近で 10⁻⁴ m s⁻¹ 程度の平均下降流が存在するこ とが理論的に示される. 詳細は付録 F を参照されたい.

飽和領域の上部で形成された雲はより速く過飽和領域の下部に輸送される. その結 果, 波状の雲の鉛直スケール及び占める面積が小さくなるものと考えられる.

4.2 *S_{cr}* = 1.35 の場合

 $S_{cr} = 1.35$ の場合, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$ のときに準定常解が実現され, それ以外の場合には準周期解が実現された. $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$ の場合の統計的平衡状態における流れ場と雲密度の特徴は $S_{cr} = 1.0$ の場合とほぼ同様である. ここでは $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合を基準として, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$ 以外の場合の雲分布と流れ場について述べる.

準周期解においては, 凝結の生じない時期と凝結の生じる時期が交互に出現する. 便宜上以下では凝結の生じない時期を「非凝結期」, 凝結の生じる時期を「凝結期」 と呼ぶことにする. 非凝結期と凝結期において, 流れ場と雲密度の分布の様相が大 きく異なる. 以下では先ず非凝結期・凝結期それぞれの流れ場・雲分布の特徴につ いて述べる.

非凝結期には, 高度約 20 km より下では乾燥対流が生じている (図 8a). 高度約 20 km より上は絶対安定成層状態となっており, そこでは内部重力波が生じる (図 8b). 雲密度はいずれの高度においても凝結過程で導入した閾値よりも小さくなっている (図 8c). 飽和比は高度 20 – 50 km の領域のほとんどの点において 1.0 を超えて 過冷却状態となっている (図 8d).

凝結期の初期においては, 非凝結期同様, 高度約 20 km より下には細胞状の乾燥対流が生じている (図 9a). 高度約 20 km よりも上では, 対流に伴う上昇域が存在する水平領域に 2 – 3 m s⁻¹ の上昇流が生じている. 高度約 20 km より上の 2 – 3 m s⁻¹ の上昇流が生じている領域では, 温位の水平平均からの偏差は正となっている (図 9b). このことは後で述べるように, 熱的な浮力の偏差は正となっていることを示している. 2 – 3 m s⁻¹ の上昇流が生じている領域では凝結が生じ, 厚い雲が形成される (図 9c). 雲密度は高度 21 km 付近で最大となっており, その密度は $S_{cr} = 1.0$ の場合と比べると大きい. 飽和比は凝結領域ではほぼ 1.0 となっており, 凝結層のそれ以外の領域では 1.0 を上回っている (図 9d).

非凝結期から凝結期,再び非凝結期へと移行するときの鉛直流・雲密度の時間変化 を図 10 に示す. 凝結期の初期に凝結領域で生じていた数 m s⁻¹の上昇流はそれ以 降の期間には現れなくなる (図 10d1, e1). 結局凝結期においては,地球の凝結対流 とは異なり凝結層全体にわたって強い鉛直流が生じることはない. 雲は凝結期の初 期には鉛直上方に成長し (図 10b2, c2), 凝結期の後半には雲粒の重力落下に伴って 減衰する (図 10d2, e2). 凝結期の末期には厚い雲が再び存在しなくなり (図 10f2), 非凝結期へと移行する.

非凝結期には、凝結層において熱的な浮力の偏差は負の値又はほぼゼロとなってい る (図 11a1). このとき全浮力偏差の鉛直積分値は高度約 21 km でほぼゼロとなっ ており(図 11a2), この高度は鉛直流の貫入高度とおおむね一致する. 一方凝結期の 初期には、凝結領域において熱的な浮力の偏差が正値、雲粒による引きずりの力の 偏差が負値となっている (図 11b1). 凝結領域で気塊が熱的な浮力を得られるのは, 先に述べたように凝結領域でほぼ飽和状態、それ以外の領域では過冷却状態にあり、 上昇域と水平平均場の間に温位差が生じる為である.このとき浮力偏差の鉛直積分 値は高度約 21 km でほぼゼロとなるものの、それよりも上には正値となる高度領域 が存在する (図 11b2). このことは凝結領域で数 m s⁻¹ 程度の上昇流が生じること と整合的である. 凝結期の初期以降も凝結領域において熱的な浮力の偏差が正値. 雲粒による引きずりの力の偏差が負値となっている (図 11c1). 浮力偏差の鉛直積 分値については、高度約 21 km でほぼゼロとなっており、それよりも上では負の値 となっている (図 11c2). このことは凝結領域で数 m s⁻¹ 程度の上昇流が現れなく なることと整合的である、以上のように凝結期の初期を除き、凝結領域では熱的な 浮力が雲粒による引きずりの力によって相殺され、気塊は正味の浮力を効率的に得 られない、この浮力が効率的に得られないという特徴は、雲粒による引きずりの力 を考慮していない Colaprete et al. (2003) では見られなかった特徴である.

 $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合の凝結期における鉛直流速, 雲密度の時間変化を図 12 に示す. $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合 (図 10)とは異なり, 凝結期を通して凝結領域 で強い上昇流が生じなくなり, 雲は鉛直上方ではなく鉛直下方に成長するようにな る. これらの流れ場・雲分布の特徴は, N_* が小さくなると重力落下が卓越するよう になることと関連していると考えられる. 重力落下の卓越により, 凝結高度付近で の雲粒による引きずりの力が大きくなるとともに, 凝結高度より下での雲の蒸発に 伴う冷却が強くなり, 熱的浮力の負の偏差も大きくなる. 以上のように, 準周期解の 凝結期における流れ場・雲分布の特徴は N_* とともに大きく変化する. 一方, 図は 示さないが, 先に述べた非凝結期における流れ場の特徴は N_* を変えてもほとんど 変化しない. また先に述べたように, 準定常解が実現される $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$ の 場合, その流れ場と雲分布の性質は $S_{cr} = 1.0$ の場合とほとんど変わらない.

第5章 結果の考察と解釈

5.1 準周期解実現の指標

本研究において準周期解が $S_{cr} = 1.35, N_* = 5.0 \times 10^6 \text{ kg}^{-1}, N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合に実現されたことは、雲粒の重力落下・放射冷却のタイムスケールの関係に よって解釈することができる. 図 13a, b に $S_{cr} = 1.35, N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場 合の水平平均雲密度と凝結高度付近での水平平均温度の時間変化を示す.図13の τ_{fall} で示された期間では、雲が重力落下によって凝結層から除去されており、 τ_{cool} で示された期間では、飽和状態から臨界飽和比に達して凝結が始まるまで冷却が生 じている. 定性的には、準周期解においては雲粒の重力落下速度が十分大きく、雲粒 が凝結層から完全に取り除かれることで過冷却状態が実現・維持されている.以上 のことは重力落下のタイムスケール au_{fall} が放射冷却のタイムスケール au_{cool} よりも 短くなっていると言い換えることができる. 仮に au_{fall} が au_{cool} よりも長くなってい るとすれば、重力落下により凝結層が晴れ上がる前に凝結が始まり、定常的に雲が 存在することになるだろう. 雲の鉛直長さスケールを D_{cloud}, 雲密度が凝結の閾値 と等しい場合の雲粒の終端速度を V_{term} とすると, $\tau_{fall} \sim D_{cloud}/V_{term}$ で評価でき るだろう.また飽和温度と臨界飽和比における温度の差を ΔT, 冷却率を Qrad とす ると, $au_{cool} \sim \Delta T/Q_{rad}$ で評価できるだろう. このとき, 式 (2.12), (2.16) より, それ ぞれのタイムスケールは次のように表される1).

$$\tau_{fall} \sim \frac{9\eta D_{cloud}}{2g\rho_I} \left(\frac{4\rho_I \pi \rho}{3\rho_s^T}\right)^{2/3} N_*^{2/3}, \tag{5.1}$$

$$\tau_{cool} \sim -\frac{RT^2}{Q_{rad}L} \ln S_{cr}.$$
(5.2)

ここで ρ_s^T は凝結における雲密度の閾値であり, $\rho_s^T = 10^{-6}$ kg m⁻³ である. また τ_{cool} の導出においては, 高度 z で臨界飽和比に達したときの温度を飽和蒸気圧が $p_*(z)/S_{cr}$ となる高度での飽和温度で近似した.

式 (5.1), (5.2) より,本研究の設定では $S_{cr} = 1.35$ の場合, $N_* \lesssim 10^7 \text{ kg}^{-1}$ のとき $C_{fall} < \tau_{cool}$ となる (図 14). 但し $D_{cloud} \sim 10^4 \text{ m}$ とした. $S_{cr} = 1.35$, $N_* = 1^{-1}$ 重力落下のタイムスケール τ_{fall} , 放射冷却のタイムスケール τ_{cool} がそれぞれ (5.1), (5.2) とな ることの導出については, 付録 G を参照されたい. $5.0 \times 10^{6}, 5.0 \times 10^{4} \text{ kg}^{-1}$ の場合には $\tau_{fall} < \tau_{cool}$ となっており, 実際にこれらの場合においては準周期解が実現されている. 一方 $S_{cr} = 1.0$ の場合, 及び $S_{cr} = 1.35$, $N_{*} = 5.0 \times 10^{8} \text{ kg}^{-1}$ の場合には $\tau_{fall} > \tau_{cool}$ となっており, 実際に準定常解が実現されている.

5.2 準定常解で実現される雲密度の鉛直分布の解釈

第1章で述べたように, CO₂ 氷雲の散乱温室効果が初期火星の温暖化メカニズムの 1 つとして提唱されている. 散乱温室効果は雲の時空間分布に強く依存する為, 雲 密度の鉛直分布がいかにして実現されるのかを理解することは, 初期火星の温暖気 候研究への寄与につながる. 散乱温室効果の研究への応用として, 1 次元放射対流 平衡モデルにおいて雲密度分布を参照することなどを念頭に置き, 以下では準定常 解における雲密度の鉛直分布について定性的に論じる.

準定常解で実現される雲密度の鉛直分布は, 凝結高度付近では鉛直方向に十分良く 混合し, 雲層上部では雲密度について凝結と重力落下, 温位について放射冷却と凝 結加熱がほぼ釣り合うという事実 (図 6a1, b1) と密接に関連している. 凝結物が重 力落下することなく気塊が上昇するとき, エンタルピー, 位置エネルギー, 発生す る潜熱に負号を付したものの和 $c_pT + gz - L\rho_s/\rho$ は近似的に保存される. 地球気 象学では凝結物が H₂O の液相の場合, この量に対応するものは「液水静的エネル ギー」 (liquid water static energy) と呼ばれている (Betts, 1975). そこで本論文では $c_pT + gz - L\rho_s/\rho$ という量を「CO₂ 氷静的エネルギー」(CO₂ ice static energy) と呼 ぶことにする. 移流が重力落下に比べて支配的であり, 鉛直方向に十分良く混合し ている領域では, CO₂ 氷静的エネルギーは高度に依らずほぼ一定となることが期待 される. 実際 $S_{cr} = 1.0$, $N_* = 5.0 \times 10^8$ kg⁻¹の実験では, 最下層から高度約 21 km まで CO₂ 氷静的エネルギーがほぼ一定となっている. 雲層が静力学平衡にあり, か つ完全に飽和しているとすれば, 温度分布は

$$T(z) \approx T_{LCL} \exp\left[-\frac{g}{L}(z - z_{LCL})\right]$$
 (5.3)

と表される. ここで *z*_{LCL}, *T*_{LCL} はそれぞれ凝結高度, 凝結高度における温度である. このとき雲密度が水平一様であり, CO₂ 氷静的エネルギーが一定であると仮定 すると, 式 (2.12) より

$$\rho_s(z) \approx \frac{A_{ant} \exp\left(-\frac{B_{ant}}{T(z)}\right)}{LRT(z)} \left[c_p(T(z) - T_{LCL}) + g(z - z_{LCL})\right]$$
(5.4)

という雲密度の鉛直分布が得られる2).

²⁾CO₂ 氷静的エネルギーの導出及び式 (5.4) の導出については, 付録 H を参照されたい.

一方,凝結と重力落下,凝結加熱と放射冷却がほぼ釣り合っていると仮定し,雲密度 が水平一様であるとすると,式 (2.4), (2.5)より

$$\frac{LM_{fall}(\rho_s)}{\overline{\rho}c_p} \approx Q_{rad} \tag{5.5}$$

となる.式 (5.5) に式 (2.15), (2.16), (2.18) を適用し, 凝結層のある高度 z から雲頂 高度 z_t まで積分すると, 雲密度に関する以下の方程式が得られる³⁾.

$$\frac{2g\rho_I}{9\eta(z)} \left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N_*}\right)^{1/3} \rho_s(z)^{4/3} \left[\left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N_*}\right)^{1/3} \rho_s(z)^{1/3} + \frac{4}{3}\lambda(z) \right] \\ + \frac{c_p Q_{rad}}{Lg} \left[\overline{p}(z) - \overline{p}(z_t) \right] = 0.$$
(5.6)

図 15 に水平・時間平均された雲密度の鉛直分布 (実線),式 (5.4) において $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の実験における z_{LCL} , T_{LCL} を与えたときに得られる鉛直分 布 (破線),式 (5.6) を Newton-Raphson 法で解くことで得られた鉛直分布 (点線) を 示す⁴). 凝結高度から雲密度が最大となる高度までの領域において,雲密度の鉛直 分布は式 (5.4) で与えられる分布とおおむね一致している. また雲密度が最大とな る高度よりも上の領域において,雲密度の鉛直分布は式 (5.5) から得られる分布と おおむね一致している.

*N*_{*}が小さくなるにつれて, 雲密度の鉛直分布の式 (5.4), (5.5) からのずれが大きく なる. 式 (5.4) からのずれが大きくなるのは雲粒の重力落下が大きくなる為であり, (5.5) からのずれが大きくなるのは波状の雲の占める面積が小さくなり水平非一様 性が大きくなる為と考えられる. しかし *N*_{*} が小さい場合でも, 凝結高度付近では 式 (5.4) で与えられる分布と, 雲層上部では式 (5.5) から得られる分布とオーダーで は一致する. 以上より, 凝結高度と雲底高度が既知であれば, 式 (5.4), (5.5) より, 準 定常解における雲密度の鉛直分布をおおまかに推定できることが示唆される.

³⁾式 (5.6) の導出については, 付録 I を参照されたい.

⁴⁾式 (5.6) を Newton-Raphson 法で数値的に解く方法の説明については, 付録 I を参照されたい.

第6章 Concluding Remarks

定常熱強制と単純化された雲物理を考慮した2次元雲解像モデルを開発し、それを 用いて初期火星を想定した条件の下で実現される主成分凝結対流に伴う流れ場と 雲分布の性質を調べた.本研究では臨界飽和比(Scr),凝結核数混合比(N*)の値を変 えた数値実験を行い、2 種類の解が存在することが示された. 具体的には、 $S_{cr} = 1.0$ の場合及び $S_{cr} = 1.35$ で N_* が相対的に大きい場合には流れ場や雲分布が時間的 に大きく変動しない準定常解, $S_{cr} = 1.35$ で N_* が相対的に小さい場合には非凝結 期と凝結期が交互に出現し、流れ場や雲分布が準周期解が実現されることが分かっ た. 準定常的な解では、凝結高度より下に細胞状の対流が生じ、凝結高度付近には 対流に伴う上昇流により密度の大きい雲が形成される. この解では気塊は凝結層で 熱的な浮力を獲得できず,対流に伴う上昇流は凝結層に数 km 程度しか貫入しない. 準周期的な解においても、凝結高度より下に細胞状の対流が生じる. 非凝結期には 対流に伴う上昇流は凝結層に数 km 程度しか貫入しない. 凝結期には気塊は凝結層 で熱的な浮力を獲得し、N_{*}の値次第では凝結層で強い鉛直流が生じうる.しかし雲 粒による引きずりの力が熱的な浮力を相殺し,強い鉛直流が凝結層全体にわたって 生じることはない. Scr = 1.35 で N_{*} が小さい場合に実現される準周期解において は、雲粒の重力落下速度が十分大きく、雲粒が凝結層から完全に取り除かれること で過冷却状態が実現・維持されている.実際、準周期的な解が実現された場合につ いて雲粒の重力落下のタイムスケールと、臨界飽和比に達するまでの冷却のタイム スケールを見積もると、重力落下のタイムスケールは冷却のタイムスケールよりも 小さくなっており、このことは過冷却状態が実現・維持されることと整合的である.

本研究の雲物理においては,雲粒の衝突に伴う併合・分裂過程及び凝結核数混合比 の時空間変動を無視している.以下で述べるように,これらの過程は準周期解が実 現される N_{*}の範囲に大きな影響を及ぼすと考えられる.本実験で想定している温 度・圧力条件の下では,CO₂ は液相として存在しない為,氷粒どうしの付着・併合 が生じにくいと考えられる.従って雲粒の衝突に伴う併合・分裂を考慮する場合, 併合よりもむしろ分裂が卓越し,雲粒は小さくなる傾向にあると考えられる.5.1節 のタイムスケールの議論から,分裂によって雲粒が小さくなり重力落下のタイムス ケールがより大きくなると,準周期解はより N_{*}が小さい場合に実現されるように なると考えられる.一方凝結核の時空間変動を考慮すると,凝結核はダスト巻上げ などによる十分な供給がない限りは凝結物とともに重力落下によって除去され,数 混合比は減少する傾向にあると考えられる. 凝結核数混合比が小さくなると重力落下のタイムスケールは小さくなり,このとき準周期解は初期の N_{*}の値がより大きい場合に実現されるようになると考えられる. 雲粒の衝突に伴う併合・分裂過程及び凝結核数混合比の時空間変動を考慮したとき,準周期解が実現される N_{*}の範囲がどのように変化するかについては,今後の課題とする.

本研究においてはより単純な問題から段階的に理解を進めることを目的として, 放 射伝達を陽に解いていない. 従来の放射対流平衡計算によると, CO₂ ガスによる放 射の散乱・吸収は凝結層の冷却に寄与し, CO₂ 氷雲による放射の散乱・吸収は雲粒の 半径によって凝結層の加熱, 冷却のどちらにも寄与しうる (Forget and Pierrehumbert, 1997; Mitsuda, 2007). ガス・氷雲による放射の散乱・吸収が正味冷却に寄与する場 合, 系の枠組みは本実験と定性的には変わらず, 準定常解・準周期解の両方が実現 される可能性がある. 放射の散乱・吸収が正味加熱に寄与する場合については, ど のような流れ場と雲分布が実現されるのか自明ではない. CO₂ ガス, 氷雲による放 射の散乱・吸収を考慮した場合に準周期解が実現されるのかについては, 今後の課 題としたい.

初期火星の気候研究により、CO2 氷雲による散乱温室効果の強度は光学的厚さ,雲 粒半径などに強く依存し, 散乱温室効果に最も適しているのは, 雲粒半径が 10 μm 程度であり、かつ可視領域の光学的厚さが 10 程度の雲であることが知られている (Mischna et al., 2000; Forget et al., 2013). 本研究では放射伝達を陽に解いてはいない ものの、散乱温室効果に関する参考情報の1つとして、各実験で実現された雲の雲粒 半径と光学的厚さの見積もりを行なう.式(2.13)より雲粒半径の空間・時間平均値を 見積もると、準定常解の場合、 $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$ のときに約6 μm 、 $N_* = 5.0 \times 10^6$ kg^{-1} のときに約 15 µm となり、準周期解の場合、 $N_* = 5.0 \times 10^4 kg^{-1}$ のときに約 6 μm となる. 但し準周期解の場合, 雲粒半径の時間変動が大きく, 雲粒半径の空間 平均値が 10 μm 程度となるのは凝結期に限られる.次に Petty (2006)の式 (7.67), (7.71) より雲の光学的厚さを見積もると, 準定常解の場合, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の ときに 70 程度, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ のときに 5 程度となる. 従って雲の光学的厚 さが 10 程度となるのは $N_* \sim 10^5 \text{ kg}^{-1}$ のときと考えられる. 一方準周期解の場合. 光学的厚さを1周期で時間平均すると, N_{*} = 5.0 × 10⁶ kg⁻¹ のときに 15 程度とな る.以上のように、本研究で行なった実験のうち、雲粒半径、光学的厚さの両方が散 乱温室効果に適した条件となる場合は存在しない. 特に準周期解の場合、非凝結期 の期間が凝結期の期間に比べて長く、雲が存在している期間が相対的に短いため、 強い散乱温室効果がもたらされにくいことが示唆される.

参考文献

- Antoine, C. 1888: Tensions des vapeurs: nouvelle relation entre les tensions et les températures. *Les Comptes Rendus de l' Acadèmie des Sciences* 107,681 684.
- Arakawa, A., and V. R. Lamb. 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. *Methods in Computational Physics* 17,173–265.
- Asselin, R. 1972: Frequency filter for time integrations. *Monthly Weather Review* 100,487–490.
- Basset, A. B. 1961: A treatise on hydrodynamics vol 2. Dover, 328 pp.
- Betts, A. 1975: Parametric interpretation of trade-wind cumulus budget studies. *Journal* of the Atmospheric Sciences 32,1934–1945.
- Chapman, S., and T. G. Cowling. 1970: *The mathematical theory of non-uniform gases*. Cambridge University Press, 423 pp.
- Colaprete, A., R. M. Haberle, and O. B. Toon. 2003: Formation of convective carbon dioxide clouds near the south pole of Mars. *Journal of Geophysical Research* 108,5091.
- Cunningham, E. 1910: On the velocity of steady fall of spherical particles through fluid medium. *Proceedings of the Royal Society of London* 83,357–365.
- Demott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers. 2003: Measurements of the concentration and composition of nuclei for cirrus formation. *Proceedings of the National Academy of Science* 100,14655–14660.
- Epstein, P. S. 1924: On the resistance experienced by spheres in their motion through gases. *Physical Review* 23,710–733.
- Forget, F., and R. T. Pierrehumbert. 1997: Warming Early Mars with carbon dioxide clouds that scatter infrared radiation. *Science* 278,1273–1276.

- Forget, F., R. Wordsworth, E. Millour, J.-B. Medeleine, L. Kerber, E. Marcq, and R. M. Haberle. 2013: 3D modelling of the early martian climate under a denser CO₂ atmosphere: Temperatures and CO₂ ice clouds. *Icarus* 222,81–99.
- Glandorf, D. L., A. Colaprete, M. A. Tolbert, and O. B. Toon. 2002: CO₂ snow on Mars and early Earth : Experimental constraints. *Icarus* 160,66–72.
- Golden, T. C., and S. Sircar. 1994: Gas adsorption on silicate. *Journal of Colloid and Interface Science* 162,182–188.
- Hudson, J. G., and S. S. Yum. 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. *Journal of Geophysical Research (Atmospheres)* 107,8022.
- Kasting, J. F. 1991: CO₂ condensation and the climate of early Mars. *Icarus* 94,1–13.
- Kaye, G. W. C., and T. H. Laby. 1995: *Tables and physical and chemical constants (16 th edition)*. Longman, 624 pp.
- Kitamori, T. 2006: Development of a nonhydrostatic model for Martian atmosphere including condensation of major atmospheric component (in Japanese). Master's thesis, Hokkaido University, 99 pp.
- Klemp, J. B., and R. B. Wilhelmson. 1978: The simulation of three-dimensional convective storm dynamics. *Journal of the Atmospheric Sciences* 35,1070–1096.
- Louis, J. 1979: A parametric model of vertical eddy fluxes in the atmosphere. *Boundary Layer Meteorology* 17,187–202.
- Maxwell, J. C. 1879: On stresses in rarified gases arising from inequalities of temperature. *Philosophical Transactions of the Royal Society of London* 170,231–256.
- Mischna, M. A., J. F. Kasting, A. Pavlov, and R. Freedman. 2000: Influence of carbon dioxide clouds on Early Martian climate. *Icarus* 145,546–564.
- Mitsuda, C. 2007: Scattering greenhouse effect of radiatively controlled CO₂ ice cloud layer in a Martian paleoatmosphere (in Japanese). Doctoral Dissertation, Hokkaido University, 115 pp.
- Odaka, M., K. Nakajima, S. Takehiro, M. Ishiwatari, and Y. Y. Hayashi. 1998: A numerical study of the Martian atmospheric convection with a two dimensional anelastic model. *Earth, Planet and Space* 50,431–437.
- Petty, G. W. 2006: *A first course in atmospheric radiation, 2nd edition*. Sundog Publishing, 472 pp.

- Robert, A. 1966: The integration of a low order spectral form of the primitive meteorological equations. *Journal of the Meteorological Society of Japan* 44,237–244.
- Rossow, W. B. 1978: Cloud microphysics: Analysis of the clouds of Earth, Venus Mars, and Jupiter. *Icarus* 36,1–50.
- Sabato, J. S. 2008: CO₂ condensation in baroclinic eddies on early Mars. *Journal of the Atmospheric Sciences* 65,1378–1395.
- SCEJ. 1999: *The handbook of chemistry and engineering(in japanese)*. Maruzen, 1339 pp.
- Skamarock, W. C., and J. B. Klemp. 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. *Monthly Weather Review* 120,2109–2127.
- Stokes, G. G. 1845: On the effect of internal friction on the motion of pendulum. *Transactions of the Cambridge Philosophical Society* 9,8–14.
- Sugiyama, K. 2006: Moist Convection in Jupiter's Atmosphere with H2O, NH3, and NH4SH Clouds, and its direct numerical simulations (in Japanese). Doctoral Dissertation, Hokkaido University, 193 pp.
- Sugiyama, K., K. Nakajima, M. Odaka, M. Ishiwatari, K. Kuramoto, Y. Morikawa, S. Nishizawa, Y. O. Takahashi, and Y. Y. Hayashi. 2011: Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. *Geophysical Research Letters* 38,L13201, doi:10.1029/2011GL047878.
- Sugiyama, K., K. Nakajima, M. Odaka, K. Kuramoto, and Y. Y. Hayashi. 2013: Numerical simulations of Jupiter's moist convection layer: Structure and dynamics in statistically steady states. *Icarus* 229,71–91.
- Sugiyama, K., M. Odaka, K. Nakajima, and Y. Y. Hayashi. 2009: Development of a cloud convection model to investigate the Jupiter's atmosphere. *Nagare Multimedia* (*Journal of the Japan Society of Fluid Mechanics*) 28,http://www2.nagare.or.jp/mm/ 2009/sugiyama/.
- Sutherland, W. 1893: The viscosity of gases and molecular force. *Philosophical Magazine* 36,507–531.
- Tatsumi, T. 1982: Fluid dynamics (in japanese). Baifukan, 453 pp.
- Thomas, L. H. 1949: Elliptic problems in linear difference equation over a network. Technical report, Watson Scientific Computing Laboratory, Columbia University.

- Tobie, G., F. Forget, and F. Lott. 2003: Numerical simulation of winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter. *Icarus* 164,33–49.
- Tsuboki, K., and A. Sakakibara. 2001: Cloud Resolving Storm Simulator User's Guide, Second Edition. Technical report, Nagoya University.

図 1: 基本場の温度分布.

図 2: (a) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (b) $S_{cr} = 1.35$, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (c) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (d) $S_{cr} = 1.35$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (e) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$, (f) $S_{cr} = 1.35$, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合における全運動エネルギーの時間発展. (a), (b), (c), (e) の場合は 100 モデル日, (d), (f) の場合は 200 モデル日まで示している.

図 3: (a) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (b) $S_{cr} = 1.35$, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (c) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (d) $S_{cr} = 1.35$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (e) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$, (f) $S_{cr} = 1.35$, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合における全雲質量 の時間発展. 全雲質量の目盛の上限については, (a), (b), (d) の場合は $4.0 \times 10^6 \text{ kg}$, (d), (f) の場合は $4.0 \times 10^5 \text{ kg}$, (e) の場合は $4.0 \times 10^4 \text{ kg}$ であることに注意されたい.

図 4: $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の 100 モデル日目における (a) 鉛直流速, (b) 温位の水平平均からの偏差, (c) 雲密度, (d) 飽和比の空間分布. 雲密度のカラーバーは対数スケールであること, 並びにその下限値を $\rho_s = \rho_s^T = 10^{-6} \text{ kg m}^{-3}$ としていることに注意されたい.

図 5: $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の上昇域 (水平座標 x = 32 km から 46 km) における (a) 熱的浮力 (実線) と雲粒による引きずりの力 (破線) の水平平均から の偏差, (b) 熱的浮力・引きずりの力の水平平均からの偏差の和を最下層から鉛直 積分したもの. いずれも 99-100 モデル日目の期間で時間平均を行なった.

図 6: $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の (a) 温位の tendency, (b) 雲密度の tendency の水平・時間平均値. (*1) に高度 25 km から 50 km, (*2) に高度 19 km から 25 km, における tendency を示す. 温位の tendency において, 実線は移流項と乱流拡散項の和, 破線は潜熱加熱項, 点線は放射加熱項を表す. 雲密度の tendency において, 実線は移流項と乱流拡散項の和, 破線は凝結項, 点線は重力落下項を表す. いずれも水平・時間平均を行なったものであり, 時間平均は 90 - 100 モデル日の期間で行なった.

図 7: (a) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (b) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (c) $S_{cr} = 1.0$, $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の場合の 100 モデル日における鉛直流速と雲密度 の空間分布. (*1), (*2) はそれぞれ鉛直流速, 雲密度の空間分布である.

図 8: $S_{cr} = 1.35$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の非凝結期 (約 143.50 モデル日目) における (a) 鉛直流速, (b) 温位の水平平均からの偏差, (c) 雲密度, (d) 飽和比の空間分布.

図 9: S_{cr} = 1.35, N_{*} = 5.0×10⁶ kg⁻¹の場合の凝結期(約 143.55 モデル日目)における(a) 鉛直流速, (b) 温位の水平平均からの偏差, (c) 雲密度, (d) 飽和比の空間分布.

図 10: *S_{cr}* = 1.35, *N*_{*} = 5.0 × 10⁶ kg⁻¹ の場合の (a) 約 143.50 モデル日, (b) 約 143.53 モデル日, (c) 約 143.55 モデル日, (d) 約 143.63 モデル日, (e) 約 143.89 モデル日, (f) 約 150.0 モデル日における鉛直流速, 雲密度の空間分布. (*1), (*2) はそれぞれ鉛直流速, 雲密度の空間分布である. 図 10a1, a2 は図 8a, c, 図 10c1, c2 は図 9a, c と同時刻であることに注意されたい.

図 11: $S_{cr} = 1.35$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の上昇域 (水平座標 x = 70 km から 80 km) における (a) 非凝結期の末期, (b) 凝結期の初期, (c) 凝結期初期以降の熱的浮力 (実線) と雲粒による引きずりの力 (破線) の水平平均からの偏差, 熱的浮力・引き ずりの力の水平平均からの偏差の和を最下層から鉛直積分したもの. (*1) は熱的浮力 (実線) と雲粒による引きずりの力 (破線) の水平平均からの偏差, (*2) は熱的浮力・引きずりの力の水平平均からの偏差の和を最下層から鉛直積分したものであ る. 非凝結期については 143.48 – 143.51 モデル日, 凝結期初期については 143.53 – 143.55 モデル日, 凝結期初期以降については 143.60 – 143.66 モデル日において時 間平均を行なっている.

図 12: *S_{cr}* = 1.35, *N*_{*} = 5.0 × 10⁴ kg⁻¹ の場合の (a) 約 113.22 モデル日, (b) 約 113.47 モデル日, (c) 約 113.50 モデル日, (d) 約 113.63 モデル日, (e) 約 113.68 モデル日, (f) 約 115.14 モデル日における鉛直流速, 雲密度の空間分布. (*1), (*2) はそれ ぞれ鉛直流速, 雲密度の空間分布である.

図 13: $S_{cr} = 1.35$, $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$ の場合の 100 – 150 モデル日における (a) 水 平平均雲密度, (b) 凝結高度付近 (z = 22.2 km) での水平平均温度の時間変化. τ_{fall} , τ_{cool} , D_{cloud} , T(S = 1.0), T(S = 1.35) はそれぞれ重力落下のタイムスケール, 冷却 のタイムスケール, 雲の鉛直長さスケール, 飽和温度, 臨界飽和比における温度であ り, $\Delta T = T(S = 1.0) - T(S = 1.35)$ である.

図 14: $S_{cr} = 1.35$ の場合における重力落下のタイムスケールの常用対数値 $\log_{10} \tau_{fall}$ (実線) と冷却のタイムスケールの常用対数値 $\log_{10} \tau_{cool}$ (破線). 横軸が $\log_{10}(N_*/5)$ であることに注意されたい.

図 15: (a) $N_* = 5.0 \times 10^8 \text{ kg}^{-1}$, (b) $N_* = 5.0 \times 10^6 \text{ kg}^{-1}$, (c) $N_* = 5.0 \times 10^4 \text{ kg}^{-1}$ の 場合の水平・時間平均された雲密度 (実線), CO₂ 氷静的エネルギーー定の仮定の下 で得られる雲密度 (破線), 凝結・重力落下のバランス及び凝結加熱・放射冷却のバ ランスによって決まる雲密度 (点線). いずれも $S_{cr} = 1.0$ の場合であり, 時間平均は 90-100 モデル日目の期間で行なった.

図 E.1: 格子点の配置. Sugiyama (2006) より引用した.

図 E.2: モード別時間分割法の概念図. Kitamori (2006) より引用した.

図 F.1: 式 (F.18) から得られる w(z) (青線) と準定常解 ($S_{cr} = 1.0, N_* = 5.0 \times 10^6$ kg⁻¹) の平衡状態における平均鉛直流 (赤線). $Q_{rad} = 0.1$ K s⁻¹, $z_{LCL} = 2.0 \times 10^4$ m としている.

図 F.2: 式 (F.18) から得られる温位移流項 (赤破線), 凝結加熱項 (緑破線), 放射冷却 項 (青実線) 及び準定常解 (*S_{cr}* = 1.0, *N*_{*} = 5.0 × 10⁶ kg⁻¹) の平衡状態における温 位移流項 (赤実線), 凝結加熱項 (緑実線), 放射冷却項 (青実線).

付録A 運動量の式の導出

本付録では運動量の式 (2.1), (2.2) の導出を行なう. 固相密度 ρ_s が気相密度 ρ_v に比 べて十分小さい場合, 一般的な圧縮性流体の方程式は

$$\frac{Du}{Dt} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + D_u, \qquad (A.1)$$

$$\frac{Dw}{Dt} = -\frac{1}{\rho}\frac{\partial p}{\partial z} - g + D_w \tag{A.2}$$

と表される. 但し $\rho \equiv \rho_v + \rho_s$ は全密度である. 圧力傾度力を pの代わりに θ, Π で表すと,

$$-\frac{1}{\rho}\frac{\partial p}{\partial x_{i}} = -\frac{\rho_{v}}{\rho}\frac{1}{\rho_{v}}\frac{\partial p}{\partial x_{i}}$$

$$= -\frac{\rho_{v}}{\rho}\frac{R\theta\Pi}{p}\frac{\partial}{\partial x_{i}}\left[p_{0}\Pi^{c_{pv}/R}\right]$$

$$= -\frac{\rho_{v}}{\rho}\frac{R\theta\Pi}{p}\frac{p_{0}c_{pv}}{R}\Pi^{(c_{pv}/R)-1}\frac{\partial\Pi}{\partial x_{i}}$$

$$= -\frac{\rho_{v}}{\rho}\frac{R\theta\Pi}{p}p_{0}\Pi^{c_{pv}/R}\frac{c_{pv}}{R\Pi}\frac{\partial\Pi}{\partial x_{i}}$$

$$= -\frac{\rho_{v}}{\rho}\frac{R\theta\Pi}{p}p\frac{c_{pv}}{R\Pi}\frac{\partial\Pi}{\partial x_{i}}$$

$$= -\frac{\rho_{v}}{\rho}c_{pv}\theta\frac{\partial\Pi}{\partial x_{i}}$$
(A.3)

となる. 但し式変形の途中で理想気体の状態方程式 $p = \rho_v RT = \rho_v R\theta \Pi$ を用いた. (A.3) を (A.1), (A.2) に代入すると,

$$\frac{Du}{Dt} = -\frac{\rho_v}{\rho} c_{pv} \theta \frac{\partial \Pi}{\partial x} + D_u, \qquad (A.4)$$

$$\frac{Dw}{Dt} = -\frac{\rho_v}{\rho} c_{pv} \theta \frac{\partial \Pi}{\partial z} - g + D_w \tag{A.5}$$

となる.

次に (A.4) を線形化する. 基本場には雲は存在しないと想定しているので, $\overline{\rho} = \overline{\rho_v}$, $\rho' = \rho'_v + \rho'_s$, $\rho = \overline{\rho_v} + \rho'_v + \rho'_s$ となる. (A.4) の各変数を基本場成分と擾乱成分の和 で表し,擾乱成分の2次以上の量は十分小さいものとして無視すると,

$$\begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} &= -\frac{\overline{\rho_v} + \rho'_v}{\overline{\rho} + \rho'} c_{pv} (\overline{\theta} + \theta') \frac{\partial \Pi'}{\partial x} + D_u \\ &= -\frac{\overline{\rho_v} + \rho'_v}{\overline{\rho}} \frac{1}{1 + (\rho'/\overline{\rho})} c_{pv} (\overline{\theta} + \theta') \frac{\partial \Pi'}{\partial x} + D_u \\ &\simeq -\frac{\overline{\rho_v} + \rho'_v}{\overline{\rho}} \left(1 - \frac{\rho'}{\overline{\rho}}\right) c_{pv} (\overline{\theta} + \theta') \frac{\partial \Pi'}{\partial x} + D_u \\ &= -\left(1 + \frac{\rho'_v}{\overline{\rho_v}}\right) \left(1 - \frac{\rho'}{\overline{\rho}}\right) c_{pv} (\overline{\theta} + \theta') \frac{\partial \Pi'}{\partial x} + D_u \\ &\simeq -c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial x} + D_u, \\ &\simeq -c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial x} + D_u, \\ &\frac{\partial u}{\partial t} &= -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial x} + D_u \end{aligned}$$
(A.6)

となり,式(2.1)が得られる.

次に (A.5) を線形化する. 基本場において静水圧平衡が成り立つとき, (A.5) より

$$0 = -c_{pv}\overline{\theta}\frac{\partial\overline{\Pi}}{\partial z} - g \tag{A.7}$$

となる. (A.5) を線形化し, (A.7) を用いて書き換えると,

$$\begin{aligned} \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} &= -\frac{\overline{\rho_v} + \rho'_v}{\overline{\rho} + \rho'} c_{pv} (\overline{\theta} + \theta') \left(\frac{\partial \overline{\Pi}}{\partial z} + \frac{\partial \Pi'}{\partial z} \right) - g + D_w \\ &\simeq - \left(1 + \frac{\rho'_v}{\overline{\rho_v}} \right) \left(1 - \frac{\rho'}{\overline{\rho}} \right) c_{pv} (\overline{\theta} + \theta') \left(\frac{\partial \overline{\Pi}}{\partial z} + \frac{\partial \Pi'}{\partial z} \right) \\ &- g + D_w \\ &\simeq - c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} - c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} \\ &\quad - \frac{\rho'_v}{\overline{\rho_v}} c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} + \frac{\rho'}{\overline{\rho}} c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} - c_{pv} \theta' \frac{\partial \overline{\Pi}}{\partial z} - g + D_w \\ &= - c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial z} - \frac{\rho'_v}{\overline{\rho}} c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} + \frac{\rho'}{\overline{\rho}} c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} - c_{pv} \theta' \frac{\partial \overline{\Pi}}{\partial z} + D_w \\ &= - c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial z} + \frac{\rho'_s}{\overline{\rho}} c_{pv} \overline{\theta} \frac{\partial \overline{\Pi}}{\partial z} - c_{pv} \theta' \frac{\partial \overline{\Pi}}{\partial z} + D_w \\ &= - c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial z} + \frac{\rho'_s}{\overline{\rho}} g + \frac{\theta'}{\overline{\theta}} g + D_w \\ &= - c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial z} + g \left(\frac{\theta'}{\overline{\theta}} - \frac{R \overline{\theta}}{p_0 \overline{\Pi}^{c_{vv}/R}} \rho'_s \right) + D_w, \end{aligned}$$

$$\frac{\partial w}{\partial t} = -u \frac{\partial w}{\partial x} - w \frac{\partial w}{\partial z}
-c_{pv} \overline{\theta} \frac{\partial \Pi'}{\partial z} + g \left(\frac{\theta'}{\overline{\theta}} - \frac{R \overline{\theta}}{p_0 \overline{\Pi}^{c_{vv}/R}} \rho'_s \right) + D_w$$
(A.8)

となり,式(2.2)が得られる.

付録B 圧力方程式の導出

本付録では圧力方程式 (2.3) の導出を行なう. 状態方程式を θ, Π で表現すると,

$$\rho_v = \frac{p}{RT} = \frac{p_0 \Pi^{c_{pv}/R}}{R\Pi \theta} = \frac{p_0}{R} \frac{\Pi^{c_{vv}/R}}{\theta}$$
(B.1)

となる. (B.1) の Lagrange 微分をとると,

$$\frac{D\rho_{v}}{Dt} = \frac{D}{Dt} \left(\frac{p_{0}}{R} \frac{\Pi^{c_{vv}/R}}{\theta} \right)$$

$$= \frac{p_{0}c_{vv}}{R^{2}} \frac{\Pi^{c_{vv}/R-1}}{\theta} \frac{D\Pi}{Dt} - \frac{p_{0}}{R} \frac{\Pi^{c_{vv}/R}}{\theta^{2}} \frac{D\theta}{Dt}$$

$$= \frac{c_{vv}}{R\Pi} \left(\frac{p_{0}}{R} \frac{\Pi^{c_{vv}/R}}{\theta} \right) \frac{D\Pi}{Dt} - \frac{1}{\theta} \left(\frac{p_{0}}{R} \frac{\Pi^{c_{vv}/R}}{\theta} \right) \frac{D\theta}{Dt}$$

$$= \frac{c_{vv}\rho_{v}}{R\Pi} \frac{D\Pi}{Dt} - \frac{\rho_{v}}{\theta} \frac{D\theta}{Dt}$$
(B.2)

ここで連続の式

$$\frac{D\rho_v}{Dt} = -\rho_v \nabla \cdot \boldsymbol{u} - M_{cond} \tag{B.3}$$

及び熱力学の式

$$\frac{D\theta}{Dt} = \frac{1}{\Pi} \left(Q_{cond} + Q_{dis} + Q_{rad} \right) \tag{B.4}$$

を (B.2) に代入すると,

$$\frac{D\Pi}{Dt} = \frac{R\Pi}{c_{vv}} \left(\frac{1}{\rho_v} \frac{D\rho_v}{Dt} + \frac{1}{\theta} \frac{D\theta}{Dt} \right)$$

$$= \frac{R\Pi}{c_{vv}} \left[-\nabla \cdot \boldsymbol{u} - \frac{1}{\rho_v} M_{cond} + \frac{1}{\theta\Pi} \left(Q_{cond} + Q_{dis} + Q_{rad} \right) \right]$$

$$= \frac{c^2}{c_{pv}\theta} \left[-\nabla \cdot \boldsymbol{u} - \frac{1}{\rho_v} M_{cond} + \frac{1}{\theta\Pi} \left(Q_{cond} + Q_{dis} + Q_{rad} \right) \right]$$

$$= -\frac{c^2}{c_{pv}\theta} \nabla \cdot \boldsymbol{u} - \frac{c^2}{c_{pv}\rho_v\theta} M_{cond} + \frac{c^2}{c_{pv}\theta^2\Pi} \left(Q_{cond} + Q_{dis} + Q_{rad} \right) \quad (B.5)$$

となる. 但し熱力学の式において, 乱流拡散項は他の項に比べて十分小さいとして 無視した. また c は音速であり,

$$c^2 = \frac{c_{pv}}{c_{vv}} R \theta \Pi \tag{B.6}$$

である. M_{cond}, Q_{*} が擾乱成分であることに注意して, (B.5) の線形化を行なうと,

$$\frac{\partial \Pi'}{\partial t} = -w' \frac{\partial \overline{\Pi}}{\partial z} - \frac{\overline{c^2}}{c_{pv}\overline{\theta}} \nabla \cdot \boldsymbol{u}' - \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} M_{cond} + \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2 \overline{\Pi}} (Q_{cond+}Q_{dis} + Q_{rad})$$
(B.7)

となる. ここで

$$\overline{\rho}\overline{\theta} = \frac{p_0}{R}\overline{\Pi}^{c_{vv}/R} \tag{B.8}$$

$$\overline{c^2} = \frac{c_{pv}}{c_{vv}} R \overline{\theta} \overline{\Pi}$$
(B.9)

となることに着目すると,

$$\frac{\partial}{\partial z} \left(\overline{\rho} \overline{\theta} \right) = \frac{\partial}{\partial z} \left(\frac{p_0}{R} \overline{\Pi}^{c_{vv}/R} \right)
= \frac{c_{vv}}{R} \frac{p_0}{R} \overline{\Pi}^{c_{vv}/R-1} \frac{\partial \overline{\Pi}}{\partial z}
= \frac{c_{vv}}{R} \frac{\overline{\rho} \overline{\theta}}{\overline{\Pi}} \frac{\partial \overline{\Pi}}{\partial z}
= \frac{c_{pv} \overline{\rho} \overline{\theta}^2}{\overline{c^2}} \frac{\partial \overline{\Pi}}{\partial z}$$
(B.10)

となる. (B.10) より

$$-w'\frac{\partial\overline{\Pi}}{\partial z} = -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2}w'\frac{\partial}{\partial z}\left(\overline{\rho}\overline{\theta}\right)$$
$$= -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2}u'\cdot\nabla\left(\overline{\rho}\overline{\theta}\right)$$
(B.11)

となる. (B.11)を (B.7)に代入すると,

$$\frac{\partial \Pi'}{\partial t} = -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2} \boldsymbol{u}' \cdot \nabla \left(\overline{\rho}\overline{\theta}\right) - \frac{\overline{c^2}}{c_{pv}\overline{\theta}} \nabla \cdot \boldsymbol{u}' \\
+ \frac{\overline{c^2}}{c_{pv}^2 \overline{\theta}^2 \overline{\Pi}} \left(Q_{cond} + Q_{dis} + Q_{rad}\right) - \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} M_{cond} \\
= -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2} \left[\boldsymbol{u}' \cdot \nabla \left(\overline{\rho}\overline{\theta}\right) + \overline{\rho}\overline{\theta}\nabla \cdot \boldsymbol{u}'\right] \\
+ \frac{\overline{c^2}}{c_{pv}^2 \overline{\theta}^2 \overline{\Pi}} \left(Q_{cond} + Q_{dis} + Q_{rad}\right) - \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} M_{cond}$$

$$= -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2}\nabla \cdot \left(\overline{\rho}\overline{\theta}\boldsymbol{u}'\right) + \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\overline{\Pi}}\left(Q_{cond} + Q_{dis} + Q_{rad}\right) - \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}}M_{cond}$$
(B.12)

となる. 更に (B.12) に

$$Q_{cond} = \frac{LM_{cond}}{c_{pv}\overline{\rho}} \tag{B.13}$$

を代入して Q_{cond} を消去すると,

$$\frac{\partial \Pi'}{\partial t} = -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2} \nabla \cdot (\overline{\rho}\overline{\theta}u') + \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\Pi} \left(\frac{LM_{cond}}{c_{pv}\overline{\rho}} + Q_{dis} + Q_{rad}\right)
- \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} M_{cond}
= -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2} \nabla \cdot (\overline{\rho}\overline{\theta}u') + \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\Pi} \cdot \frac{LM_{cond}}{c_{pv}\overline{\rho}} - \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} M_{cond}
+ \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\Pi} (Q_{dis} + Q_{rad})
= -\frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\overline{\theta}} \nabla \cdot (\overline{\rho}\overline{\theta}u') + \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} \left(\frac{L}{c_{pv}\overline{\theta}\Pi} - 1\right) M_{cond}
+ \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\overline{\Pi}} (Q_{dis} + Q_{rad})
= -\frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}^2} \nabla \cdot (\overline{\rho}\overline{\theta}u') + \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} \left(\frac{L}{c_{pv}\overline{T}} - 1\right) M_{cond}
+ \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\overline{\Pi}} (Q_{dis} + Q_{rad})
= -\frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\overline{\theta}} \nabla \cdot (\overline{\rho}\overline{\theta}u') + \frac{\overline{c^2}}{c_{pv}\overline{\rho}\overline{\theta}} \left(\frac{L}{c_{pv}\overline{T}} - 1\right) M_{cond}
+ \frac{\overline{c^2}}{c_{pv}\overline{\theta}^2\overline{\Pi}} (Q_{dis} + Q_{rad})$$
(B.14)

となり,式(2.3)が得られる.

付録C 凝結率 M_{cond} の導出

質量 m をもつ雲粒がまわりの大気の拡散によって成長する過程を考える. 拡散による雲粒の成長は

$$\frac{dm}{dt} = 4\pi r_d^2 D \frac{\partial \rho}{\partial r} \tag{C.1}$$

で表される.rは雲粒の中心からの距離,Dは大気の分子拡散係数である.大気の状態は定常かつ等方であると仮定してこの式をrについて解くと

$$\frac{dm}{dt} = -4\pi r_d D(\rho_{r_d} - \rho_{\infty}) \tag{C.2}$$

となる. ただし, 境界条件として $r = r_d$ で $\rho = \rho_{r_d}$, $r \to \infty$ で $\rho \to \rho_{\infty}$ を用いた. こ こで理想気体の状態方程式 $p = \rho RT$ を代入すると

$$\frac{dm}{dt} = -4\pi r_d D \left(\frac{p_*(T_{r_d})}{RT_{r_d}} - \frac{p_\infty}{RT_\infty} \right)$$
(C.3)

となる. この式の両辺を $p * (T_{\infty})$ で割ると

$$\frac{1}{p_{*}(T_{\infty})}\frac{dm}{dt} = -\frac{4\pi r_{d}D}{R} \left(\frac{p_{*}(T_{r_{d}})}{p_{*}(T_{r_{d}})T_{r_{d}}} - \frac{p_{\infty}}{p_{*}(T_{r_{d}})T_{\infty}}\right)$$
$$= -\frac{4\pi r_{d}D}{RT_{\infty}} \left(\frac{p_{*}(T_{r_{d}})}{p_{*}(T_{\infty})} - \frac{p_{\infty}}{p_{*}(T_{\infty})}\right)$$
(C.4)

となる. ただし, 最後の変形には $(T_{r_d} - T_{\infty})/T_{\infty} \ll 1$ を用いた.

凝結が起きた時潜熱が解放される.この潜熱が熱伝導によって輸送されると仮定す ると

$$L\frac{dm}{dt} = -4\pi r^2 k \frac{dT}{dr}$$
(C.5)

が成り立つ.ここで k は大気の熱拡散係数である.大気密度の拡散方程式と同様にこの式を解くと

$$L\frac{dm}{dt} = 4\pi r k (T_{r_d} - T_{\infty}) \tag{C.6}$$

となる. ただし, 境界条件として $r = r_d$ で $T = T_{r_d}$, $r \to \infty$ で $T \to T_\infty$ を用いた. ここでクラウジウス-クラペイロンの式

$$\frac{dp_*}{dT} = \frac{Lp_*}{RT^2}$$

を積分すると

$$\ln \frac{p_*(T_{r_d})}{p_*(T_{\infty})} = \frac{L}{R} \frac{T_{r_d} - T_{\infty}}{T_{r_d} T_{\infty}}$$
$$\sim \frac{L}{R} \frac{T_{r_d} - T_{\infty}}{T_{\infty}^2}$$
(C.7)

となる.よって

$$\frac{p_*(T_{r_d})}{p_*(T_{\infty})} = \exp\left(\frac{L}{R}\frac{T_{r_d} - T_{\infty}}{T_{r_d}T_{\infty}}\right)$$

$$\sim 1 + \frac{L}{R}\frac{T_{r_d} - T_{\infty}}{T_{\infty}^2}$$

$$\sim 1 + \frac{L^2}{4\pi r_d k R T_{\infty}^2}\frac{dm}{dt} \qquad (C.8)$$

となる. 最後の変形には式 (C.6) を用いた.

式 (C.4), (C.8) より

$$\frac{dm}{dt} = -\frac{4\pi r_d D p_*(T_\infty)}{RT_\infty} \left(1 + \frac{L^2}{4\pi r_d k R T_\infty^2} \frac{dm}{dt} - \frac{p_\infty}{p_*(T_\infty)}\right)$$
(C.9)

となる.この式を整理すると

$$\left(\frac{RT_{\infty}}{Dp_*(T_{\infty})} + \frac{L^2}{kRT_{\infty}^2}\right)\frac{dm}{dt} = 4\pi r_d \left(\frac{p_{\infty}}{p_*(T_{\infty})} - 1\right)$$
(C.10)

となる. ここで

$$R_m = \frac{RT_{\infty}}{Dp_*(T_{\infty})}$$
$$R_h = \frac{L^2}{kRT_{\infty}^2}$$
$$S = \frac{p_{\infty}}{p_*(T_{\infty})}$$

とおくと

$$\frac{dm}{dt} = \frac{4\pi r_d}{R_m + R_h} (S - 1) \tag{C.11}$$

となる. R_m , R_h はそれぞれ質量輸送, 熱輸送に関係する係数である. S は飽和比である. 雲粒の数混合比 (単位体積当たりの個数) を N_* とし, 雲粒の大きさが全て同じであると仮定すれば, 単位体積当たりの凝結量 M_{cond} は

$$M_{cond} = \rho N_* \frac{dm}{dt} = \frac{4\pi r_d \rho N_*}{R_m + R_h} (S - 1)$$
(C.12)

で与えられる. 初期火星での温度・圧力条件を想定すると, $R_m \ll R_h$ である¹⁾. 従って

$$M_{cond} \sim \frac{4\pi r_d \rho N_*}{R_h} (S-1) \tag{C.13}$$

となる.

 $^{(1)}$ 初期火星での温度・圧力条件で $R_m \ll R_h$ となることを示す. R_h に対する R_m の比は

$$\frac{R_m}{R_h} = \frac{\frac{RT}{Dp^*}}{\frac{L^2}{kRT^2}}$$
$$= \frac{k}{D}\frac{R^2T^3}{p^*L^2}$$

となる.気体分子運動論に基づくと、D,kは以下のように表される.

$$D = \frac{1}{3}\overline{V}\lambda,$$

$$k = \frac{1}{3}\rho c_v\overline{V}\lambda$$

但し λ は平均自由行程, \overline{V} は分子の平均速度である. 上式よりk/Dは

$$\frac{k}{D} = \rho c_v$$

となる. 従って

$$\frac{R_m}{R_h} = \rho c_v \frac{R^2 T^3}{p^* L^2}$$
$$= p c_v \frac{R T^2}{p^* L^2}$$
$$= \frac{S c_v R T^2}{L^2}$$

となる. 初期火星の温度圧力条件を想定すると, $S\sim 1, T\sim 180$ K, $c_v\sim 670$ J K $^{-1}$ kg $^{-1}, R\sim 190$ J K $^{-1}$ kg $^{-1}, L\sim 5.9\cdot 10^5$ J kg $^{-1}$ であるので,

$$\frac{R_m}{R_h} \sim \frac{1 \cdot 670 \cdot 190 \cdot 180^2}{5.9^2 \cdot 10^{10}} \\ \sim 1 \cdot 10^{-2} \ll 1$$

となり, $R_m \ll R_h$ となることが分かる.

付録**D** Stokes-Cunningham 則に基づ く終端速度の導出

本付録では Cunningham 補正を行なった Stokes 則から得られる終端速度 V_{fall} を導出する. なお導出に当たっては, Tatsumi (1982), Basset (1961) を参考にしている.

D.1 Stokes の法則の導出

先ず微小球体が遅い粘性流体中を運動する際に受ける抵抗力を与える法則である Stokes 則を導出する. ここでは以下のような仮定を置く.

- (1) 想定している流体は非圧縮粘性流体である.
- (2) Reynolds 数は1に比べて十分小さい.
- (3) 流れは定常状態にある.
- (4) 球体から十分遠い所での流れの速さは一様で,その速さを V_{term} とする.
- (5) 球体の半径 r_c は小さく, 球体の周りでの重力は一定とみなせる.

D.1.1 支配方程式

球体とともに動く座標系を考える.このとき非圧縮粘性流体の支配方程式は運動方 程式

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = -\nabla p + \eta \nabla^2 \boldsymbol{u}$$
(D.1)

および連続の式

$$\nabla \cdot \boldsymbol{u} = 0 \tag{D.2}$$

である. ここで ρ は気相密度, p は圧力, u は流れの球体に対する相対速度, ν は粘 性係数である. Reynolds 数 Re は粘性項 $\eta \nabla^2 u$ と慣性項 (非線形項) $u \cdot \nabla u$ の大き さの比を表す.系の長さスケールを球の直径で評価するものとし,速度スケールを Uとする.このとき

$$Re = \frac{2\rho V_{term} r_c}{\eta}$$
(D.3)

となる. Re ≪1の場合, 慣性項は粘性項に比べて十分小さくなり, 式 (D.1) は

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = -\nabla p + \eta \nabla^2 \boldsymbol{u} \tag{D.4}$$

と近似できる²⁾. 定常な流れを考えると, 式 (D.4) は

$$\eta \nabla^2 \boldsymbol{u} = \nabla p \tag{D.5}$$

となる.式 (D.5)の発散をとり,式 (D.2)を用いると,

$$\nabla^2 p = 0 \tag{D.6}$$

となる.式 (D.6)の形式の微分方程式を Laplace 方程式と言い, Laplace 方程式を満たす関数を調和関数と言う.

D.1.2 境界条件

球体の中心を原点とし、デカルト座標系 (x_1, x_2, x_3) 及び球座標系 (r, θ, ϕ) をとる. デカルト座標系は x_1 軸が球体から十分遠い所での一様な流れと平行となるように とる. このとき、無限遠で課すべき境界条件は

$$\boldsymbol{u} \to V_{term} \boldsymbol{e}_1, \ p \to p_{\infty} \quad (r \to \infty)$$
 (D.7)

と表される. 但し e_i は x_i 座標の基本ベクトル, p_∞ は無限遠での圧力である. また 粘性流体を考えているので, 球体表面ではすべり無し条件を適用する. すなわち

$$\boldsymbol{u} = 0 \quad (r = r_c) \tag{D.8}$$

とする.

D.1.3 Stokesの法則の導出

方程式 (D.5), (D.6) は線形非同次の偏微分方程式である. 従って, 式 (D.5), (D.6) の 解は非同次方程式の特解と同次方程式の一般解の重ね合わせによって求められる.

²⁾Re ≪1のとき, 慣性項を無視する近似を Stokes 近似と呼ぶ.

式 (D.5), (D.6) の特解を u_h , p_h , 同次の一般解を u_n , p_n とすると, 各物理量が満た すべき方程式は以下のようになる.

$$\eta \nabla^2 \boldsymbol{u}_h = \nabla p_h, \tag{D.9}$$

$$\nabla^2 p_h = 0, \tag{D.10}$$

$$\eta \nabla^2 \boldsymbol{u}_n = \nabla p_n = 0, \tag{D.11}$$

$$\nabla^2 p_n = 0. \tag{D.12}$$

先ず非同次方程式の特解について考える. 巽 (1982) によると, 非同次の特解 u_h , p_h は任意の調和関数 H(x) を用いて

$$\boldsymbol{u}_h = \nabla(\boldsymbol{x} \cdot \boldsymbol{H}) - 2\boldsymbol{H},$$
 (D.13)

$$p_h = 2\eta \nabla \cdot \boldsymbol{H} \tag{D.14}$$

となる³⁾. 但しxは Einstein の規約に従って

$$\boldsymbol{x} = x_i \boldsymbol{e}_i \tag{D.15}$$

と書ける.以後,特に断りのない限り Einstein の規約に従うものとする.

以下, *H* を求める. いま *H* は調和関数なので Laplace 方程式

$$\nabla^2 \boldsymbol{H} = 0 \tag{D.16}$$

を満たす. 球体の周りの流れを考えているので, 球座標系 (r, θ, ϕ) を導入すると便利である. このときデカルト座標系の各成分は

$$\begin{cases} x_1 = r \cos \theta, \\ x_2 = r \sin \theta \cos \phi, \\ x_3 = r \sin \theta \sin \phi \end{cases}$$
(D.17)

と表される. 球体から十分遠方において流れ場が特異性を持たないことに注意して, *x*₁軸に対称な式 (D.16)の解を求めると,

$$H_i = \sum_{n=0}^{\infty} \alpha_{in} \frac{P_n(\cos \theta)}{r^{n+1}}$$
(D.18)

または

$$H_i = \sum_{n=0}^{\infty} l_{in} \frac{\partial^n}{\partial x_1^n} \left(\frac{1}{r}\right) \tag{D.19}$$

³⁾式 (D.13), (D.14) が式 (D.9), (D.10) を満たすことの確認については D.3.1 節 を参照されたい.

となる4). 但し

$$\boldsymbol{H} = H_i \boldsymbol{e}_i, \tag{D.20}$$

であり, α_{in} , l_{in} は定数である. また $P_n(\cos \theta)$ は Legendre 多項式である. いま求め るべきは非同次方程式の特解であるから, **H** の選び方には任意性がある. そこでこ こでは 式 (D.19) の第一項のみをとり,

$$H = \frac{l}{r} \tag{D.21}$$

としよう. 但し*l* は定数ベクトルである. 式 (D.21) を 式 (D.13), (D.14) に代入すると,

$$\begin{split} u_{hi} &= \left[\nabla \left(\boldsymbol{x} \cdot \frac{\boldsymbol{l}}{r} \right) - \frac{2\boldsymbol{l}}{r} \right]_{i} \\ &= \frac{\partial}{\partial x_{i}} \left(\frac{x_{j}l_{j}}{r} \right) - \frac{2l_{i}}{r} \\ &= l_{j} \frac{\partial}{\partial x_{i}} \left(\frac{x_{j}}{r} \right) - \frac{2l_{i}}{r} \\ &= l_{j} \frac{\delta_{ij}}{r} + l_{j} x_{j} \frac{\partial}{\partial x_{i}} \left(\frac{1}{r} \right) - \frac{2l_{i}}{r} \\ &= l_{j} x_{j} \frac{\partial}{\partial x_{i}} \left(\frac{1}{r} \right) - \frac{l_{i}}{r} , \end{split}$$
$$\begin{aligned} p_{h} &= 2\eta \frac{\partial}{\partial x_{j}} \left(\frac{l_{j}}{r} \right) = 2\eta l_{j} \frac{\partial}{\partial x_{j}} \left(\frac{1}{r} \right) , \end{split}$$

すなわち

$$\boldsymbol{u}_h = (\boldsymbol{x} \cdot \boldsymbol{l}) \nabla \left(\frac{1}{r}\right) - \frac{\boldsymbol{l}}{r},$$
 (D.22)

$$p_h = 2\eta(\boldsymbol{l}\cdot\nabla)\left(\frac{1}{r}\right)$$
 (D.23)

となる. いま x_1 軸に対称な解を考えているので,式 (D.22), (D.23) より l は x_1 軸 に平行でなければならない. 従って, u_h の球座標系における各速度成分を u_{hr} , $u_{h\theta}$, $u_{h\phi}$ とし, |l| = l とすれば,

$$u_{hr} = rl\cos\theta \frac{\partial}{\partial r} \left(\frac{1}{r}\right) - \frac{l\cos\theta}{r} = -2\frac{l\cos\theta}{r}, \qquad (D.24)$$

$$u_{h\theta} = rl\cos\theta \frac{1}{r}\frac{\partial}{\partial\theta}\left(\frac{1}{r}\right) + \frac{l\sin\theta}{r} = \frac{l\sin\theta}{r}, \qquad (D.25)$$

$$u_{h\phi} = rl\cos\theta \frac{1}{r\sin\theta} \frac{\partial}{\partial\phi} \left(\frac{1}{r}\right) = 0,$$
 (D.26)

⁴⁾式 (D.18), (D.19) の導出については D.3.2 節 を参照されたい.

$$p_h = 2\eta l \frac{\partial}{\partial x_1} \left(\frac{1}{r}\right) = -2 \frac{\eta l \cos \theta}{r^2}$$
 (D.27)

となる.

次に同次方程式 (D.11), (D.12) の x_1 軸に対称な一般解を求める. いま u_n がポテン シャル流であるとすると,

$$\boldsymbol{u}_n = \nabla \Phi \tag{D.28}$$

と書ける.このとき連続の式は

$$\nabla^2 \Phi = 0 \tag{D.29}$$

となり, u_n のラプラシアンは

$$\nabla^2 \boldsymbol{u}_n = \nabla(\nabla^2 \Phi) = 0 \tag{D.30}$$

となる. すなわち, 式 (D.28) は 式 (D.11) の解となる. 式 (D.29) よりポテンシャル Φ は調和関数である. 従って Φ の一般解は 式 (D.19) を求めたのとほぼ同様の手法 によって

$$\Phi = \sum_{n=0}^{\infty} (a_n r^n + b_n r^{-n-1}) P_n(\cos\theta)$$
(D.31)

と求まる⁵⁾. 但し a_n, b_n は定数である. 従って u_n の球座標系における速度成分を それぞれ $u_{nr}, u_{n\theta}, u_{n\phi}$ とすると,

$$u_{nr} = \frac{\partial \Phi}{\partial r} = \frac{\partial}{\partial r} \left[\sum_{n=0}^{\infty} (a_n r^n + b_n r^{-n-1}) P_n(\cos \theta) \right]$$
$$= \sum_{n=0}^{\infty} (n+1) [a_{n+1} r^n P_{n+1}(\cos \theta) - b_n r^{-n-2} P_n(\cos \theta)], \quad (D.32)$$

$$u_{n\theta} = \frac{1}{r} \frac{\partial \Phi}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left[\sum_{n=0}^{\infty} (a_n r^n + b_n r^{-n-1}) P_n(\cos \theta) \right]$$
$$= \sum_{n=0}^{\infty} (a_n r^{n-1} + b_n r^{-n-2}) \frac{\partial P_n(\cos \theta)}{\partial \theta}, \qquad (D.33)$$

$$u_{n\phi} = 0 \tag{D.34}$$

となる. 但し a_n, b_n は定数である. また p_n も調和関数なので,

$$p_n = \sum_{n=0}^{\infty} (c_n r^n + d_n r^{-n-1}) P_n(\cos \theta)$$
 (D.35)

⁵⁾式 (D.31) の導出については 式 (D.82) の導出過程を参照されたい.

と書ける. 但し *c*_{*n*}, *d*_{*n*} は定数である.

以上より式 (D.5), (D.6)の一般解は以下のようになる.

$$u_{r} = u_{hr} + u_{nr}$$

= $-2\frac{l\cos\theta}{r} + \sum_{n=0}^{\infty} (n+1)[a_{n+1}r^{n}P_{n+1}(\cos\theta) - b_{n}r^{-n-2}P_{n}(\cos\theta)], (D.36)$
 $u_{\theta} = u_{h\theta} + u_{n\theta}$

$$= \frac{l\sin\theta}{r} + \sum_{n=0}^{\infty} (a_n r^{n-1} + b_n r^{-n-2}) \frac{\partial P_n(\cos\theta)}{\partial \theta}, \qquad (D.37)$$

$$u_{\phi} = u_{h\phi} + u_{n\phi}$$

= 0, (D.38)

$$p = p_h + p_n$$

= $-2\frac{\eta l\cos\theta}{r^2} + \sum_{n=0}^{\infty} (c_n r^n + d_n r^{-n-1}) P_n(\cos\theta).$ (D.39)

式 (D.36), (D.37), (D.38), (D.39) に対して境界条件 (D.7) を適用すると, 係数 a_n , b_n , c_n , d_n , l は以下のように定まる⁶⁾.

$$a_{1} = V_{term}, \quad a_{n} = 0 \qquad (n = 2, 3, \cdots)$$

$$b_{1} = -\frac{1}{4}V_{term}r_{c}^{3}, \quad b_{n} = 0 \qquad (n = 2, 3, \cdots)$$

$$c_{0} = p_{\infty}, \quad c_{n} = 0 \qquad (n = 1, 2, \cdots)$$

$$d_{n} = 0, \quad (n = 0, 1, \cdots)$$

$$l = \frac{3}{4}V_{term}r_{c}.$$
(D.40)

従って 式 (D.40) より

$$u_r = V_{term} \cos \theta \left(1 - \frac{3}{2} \frac{r_c}{r} + \frac{1}{2} \frac{r_c^3}{r^3} \right),$$
 (D.41)

$$u_{\theta} = V_{term} \sin \theta \left(-1 + \frac{3}{4} \frac{r_c}{r} + \frac{1}{4} \frac{r_c^3}{r^3} \right),$$
 (D.42)

$$u_{\phi} = 0, \tag{D.43}$$

$$p = p_{\infty} - \frac{3\eta V_{term} r_c}{2} \frac{\cos \theta}{r^2}$$
(D.44)

となる7).

以上により流速および圧力が求まったので、これらを用いて球に働く抵抗 D を求めよう.抵抗 D は球表面における応力を積分することによって求められる.また応

⁶⁾*a*₀ については境界条件を適用しても定めることができない. しかし *a*₀ は任意の値であって良く, 結果的に定める必要はない. 詳細については D.3.3 節 を参照されたい.

⁷⁾式 (D.40), (D.41), (D.42), (D.43), (D.44) の導出については D.3.3 節 を参照されたい.

力は歪み速度テンソルから計算することができる. 非圧縮粘性流体の場合, 応力 p_{ij} と 歪み速度テンソル e_{ij} の間には以下の関係が成り立つ⁸⁾.

$$p_{ij} = -p\delta_{ij} + 2\eta e_{ij}.\tag{D.45}$$

球座標系において, 歪み速度テンソルの各成分は

$$e_{rr} = \frac{\partial u_r}{\partial r},$$

$$e_{r\theta} = e_{\theta r} = \frac{1}{2} \left[r \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right],$$

$$e_{r\phi} = e_{\phi r} = \frac{1}{2} \left[\frac{1}{r \sin \theta} \frac{\partial u_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{u_{\phi}}{r} \right) \right],$$

$$e_{\theta \theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r}{r},$$

$$e_{\theta \phi} = e_{\phi \theta} = \frac{1}{2} \left[\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{u_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi} \right],$$

$$e_{\phi \phi} = \frac{1}{r \sin \theta} \frac{u_{\phi}}{\phi} + \frac{u_r}{r} + \frac{u_{\theta} \cos \theta}{r \sin \theta}$$
(D.46)

と表される⁹⁾. 今の場合, 歪み速度テンソルの各成分は 式 (D.41), (D.42), (D.43), (D.46) より

$$e_{rr} = \frac{3}{2} V_{term} \cos \theta \left(\frac{r_c}{r^2} - \frac{r_c^3}{r^4} \right),$$

$$e_{r\theta} = e_{\theta r} = -\frac{3}{4} V_{term} \sin \theta \frac{r_c^3}{r^4},$$

$$e_{\theta \theta} = \frac{3}{4} V_{term} \cos \theta \left(-\frac{r_c}{r^2} + \frac{r_c^3}{r^4} \right),$$

$$e_{r\phi} = e_{\theta \phi} = e_{\phi \theta} = e_{\phi \phi} = 0$$
(D.47)

となる. 球面 $r = r_c$ では常に e_r が法線ベクトルとなっているので, 球面での力を 求めるのに必要な応力成分は p_{rr} , $p_{r\theta}$, $p_{r\phi}$ である. 従って歪み速度テンソルとして は e_{rr} , $e_{r\theta}$, $e_{r\phi}$ が必要ということになる. 式 (D.47) より $r = r_c$ での e_{rr} , $e_{r\theta}$, $e_{r\phi}$ の 値を求めると,

$$e_{rr}|_{r=r_c} = 0,$$

$$e_{r\theta}|_{r=r_c} = -\frac{3}{4} \frac{V_{term}}{r_c} \sin \theta,$$

$$e_{r\phi}|_{r=r_c} = 0$$
(D.48)

⁸⁾式 (D.45) の導出については例えば巽 (1982) を参照されたい.

⁹⁾式 (D.46) の導出については D.3.4 節を参照されたい.

となる. 式 (D.44), (D.45), (D.48) より球面における prr, pro, pro の値は

$$p_{rr}|_{r=r_c} = -p|_{r=r_c} = -p_{\infty} + \frac{3}{2} \frac{\eta V_{term}}{r_c} \cos \theta,$$

$$p_{r\theta}|_{r=r_c} = 2\eta e_{r\theta}|_{r=r_c} = -\frac{3}{2} \frac{\eta V_{term}}{r_c} \sin \theta,$$

$$p_{r\phi}|_{r=r_c} = 2\eta e_{r\phi}|_{r=r_c} = 0$$
(D.49)

となる. 式 (D.49) より球面の応力は x_1 軸に対称であるので, 球面の応力を積分す ると x_1 軸と直交する成分は互いに打ち消し合い, 平行な成分のみ残る. p_{rr} , $p_{r\theta}$ の x_1 軸に平行な成分の球面上での積分をそれぞれ D_p , D_f とし, 球面上の微小面積要 素を dS とすれば,

$$D_{p} = \iint p_{rr}|_{r=r_{c}} \cos\theta dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(-p_{\infty} + \frac{3}{2} \frac{\eta V_{term}}{r_{c}} \cos\theta\right) \cos\theta r_{c}^{2} \sin\theta d\theta d\phi$$

$$= 2\pi \eta r_{c} V_{term}, \qquad (D.50)$$

$$D_{f} = -\iint p_{r\theta}|_{r=a} \sin\theta dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{3}{2} \frac{\eta V_{term}}{r_{c}} \sin\theta\right) \sin\theta a^{2} \sin\theta d\theta d\phi$$

$$= 4\pi \eta a V_{term}, \qquad (D.51)$$

となる¹⁰⁾. 従って 式 (D.50), (D.51) より球に働く全抵抗 D は

$$D = D_p + D_f = 6\pi\eta r_c V_{term} \tag{D.52}$$

となる. 式 (D.52) は Stokes の法則と呼ばれ, 微小球がゆっくり運動する際に働く 抵抗の大きさを与える法則として広く用いられている.

D.2 Cunningham 補正の導出

Stokes の法則は, 流体を構成する分子の平均自由行程 λ が球の半径 a に比べて十分 小さい場合, すなわち $\lambda \ll r_c$ の場合に精度良く成り立つ. しかし λ が球の半径 r_c と 同程度か, あるいは λ が r_c よりも大きくなると, 球体に働く抵抗の大きさは Stokes の法則で与えられる値よりも小さくなることが知られている. Cunningham(1910) は $\lambda \ge r_c$ の場合, 球体の運動によって生成される流速を無視できなくなり, Stokes の 法則を補正する必要があると主張した. Cunningham(1910)によって得られた Stokes

¹⁰⁾D_p は圧力に起因する抵抗なので, 圧力抵抗と呼ばれる. また D_f は摩擦力に起因する抵抗なの で, 摩擦抵抗と呼ばれる.

の法則に対する補正は Cunningham 補正と呼ばれている. Cunningham 補正は半経 験式であるものの, その関数形は理論的に導くことが出来る. 本節では Basset(1961) を参考に Cunningham 補正の関数形を導く.

 λ が球の半径 r_c と同程度か, あるいは λ が r_c よりも大きくなるとき, 球体近傍では 分子どうしの衝突よりも分子と球体表面との衝突が卓越するようになり, 局所熱平 衡が成立しなくなる. その結果球体表面では局所熱平衡を前提としていたすべりな し条件が成立しなくなり, 球体と流速の間に速度差が生じるようになる. そこで球 体表面での境界条件として式 (D.8) の代わりに速度の接線成分がゼロではないと いう条件を考慮することによって $\lambda \ge r_c$ における補正を求めることが可能である. Basset(1961) は球体表面における速度の接線成分が接線応力に比例すると考え,

$$u_{\theta} = \frac{1}{\beta} p_{r\theta} \quad (r = r_c) \tag{D.53}$$

という境界条件を与えている11). この場合, 球体に働く抵抗は

$$D = 6\pi\eta\pi r_c \frac{r_c\beta + 2\eta}{r_c\beta + 3\eta} \tag{D.54}$$

となる¹²⁾. ここで β , η の次元がそれぞれ (mass) (length)⁻² (time)⁻¹, (mass) (length)⁻¹ (time)⁻¹ となることに注意すると, η/β は長さの次元を持つ量となることが分かる. そこで平均自由行程 λ と無次元数 C_{β} を用いて

$$\frac{\eta}{\beta} = C_{\beta}\lambda \tag{D.55}$$

と書くことにする¹³⁾. このとき式 (D.54) は

$$D = 6\pi\eta V_{term} r_c \frac{1 + 2C_\beta K_n}{1 + 3C_\beta K_n} \tag{D.56}$$

となり, Stokes-Cunningham 則が導かれる. 球体の密度を ρ_I として, 重力と空気抵抗が釣り合っているとすると,

$$\frac{4}{3}\pi r_{c}^{3}\rho_{I} = 6\pi\eta V_{term}r_{c}\frac{1+2C_{\beta}K_{n}}{1+3C_{\beta}K_{n}},$$

$$V_{term} = \frac{1+3C_{\beta}K_{n}}{1+2C_{\beta}K_{n}}\frac{2r_{c}^{2}g\rho_{I}}{9\eta}$$
(D.57)

となる. ここで $K_n < 1$ の場合を考えると,

$$V_{term} \approx (1 + C_{\beta}K_n) \frac{2r_c^2 g\rho_I}{9\eta}$$
 (D.58)

¹¹⁾ β はすべり係数 (slip coefficient) と呼ばれることが多い.

¹²⁾式 (D.54) の導出については D.3.5 節 を参照されたい.

¹³)実際, Maxwell (1879), Epstein (1924) は $\eta/\beta \sim \lambda$ となることを気体分子運動論から導いており, 式 (D.55) のように置くことは妥当であると考えられる.

が得られる. Basset (1961)の方法では β あるいは C_{β} の値を理論的に定めることが 出来ないので, 実験的に定める必要がある. Rossow(1978) では $C_{\beta} \sim 4/3$ であると 述べており,本研究においてもこの値を採用することにした. また式 (D.58) を導く 際に $K_n < 1$ を想定しているが, 実際には $K_n > 1$ でも式 (D.58) は精度良く成り立 つことが知られている (Rossow, 1978).

D.3 補遺

D.3.1 式 (D.13), (D.14) が式 (D.9), (D.10) を満たすことの確認

ここでは 式 (D.13), (D.14) が 式 (D.9), (D.10) を満たしていることを確かめる. いま *H* は調和関数なので

$$\nabla^2 \boldsymbol{H} = 0 \tag{D.59}$$

が成り立つ. 従って 式 (D.14) より

$$\nabla^2 p_h = \nabla^2 (2\eta \nabla \cdot H) = 2\eta \nabla \cdot (\nabla^2 \mathbf{H}) = 0$$
 (D.60)

となり,式 (D.14) が (D.10) を満たしていることが示された.

次に **u**_h にラプラシアンを作用させると,

$$\nabla^{2} \boldsymbol{u}_{h} = \nabla^{2} [\nabla(\boldsymbol{x} \cdot \boldsymbol{H}) - 2\boldsymbol{H}]$$

$$= \nabla^{2} [\nabla(\boldsymbol{x} \cdot \boldsymbol{H})] - 2\nabla^{2} \boldsymbol{H}$$

$$= \nabla [\nabla^{2} (\boldsymbol{x} \cdot \boldsymbol{H})]$$
(D.61)

となる. ここで H の第 i 成分を H_i と表すことにすると,

$$\nabla^{2}(\boldsymbol{x} \cdot \boldsymbol{H}) = \frac{\partial^{2}}{\partial x_{i}^{2}}(x_{j}H_{j})$$

$$= \frac{\partial}{\partial x_{i}}\left(\delta_{ij}H_{j} + x_{j}\frac{\partial H_{j}}{\partial x_{i}}\right)$$

$$= \frac{\partial H_{i}}{\partial x_{i}} + \delta_{ij}\frac{\partial H_{j}}{\partial x_{i}} + x_{j}\frac{\partial^{2}H_{j}}{\partial x_{i}^{2}}$$

$$= 2\nabla \cdot \boldsymbol{H} + \boldsymbol{x} \cdot \nabla^{2}\boldsymbol{H}$$

$$= 2\nabla \cdot \boldsymbol{H}$$
(D.62)

となる. 従って 式 (D.14), (D.61), (D.62) より

$$\nabla^2 \boldsymbol{u}_h = \nabla [2\nabla \cdot \boldsymbol{H}] = \frac{1}{\eta} \nabla [2\eta \nabla \cdot \boldsymbol{H}] = \frac{1}{\eta} \nabla p_h \qquad (D.63)$$

となり,式 (D.14) が式 (D.10) を満たすことが示された.

D.3.2 式 (D.18), (D.19) の導出

ここでは 式 (D.16) から 式 (D.18), (D.19) を導出する. 式 (D.16) を球座標系で表現 すると,

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial H_i}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial H_i}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 H_i}{\partial \phi^2} = 0 \quad (i = 1, 2, 3)$$
(D.64)

となる. ここで x_i 軸に対称な場合を考えると, 解は ϕ に依存しない. そこで

$$H_i = R(r)\Theta(\theta) \tag{D.65}$$

という解を仮定し,式 (D.64) に代入すると,

$$\Theta \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{\sin \theta} R \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) = 0,$$

すなわち

$$\frac{1}{R}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) = -\frac{1}{\Theta\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right)$$
(D.66)

となる. 式 (D.66) の左辺は r のみの関数であり, 右辺は θ のみの関数である. 従っ て 式 (D.66) が成り立つためには, 両辺は定数でなければならない. その定数を γ とすると, 次の 2 式が得られる.

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \gamma R = 0, \tag{D.67}$$

$$\frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \gamma \sin \theta \Theta = 0.$$
 (D.68)

先ず 式 (D.67) を解く. $R = r^{\varepsilon}$ という解を仮定し, 式 (D.67) に代入すると

$$[\varepsilon(\varepsilon+1)-\gamma]r^{\varepsilon}=0,$$

すなわち

$$\gamma = \varepsilon(\varepsilon + 1) \tag{D.69}$$

となる. 式 (D.69) より γ は $\varepsilon \to -\varepsilon - 1$ という変換に対して不変であるから, r^{ε} が式 (D.67) の基本解であるとき, $r^{-\varepsilon-1}$ がもう 1 つの基本解となる. 従って

$$R = Ar^{\varepsilon} + Br^{-\varepsilon - 1} \tag{D.70}$$

と書ける. 但し A, B は定数である.

次に式 (D.68) について考える.式 (D.69) を式 (D.68) に代入し整理すると,

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \varepsilon (\varepsilon + 1)\Theta = 0 \tag{D.71}$$

となる.ここで

$$q = \cos\theta \tag{D.72}$$

と置くと

$$\frac{d}{d\theta} = \frac{dq}{d\theta}\frac{d}{dq} = -\sin\theta\frac{d}{dq}$$
(D.73)

となるので,式(D.70)は

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \varepsilon(\varepsilon + 1)\Theta$$

$$= \frac{1}{\sin\theta} \frac{d}{d\theta} \left(-\sin^2\theta \frac{d\Theta}{dq} \right) + \varepsilon(\varepsilon + 1)\Theta$$

$$= \frac{d}{dq} \left[(1 - q^2) \frac{d\Theta}{dq} \right] + \varepsilon(\varepsilon + 1)\Theta$$

$$= (1 - q^2) \frac{d\Theta}{dq^2} - 2q \frac{d\Theta}{dq} + \varepsilon(\varepsilon + 1)\Theta = 0 \quad (D.74)$$

となる.式 (D.74) は Legendre の微分方程式と呼ばれ,その解は第1種 Legendre 関数と第2種 Legendre 関数の重ね合わせによって表される.基本解には多項式となるものとが無限級数となるものが存在し,前者を第1種 Legendre 関数,後者を第2種 Legendre 関数と呼ぶ.以下では式 (D.74)の級数解を求める.ここで

$$\Theta(q) = \sum_{k=0}^{\infty} f_i q^i \tag{D.75}$$

と置き,式(D.74)に代入すると,

$$(1-q^2)\sum_{k=0}^{\infty} i(i-1)f_i q^{i-2} - 2q\sum_{k=0}^{\infty} if_i q^{i-1} + \varepsilon(\varepsilon+1)\sum_{k=0}^{\infty} f_i q^i = 0,$$

$$\sum_{k=0}^{\infty} \left\{ (i+1)(i+2)f_{i+2} - [i(i+1) - \varepsilon(\varepsilon+1)]f_i \right\} q^i = 0$$
(D.76)

となる. 式 (D.76) が任意の q について成り立つ為には,

$$f_{i+2} = \frac{i(i+1) - \varepsilon(\varepsilon+1)}{(i+1)(i+2)} f_i$$
(D.77)

でなければならない. ここで n を整数として $\varepsilon = n$ となる場合を考える. このとき式 (D.77) より $f_{n+2} = 0$ となる. また式 (D.77) において $i = n+2, n+4, \cdots$ とすることで

$$f_{n+2} = f_{n+4} = f_{n+6} = \dots = 0 \tag{D.78}$$

となる. 即ち, 次数が $i \ge n$ である項が存在しなくなり, q の多項式となる. この基本解は第1種 Legendre 関数と呼ばれる. 第1種 Legendre 関数を $P_n(q)$ と表すことにすると, 式 (D.77), (D.78) より

$$P_n(q) = \frac{1}{2^n} \sum_{i=0}^{i \le n/2} \frac{(-1)^i}{i!} \frac{(2n-2i)!}{(n-2i)!(n-i)!} q^{n-2i}$$
(D.79)

となる. もう 1 つの基本解は第 2 種 Legendre 関数と呼ばれ, 無限級数となる. 式 (D.77) より

$$\lim_{i \to \infty} \left| \frac{f_{i+2}q^{i+2}}{f_i q^i} \right| = \lim_{i \to \infty} \left| \frac{2i(2i+1) - n(n+1)}{(2i+1)(2i+2)} q^2 \right|$$
$$= q^2$$
(D.80)

となることから, 多項式である第 1 種 Legendre 関数は $q \rightarrow \pm 1$ において有限とな り, 第 2 種 Legendre 関数は $q \rightarrow \pm 1$ において発散する. 従って今の場合, 第 2 種 Legendre 関数は解として解としては適当ではない. 以上より H_i は

$$H_i = \sum_{n=0}^{\infty} (\alpha_{in} r^{-n-1} + \beta_{in} r^n) P_n(\cos \theta)$$
(D.81)

と表される. 但し α_{in}, α_{in} は定数である. 球体から十分遠い所で発散しないと考え ているので, β_{in} はゼロでなければならない. 従って

$$H_i = \sum_{n=0}^{\infty} \alpha_{in} \frac{P_n(\cos \theta)}{r^{n+1}}$$
(D.82)

となり,式(D.18)が導かれる.

次に式 (D.19) を導く. 最初に P_n(cos θ) に関する母関数が

$$\frac{1}{\sqrt{1-2\cos\theta s+s^2}} = \sum_{n=0}^{\infty} P_n(\cos\theta)s^n \tag{D.83}$$

となることを導く. $1/\sqrt{1-2\cos\theta s+s^2}$ を s=0の周りでテーラー展開すると,

$$\frac{1}{\sqrt{1-2\cos\theta s+s^2}} = \sum_{i=0}^{\infty} \frac{(2i)!}{2^{2i}(i!)^2} (2\cos\theta s-s^2)^i$$
(D.84)

となる. 式 (D.84)の右辺において 2 項展開を行い, 式 (D.79)を適用すると,

$$\frac{1}{\sqrt{1-2\cos\theta s+s^2}} = \sum_{i=0}^{\infty} \frac{(2i)!}{2^{2i}(i!)^2} s^i (2\cos\theta - s)^i$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{i} \frac{(-1)^{j}(2i)!}{2^{i+j}i!j!(i-j)!} (\cos \theta)^{i-j} s^{i+j}$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^{n}} \sum_{j=0}^{j \le n/2} \frac{(-1)^{j}}{j!} \frac{(2n-2j)!}{(n-j)!(n-2j)!} (\cos \theta)^{n-2j} s^{n}$$

$$= \sum_{n=0}^{\infty} P_{n}(\cos \theta) s^{n}$$
(D.85)

が導かれる.

式 (D.83) において $s = \xi/r$ と置くと

$$\frac{1}{\sqrt{r^2 - 2r\cos\theta\xi + \xi^2}} = \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2 - 2x_1\xi + \xi^2}}$$
$$= \frac{1}{\sqrt{(x_1 - \xi)^2 + x_2^2 + x_3^2}}$$
$$= \sum_{n=0}^{\infty} \frac{P_n(\cos\theta)}{r^{n+1}} \xi^n,$$

すなわち

$$\frac{1}{\sqrt{(x_1-\xi)^2+(x_2-x_3)^2}} = \sum_{n=0}^{\infty} \frac{P_n(\cos\theta)}{r^{n+1}} \xi^n$$
(D.86)

となる. ここで

$$F(x_1 - \xi, x_2, x_3) \equiv \frac{1}{\sqrt{(x_1 - \xi)^2 + (x_2 - \xi)^2},$$
 (D.87)

$$\eta \equiv x_1 - \xi \tag{D.88}$$

と置くと,

$$\frac{\partial F}{\partial x_1} = \frac{\partial F}{\partial \eta} \frac{\partial \eta}{\partial x_1} = \frac{\partial F}{\partial \eta}, \qquad (D.89)$$

$$\frac{\partial F}{\partial \xi} = \frac{\partial F}{\partial \eta} \frac{\partial \eta}{\partial \xi} = -\frac{\partial F}{\partial \eta}$$
(D.90)

となるので,

$$\frac{\partial F}{\partial \xi} = -\frac{\partial F}{\partial x_1} \tag{D.91}$$

となる. 式 (D.91) と同様に考えると

$$\frac{\partial^{n} F}{\partial \xi^{n}} = (-1)^{n} \frac{\partial^{n} F}{\partial x_{1}^{n}} \tag{D.92}$$

が得られる. 式 (D.92) において $\xi = 0$ とすると, 式 (D.87) より

$$\left. \frac{\partial^{n} F}{\partial \xi^{n}} \right|_{\xi=0} = (-1)^{n} \frac{\partial^{n} F}{\partial x_{1}^{n}} \right|_{\xi=0} = (-1)^{n} \frac{\partial^{n}}{\partial x_{1}^{n}} \left(\frac{1}{r}\right) \tag{D.93}$$

となるので, $\xi = 0$ の周りの F の Taylor 展開は

$$F = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n F}{\partial \xi^n} \bigg|_{\xi=0} \xi^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x_1^n} \left(\frac{1}{r}\right) \xi^n$$
(D.94)

となる. 従って 式 (D.86), (D.94) より

$$\frac{P_n(\cos\theta)}{r^{n+1}} = \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x_1^n} \left(\frac{1}{r}\right)$$
(D.95)

となるので,式(D.82)は

$$H_i = \sum_{n=0}^{\infty} \alpha_{in} \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x_1^n} \left(\frac{1}{r}\right)$$
(D.96)

となる. ここで

$$l_{in} = \alpha_{in} \frac{(-1)^n}{n!} \tag{D.97}$$

と置くと

$$H_i = \sum_{n=0}^{\infty} l_{in} \frac{\partial^n}{\partial x_1^n} \left(\frac{1}{r}\right) \tag{D.98}$$

となり,式(D.19)が示された.

D.3.3式 (**D.40**), (**D.41**), (**D.42**), (**D.43**), (**D.44**)の導出

ここでは境界条件 (D.7) を 式 (D.36), (D.37), (D.38), (D.39) に適用して式 (D.40), (D.41), (D.42), (D.43), (D.44) を導出する.式 (D.7)の速度の無限遠での境界条件を 球座標系で書き下すと,

$$u_r \to V_{term} \cos \theta, \quad u_\theta \to -V_{term} \sin \theta, \quad u_\phi \to 0 \qquad (r \to \infty)$$
 (D.99)

となる. 無限遠において速度は有限でなければならないので,

$$a_n = 0$$
 $(n = 2, 3, \cdots)$ (D.100)

が得られる. $P_n(\cos \theta)$ は

$$P_n(\cos\theta) = \frac{1}{2^n n!} \frac{d^n}{d(\cos\theta)^n} (\cos^2\theta - 1)^n \tag{D.101}$$

と表され, cos θ の n 次式となることが知られている式 (D.101) は式 (D.79) を用い ることで容易に示される.即ち,

$$\frac{1}{2^{n}n!}\frac{d^{n}}{d(\cos\theta)^{n}}(\cos^{2}\theta-1)^{n} = \frac{1}{2^{n}n!}\frac{d^{n}}{d(\cos\theta)^{n}}\sum_{k=0}^{k\leq n/2}\frac{n!}{(n-k)!k!}(-1)^{k}(\cos\theta)^{2n-2k}$$
$$= \frac{1}{2^{n}}\sum_{k=0}^{k\leq n/2}\frac{(-1)^{k}}{k!}\frac{(2n-2k)!}{(n-2k)!(n-k)!}(\cos\theta)^{n-2k}$$
$$= P_{n}(\cos\theta).$$
(D.102)

式 (D.101) より次数の低い方から $P_n(\cos \theta)$ を具体的に書き下すと

$$P_{0}(\cos \theta) = 1,$$

$$P_{1}(\cos \theta) = \cos \theta,$$

$$P_{2}(\cos \theta) = \frac{1}{2}(3\cos^{2} \theta - 1),$$

$$P_{3}(\cos \theta) = \frac{1}{2}(5\cos^{3} \theta - 3\cos \theta),$$

....

となる. 従って式 (D.36) に式 (D.99), (D.103) を適用すると,

$$a_1 = V_{term} \tag{D.104}$$

が得られる.

無限遠での圧力の境界条件 (D.7) を 式 (D.39) に適用すると,

$$c_0 = p_{\infty}, \quad c_n = 0 \quad (n = 1, 2, \cdots)$$
 (D.105)

となる. また 式 (D.11) より $\nabla p_n = 0$ であるから,

$$d_n = 0$$
 $(n = 0, 1, \cdots)$ (D.106)

となる.

更にすべり無し条件 (D.8) を式 (D.36), (D.37) に適用すると

$$0 = -2\frac{l\cos\theta}{r_c} + V_{term}\cos\theta - \sum_{n=0}^{\infty} (n+1)b_n r_c^{-n-2} P_n(\cos\theta)$$

$$= -2\frac{l\cos\theta}{r_c} + V_{term}\cos\theta - \frac{b_0}{r_c^2} - 2\frac{b_1\cos\theta}{r_c^3} - \sum_{n=2}^{\infty} (n+1)b_n r_c^{-n-2} P_n(c\Phi\theta) 07$$

$$0 = \frac{l\sin\theta}{r_c} - V_{term}\sin\theta + \sum_{n=0}^{\infty} b_n r_c^{-n-2} \frac{\partial P_n(\cos\theta)}{\partial\theta}$$

 $\overline{n=0}$

$$= \frac{l\sin\theta}{r_c} - V_{term}\sin\theta - \frac{b_1\sin\theta}{r_c^3} + \sum_{n=2}^{\infty} b_n r_c^{-n-2} \frac{\partial P_n(\cos\theta)}{\partial\theta} \quad (D.108)$$

となる. ここで 式 (D.108) において $\partial P_0(\cos \theta) / \partial \theta = 0$ である為, a_0 は任意の値で 良いことに注意されたい. 任意の θ について 式 (D.107), (D.108) が成立する為には,

$$b_0 = 0, \quad b_n = 0 \quad (n = 2, 3, \cdots)$$
 (D.109)

$$-2\frac{l}{r_c} + V_{term} - 2\frac{b_1}{r_c^3} = 0, \qquad (D.110)$$

$$\frac{l}{r_c} - V_{term} - \frac{b_1}{r_c^3} = 0, (D.111)$$

でなければならない. 式 (D.110), (D.111) を b_1 , l について解くと,

$$b_1 = -\frac{1}{4} V_{term} r_c^3, \qquad (D.112)$$

$$l = \frac{3}{4} V_{term} r_c \tag{D.113}$$

となる. 以上の 式 (D.104), (D.105), (D.106), (D.109), (D.112), (D.113) をまとめると

$$a_{1} = V_{term}, \quad a_{n} = 0 \qquad (n = 2, 3, \cdots)$$

$$b_{1} = -\frac{1}{4}V_{term}r_{c}^{3}, \quad b_{n} = 0 \qquad (n = 2, 3, \cdots)$$

$$c_{0} = p_{\infty}, \quad c_{n} = 0 \qquad (n = 1, 2, \cdots)$$

$$d_{n} = 0, \quad (n = 0, 1, \cdots)$$

$$l = \frac{3}{4}V_{term}r_{c}.$$
(D.114)

となり,式 (D.40) が導かれる. 更に式 (D.114) を式 (D.36), (D.37), (D.38), (D.39) に代入すると,

$$u_r = V_{term} \cos \theta \left(1 - \frac{3}{2} \frac{r_c}{r} + \frac{1}{2} \frac{r_c^3}{r^3} \right),$$
 (D.115)

$$u_{\theta} = V_{term} \sin \theta \left(-1 + \frac{3}{4} \frac{r_c}{r} + \frac{1}{4} \frac{r_c^3}{r^3} \right),$$
 (D.116)

$$u_{\phi} = 0, \tag{D.117}$$

$$p = p_{\infty} - \frac{3\eta V_{term} r_c}{2} \frac{\cos \theta}{r^2}$$
(D.118)

となり,式(D.41),(D.42),(D.43),(D.44)が得られる.

D.3.4 式 (D.46)の導出

ここでは 式 (D.46) の導出を行なう. 流体中の近接した 2 点 $x, x + \delta x$ を考え, 各点 の流速を $u(x), u(x+\delta x)$ とする. また 2 点間の相対速度を $\delta u = u(x+\delta x) - u(x)$
とする. δx と δu の間に

$$\delta \boldsymbol{u} = \boldsymbol{S} \cdot \delta \boldsymbol{x} \tag{D.119}$$

という関係が成り立つとき, 歪み速度テンソル e_{ij} は

$$e_{ij} = \frac{1}{2} \left(S + S^T \right)_{ij} \tag{D.120}$$

と定義される. ここで S^T は S の転置行列である. 点 x における r, θ, ϕ 方向の基本 ベクトルをそれぞれ $e_r(x), e_{\theta}(x), e_{\phi}(x)$ とすると, δx は

$$\delta \boldsymbol{x} = \delta r \boldsymbol{e}_r(\boldsymbol{x}) + r \delta \theta \boldsymbol{e}_\theta(\boldsymbol{x}) + r \sin \theta \delta \phi \boldsymbol{e}_\phi(\boldsymbol{x})$$
(D.121)

となる. δu は定義により

$$\delta \boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x} + \delta \boldsymbol{x}) - \boldsymbol{u}(\boldsymbol{x})$$

= $u_r(\boldsymbol{x} + \delta \boldsymbol{x})\boldsymbol{e}_r(\boldsymbol{x} + \delta \boldsymbol{x}) + u_{\theta}(\boldsymbol{x} + \delta \boldsymbol{x})\boldsymbol{e}_{\theta}(\boldsymbol{x} + \delta \boldsymbol{x}) + u_{\phi}(\boldsymbol{x} + \delta \boldsymbol{x})\boldsymbol{e}_{\phi}(\boldsymbol{x} + \delta \boldsymbol{x})$
 $-u_r(\boldsymbol{x})\boldsymbol{e}_r(\boldsymbol{x}) - u_{\theta}(\boldsymbol{x})\boldsymbol{e}_{\theta}(\boldsymbol{x}) - u_{\phi}(\boldsymbol{x})\boldsymbol{e}_{\phi}(\boldsymbol{x})$ (D.122)

と表される. 点 $x + \delta x$ における速度成分を点 x の周りの 1 次の Taylor 展開で表 すと,

$$u_{r}(\boldsymbol{x} + \delta \boldsymbol{x}) \simeq u_{r}(\boldsymbol{x}) + (\delta \boldsymbol{x} \cdot \nabla)u_{r}(\boldsymbol{x})$$

$$= u_{r}(\boldsymbol{x}) + \delta r \frac{\partial u_{r}}{\partial r} + \delta \theta \frac{\partial u_{r}}{\partial \theta} + \delta \phi \frac{\partial u_{r}}{\partial \phi},$$

$$u_{\theta}(\boldsymbol{x} + \delta \boldsymbol{x}) \simeq u_{\theta}(\boldsymbol{x}) + (\delta \boldsymbol{x} \cdot \nabla)u_{\theta}(\boldsymbol{x})$$

$$= u_{\theta}(\boldsymbol{x}) + \delta r \frac{\partial u_{\theta}}{\partial r} + \delta \theta \frac{\partial u_{\theta}}{\partial \theta} + \delta \phi \frac{\partial u_{\theta}}{\partial \phi},$$

$$u_{\phi}(\boldsymbol{x} + \delta \boldsymbol{x}) \simeq u_{\theta}(\boldsymbol{x}) + (\delta \boldsymbol{x} \cdot \nabla)u_{\theta}(\boldsymbol{x})$$

$$= u_{\phi}(\boldsymbol{x}) + \delta r \frac{\partial u_{\phi}}{\partial r} + \delta \theta \frac{\partial u_{\phi}}{\partial \theta} + \delta \phi \frac{\partial u_{\phi}}{\partial \phi}$$
(D.123)

となる. また 点 $x + \delta x$ における基本ベクトルを点 x の周りの 1 次の Taylor 展開 で表すと,

$$e_{r}(\boldsymbol{x} + \delta \boldsymbol{x}) \simeq e_{r}(\boldsymbol{x}) + (\delta \boldsymbol{x} \cdot \nabla) e_{r}(\boldsymbol{x})$$

$$= e_{r}(\boldsymbol{x}) + \delta \theta e_{\theta}(\boldsymbol{x}) + \sin \theta \delta \phi e_{\phi},$$

$$e_{\theta}(\boldsymbol{x} + \delta \boldsymbol{x}) \simeq e_{\theta}(\boldsymbol{x}) + (\delta \boldsymbol{x} \cdot \nabla) e_{\theta}(\boldsymbol{x})$$

$$= -\delta \theta e_{r}(\boldsymbol{x}) + e_{\theta}(\boldsymbol{x}) + \cos \theta \delta \phi e_{\phi},$$

$$e_{\phi}(\boldsymbol{x} + \delta \boldsymbol{x}) \simeq e_{\phi}(\boldsymbol{x}) + (\delta \boldsymbol{x} \cdot \nabla) e_{\phi}(\boldsymbol{x})$$

$$= -\sin \theta \delta \phi e_{r}(\boldsymbol{x}) - \cos \theta \delta \phi e_{\theta}(\boldsymbol{x}) + e_{\phi}$$
(D.124)

となる. 但し式 (D.124) の変形の途中で以下の関係式を用いた.

$$\frac{\partial \boldsymbol{e}_{r}}{\partial r} = 0, \quad \frac{\partial \boldsymbol{e}_{r}}{\partial \theta} = \boldsymbol{e}_{\theta}, \quad \frac{\partial \boldsymbol{e}_{r}}{\partial \phi} = \sin \theta \boldsymbol{e}_{\phi}, \\
\frac{\partial \boldsymbol{e}_{\theta}}{\partial r} = 0, \quad \frac{\partial \boldsymbol{e}_{\theta}}{\partial \theta} = -\boldsymbol{e}_{r}, \quad \frac{\partial \boldsymbol{e}_{\theta}}{\partial \phi} = -\cos \theta \boldsymbol{e}_{\phi}, \quad (D.125) \\
\frac{\partial \boldsymbol{e}_{\phi}}{\partial r} = 0, \quad \frac{\partial \boldsymbol{e}_{\phi}}{\partial \theta} = 0, \quad \frac{\partial \boldsymbol{e}_{\phi}}{\partial \phi} = -\sin \theta \boldsymbol{e}_{r} - \cos \theta \boldsymbol{e}_{\theta}.$$

式 (D.123), (D.124) を式 (D.122) に代入し, 2次以上の微小量を無視すると,

$$\begin{split} \delta \boldsymbol{u} &= \left[u_r(\boldsymbol{x}) + \delta r \frac{\partial u_r}{\partial r} + \delta \theta \frac{\partial u_r}{\partial \theta} + \delta \phi \frac{\partial u_r}{\partial \phi} \right] \left[\boldsymbol{e}_r(\boldsymbol{x}) + \delta \theta \boldsymbol{e}_{\theta}(\boldsymbol{x}) + \sin \theta \delta \phi \boldsymbol{e}_{\phi}(\boldsymbol{x}) \right] \\ &+ \left[u_{\theta}(\boldsymbol{x}) + \delta r \frac{\partial u_{\theta}}{\partial r} + \delta \theta \frac{\partial u_{\theta}}{\partial \theta} + \delta \phi \frac{\partial u_{\theta}}{\partial \phi} \right] \left[-\delta \theta \boldsymbol{e}_r(\boldsymbol{x}) + \boldsymbol{e}_{\theta}(\boldsymbol{x}) + \cos \theta \delta \phi \boldsymbol{e}_{\phi}(\boldsymbol{x}) \right] \\ &+ \left[u_{\phi}(\boldsymbol{x}) + \delta r \frac{\partial u_{\phi}}{\partial r} + \delta \theta \frac{\partial u_{\phi}}{\partial \theta} + \delta \phi \frac{\partial u_{\phi}}{\partial \phi} \right] \left[-\sin \theta \delta \phi \boldsymbol{e}_r(\boldsymbol{x}) - \cos \theta \delta \phi \boldsymbol{e}_{\theta}(\boldsymbol{x}) + \boldsymbol{e}_{\phi}(\boldsymbol{x}) \right] \\ &- u_r(\boldsymbol{x}) \boldsymbol{e}_r(\boldsymbol{x}) - u_{\theta}(\boldsymbol{x}) \boldsymbol{e}_{\theta}(\boldsymbol{x}) - u_{\phi}(\boldsymbol{x}) \boldsymbol{e}_{\phi}(\boldsymbol{x}) \\ &\simeq \left[\delta r \frac{\partial u_r}{\partial r} + \delta \theta \frac{\partial u_r}{\partial \theta} + \delta \phi \frac{\partial u_{\theta}}{\partial \phi} \right] \boldsymbol{e}_r(\boldsymbol{x}) + u_r(\boldsymbol{x}) \delta \theta \boldsymbol{e}_{\theta}(\boldsymbol{x}) + u_r(\boldsymbol{x}) \sin \theta \delta \phi \boldsymbol{e}_{\phi}(\boldsymbol{x}) \\ &- u_{\theta}(\boldsymbol{x}) \delta \theta \boldsymbol{e}_r(\boldsymbol{x}) + \left[\delta r \frac{\partial u_{\theta}}{\partial r} + \delta \theta \frac{\partial u_{\theta}}{\partial \theta} + \delta \phi \frac{\partial u_{\theta}}{\partial \phi} \right] \boldsymbol{e}_{\theta}(\boldsymbol{x}) + u_{\theta}(\boldsymbol{x}) \cos \theta \delta \phi \boldsymbol{e}_{\phi}(\boldsymbol{x}) \\ &- u_{\phi}(\boldsymbol{x}) \sin \theta \delta \phi \boldsymbol{e}_r(\boldsymbol{x}) - u_{\phi}(\boldsymbol{x}) \cos \theta \delta \phi \boldsymbol{e}_{\theta}(\boldsymbol{x}) + \left[\delta r \frac{\partial u_{\phi}}{\partial r} + \delta \theta \frac{\partial u_{\theta}}{\partial \theta} + \delta \phi \frac{\partial u_{\phi}}{\partial \phi} \right] \boldsymbol{e}_{\phi}(\boldsymbol{x}) \\ &= \left[\frac{\partial u_r}{\partial r} \delta r + \frac{1}{r} \left(\frac{\partial u_r}{\partial \theta} - u_{\theta} \right) r \delta \theta + \frac{1}{r \sin \theta} \left(\frac{\partial u_r}{\partial \phi} - u_{\phi} \sin \theta \right) r \sin \theta \delta \phi \right] \boldsymbol{e}_r(\boldsymbol{x}) \\ &+ \left[\frac{\partial u_{\theta}}{\partial r} \delta r + \frac{1}{r} \left(u_r + \frac{\partial u_{\theta}}{\partial \theta} \right) r \delta \theta + \frac{1}{r \sin \theta} \left(\frac{\partial u_{\theta}}{\partial \phi} - u_{\phi} \cos \theta \right) r \sin \theta \delta \phi \right] \boldsymbol{e}_{\phi}(\boldsymbol{x}) \\ &+ \left[\frac{\partial u_{\theta}}{\partial r} \delta r + \frac{1}{r} \frac{\partial u_{\phi}}{\partial \theta} r \delta \theta + \frac{1}{r \sin \theta} \left(u_r \sin \theta + u_{\theta} \cos \theta + \frac{\partial u_{\phi}}{\partial \phi} \right) r \sin \theta \delta \phi \right] \boldsymbol{e}_{\phi}(\boldsymbol{x}) \end{split} \end{split}$$

となる. δu の各成分を $\delta u_r, \delta u_\theta, \delta u_\phi$ と表すと,式 (D.126) より

$$\begin{pmatrix} \delta u_r \\ \delta u_\theta \\ \delta u_\phi \end{pmatrix} = \begin{pmatrix} \frac{\partial u_r}{\partial r} & \frac{1}{r} \left(\frac{\partial u_r}{\partial \theta} - u_\theta \right) & \frac{1}{r \sin \theta} \left(\frac{\partial u_r}{\partial \phi} - u_\phi \sin \theta \right) \\ \frac{\partial u_\theta}{\partial r} & \frac{1}{r} \left(u_r + \frac{\partial u_\theta}{\partial \theta} \right) & \frac{1}{r \sin \theta} \left(\frac{\partial u_\theta}{\partial \phi} - u_\phi \sin \theta \right) \\ \frac{\partial u_\phi}{\partial r} & \frac{1}{r} \frac{\partial u_\phi}{\partial \theta} & \frac{1}{r \sin \theta} \left(u_r \sin \theta + u_\theta \cos \theta + \frac{\partial u_\phi}{\partial \phi} \right) \end{pmatrix} \begin{pmatrix} \delta r \\ r \delta \theta \\ r \sin \theta \delta \phi \end{pmatrix}$$
(D.127)

となる. 式 (D.119), (D.127) を比較することにより

$$S = \begin{pmatrix} \frac{\partial u_r}{\partial r} & \frac{1}{r} \left(\frac{\partial u_r}{\partial \theta} - u_\theta \right) & \frac{1}{r \sin \theta} \left(\frac{\partial u_r}{\partial \phi} - u_\phi \sin \theta \right) \\ \frac{\partial u_\theta}{\partial r} & \frac{1}{r} \left(u_r + \frac{\partial u_\theta}{\partial \theta} \right) & \frac{1}{r \sin \theta} \left(\frac{\partial u_\theta}{\partial \phi} - u_\phi \sin \theta \right) \\ \frac{\partial u_\phi}{\partial r} & \frac{1}{r} \frac{\partial u_\phi}{\partial \theta} & \frac{1}{r \sin \theta} \left(u_r \sin \theta + u_\theta \cos \theta + \frac{\partial u_\phi}{\partial \phi} \right) \end{pmatrix}$$
(D.128)

が得られる. 式 (D.128)の転置行列 S^T は

$$S^{T} = \begin{pmatrix} \frac{\partial u_{r}}{\partial r} & \frac{\partial u_{\theta}}{\partial r} & \frac{\partial u_{\phi}}{\partial r} \\ \frac{1}{r} \left(\frac{\partial u_{r}}{\partial \theta} - u_{\theta} \right) & \frac{1}{r} \left(u_{r} + \frac{\partial u_{\theta}}{\partial \theta} \right) & \frac{1}{r \sin \theta} \left(\frac{\partial u_{\phi}}{\partial \phi} - u_{\phi} \sin \theta \right) & \frac{1}{r \sin \theta} \left(\frac{u_{r}}{\partial \phi} - u_{\phi} \sin \theta \right) & \frac{1}{r \sin \theta} \left(u_{r} \sin \theta + u_{\theta} \cos \theta + \frac{\partial u_{\phi}}{\partial \phi} \right) \end{pmatrix}$$
(D.129)

となるので,

$$\frac{1}{2} \left(S + S^{T} \right)$$

$$= \frac{1}{2} \begin{pmatrix} 2\frac{\partial u_{r}}{\partial r} & \frac{\partial u_{\theta}}{\partial r} + \frac{1}{r}\frac{\partial u_{r}}{\partial \theta} - \frac{u_{\theta}}{r} & \frac{\partial u_{\phi}}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial u_{r}}{\partial \phi} - \frac{u_{\phi}}{r} \\ \frac{\partial u_{\theta}}{\partial r} + \frac{1}{r}\frac{\partial u_{r}}{\partial \theta} - \frac{u_{\theta}}{r} & 2\left(\frac{u_{r}}{r} + \frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta}\right) & \frac{1}{r}\frac{\partial u_{\phi}}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial u_{\theta}}{\partial \phi} - \frac{\cos\theta u_{\phi}}{r\sin\theta} \\ \frac{\partial u_{\phi}}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial u_{r}}{\partial \phi} - \frac{u_{\phi}}{r} & \frac{1}{r}\frac{\partial u_{\phi}}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial u_{\theta}}{\partial \phi} - \frac{\cos\theta u_{\phi}}{r\sin\theta} & 2\left(\frac{u_{r}}{r} + \frac{u_{\theta}\cos\theta}{r\sin\theta} + \frac{1}{r\sin\theta}\frac{\partial u_{\phi}}{\partial \phi}\right) \end{pmatrix} \\ = \frac{1}{2} \begin{pmatrix} 2\frac{\partial u_{r}}{\partial r} & r\frac{\partial}{\partial r}\left(\frac{u_{r}}{r}\right) + \frac{1}{r\frac{\partial u_{r}}{\partial \theta}} & r\frac{\partial}{\partial r}\left(\frac{u_{r}}{r}\right) + \frac{1}{r\frac{\partial u_{\theta}}{\partial \theta}} & r\frac{\sin\theta}{r\frac{\partial}{\partial \theta}}\left(\frac{\sin\theta}{r}\right) + \frac{1}{r\sin\theta}\frac{\partial u_{\theta}}{\partial \phi} \end{pmatrix} \\ = \frac{1}{2} \begin{pmatrix} 2\frac{\partial u_{r}}{\partial r} & r\frac{\partial}{\partial r}\left(\frac{u_{r}}{r}\right) + \frac{1}{r\frac{\partial}{\partial \theta}} & r\frac{\partial}{\partial r}\left(\frac{u_{r}}{r}\right) + \frac{1}{r\frac{\partial}{\partial \theta}} & r\frac{\partial}{\partial \phi} \\ r\frac{\partial}{\partial r}\left(\frac{u_{r}}{r}\right) + \frac{1}{r\frac{\partial}{\partial \theta}} & 2\left(\frac{u_{r}}{r} + \frac{1}{r\frac{\partial}{\partial \theta}}\right) & \frac{\sin\theta}{r\frac{\partial}{\partial \theta}}\left(\frac{u_{\theta}}{\sin\theta}\right) + \frac{1}{r\frac{\partial}{\sin\theta}}\frac{\partial}{\partial \phi} \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$(D.130)$$

となる. 従って 式 (D.120), (D.130) より球座標系での歪み速度テンソルの各成分は

$$e_{rr} = \frac{\partial u_r}{\partial r},$$

$$e_{r\theta} = e_{\theta r} = \frac{1}{2} \left[r \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right],$$

$$e_{r\phi} = e_{\phi r} = \frac{1}{2} \left[\frac{1}{r \sin \theta} \frac{\partial u_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{u_{\phi}}{r} \right) \right],$$

$$e_{\theta \theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r}{r},$$

$$e_{\theta \phi} = e_{\phi \theta} = \frac{1}{2} \left[\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{u_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi} \right],$$

$$e_{\phi \phi} = \frac{1}{r \sin \theta} \frac{u_{\phi}}{\phi} + \frac{u_r}{r} + \frac{u_{\theta} \cos \theta}{r \sin \theta}$$
(D.131)

となる.

D.3.5 式 (D.54)の導出

ここでは式 (D.54)の導出を行なう. 今の場合,式 (D.5), (D.6) に対する一般解 (D.36), (D.37), (D.38), (D.39) に対して以下の境界条件を適用すればよい.

 $u_r \to V_{term} \cos \theta, \quad u_\theta \to -V_{term} \sin \theta, \quad u_\phi \to 0, \quad p \to p_\infty \quad (r \to \infty), \quad (D.132)$

$$u_r = 0 \quad (r = r_c).$$
 (D.133)

$$u_{\theta} = \frac{1}{\beta} p_{r\theta} \quad (r = r_c), \tag{D.134}$$

式 (D.132) は 式 (D.40), (D.41), (D.42), (D.43), (D.44) を求めるときと同様の境界条件であるので, 式 (D.100), (D.104), (D.105), (D.106) と同一の結果, すなわち

$$a_{1} = V_{term}, \quad a_{n} = 0, \quad (n = 2, 3, \cdots)$$

$$c_{0} = p_{\infty}, \quad c_{n} = 0, \quad (n = 1, 2, \cdots)$$

$$d_{n} = 0 \quad (n = 0, 1, \cdots)$$
(D.135)

が得られる.式(D.36)に対して式(D.133)を適用すると、

$$b_0 = 0, \quad b_n = 0 \quad (n = 2, 3, \cdots),$$

$$0 = -2\frac{l}{r_c} + V_{term} - 2\frac{b_1}{r_c^3}$$
(D.136)

となる. 従って 式 (D.135), (D.136) より

$$u_r = -2\frac{l\cos\theta}{r} + V_{term}\cos\theta - 2\frac{b_1\cos\theta}{r^3},$$

$$u_\theta = \frac{l\sin\theta}{r} - V_{term}\sin\theta - \frac{b_1\sin\theta}{r^3}$$
(D.137)

となる. 式 (D.45), (D.46), (D.137) より接線応力 p_r は

$$p_{r\theta} = \eta \left[\frac{1}{r} \frac{\partial u_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) \right]$$

$$= \eta \left[\left(2\frac{l}{r} - \frac{V_{term}}{r} + 2\frac{b_1}{r^4} \right) \sin \theta + \left(-2\frac{l}{r} + \frac{V_{term}}{r} + 4\frac{b_1}{r^4} \right) \sin \theta \right]$$

$$= 6\frac{\eta b_1}{r^4}$$
(D.138)

となる. 従って, 式 (D.37) に対して 式 (D.134), (D.138) を適用すると,

$$\frac{l\sin\theta}{r_c} - V_{term}\sin\theta - \frac{b_1\sin\theta}{r_c^3} = 6\frac{\eta b_1}{r^4}$$
(D.139)

となる. 式 (D.136), (D.139) を *l*, *b*₁ について解くと,

$$l = \frac{3}{4} V_{term} r_c \frac{r_c \beta + 2\eta}{r_c \beta + 3\eta},$$

$$b_1 = -\frac{1}{4} V_{term} r_c \frac{\beta r_c^3}{r_c \beta + 3\eta}$$
(D.140)

が得られる. 以上より

$$u_{r} = -\frac{3}{2} V_{term} r_{c} \frac{r_{c}\beta + 2\eta}{r_{c}\beta + 3\eta} \frac{\cos\theta}{r} + V_{term} \cos\theta + \frac{1}{2} V_{term} r_{c} \frac{\beta a^{3}}{r_{c}\beta + 3\eta} \frac{\cos\theta}{r^{3}},$$

$$u_{\theta} = \frac{3}{4} V_{term} r_{c} \frac{r_{c}\beta + 2\eta}{r_{c}\beta + 3\eta} \frac{\sin\theta}{r} - V_{term} \sin\theta + \frac{1}{4} V_{term} r_{c} \frac{\beta r_{c}^{3}}{r_{c}\beta + 3\eta} \frac{\sin\theta}{r^{3}},$$

$$u_{\phi} = 0,$$

$$p = p_{\infty} - \frac{3}{2} \eta V_{term} r_{c} \frac{r_{c}\beta + 2\eta}{r_{c}\beta + 3\eta} \frac{\cos\theta}{r^{2}}$$
(D.141)

となる. 式 (D.141) より応力 prr, pre はそれぞれ

$$p_{rr} = -p + 2\eta \frac{\partial u_r}{\partial r}$$

$$= -p_{\infty} + \frac{3}{2} \eta V_{term} r_c \frac{r_c \beta + 2\eta}{r_c \beta + 3\eta} \frac{\cos \theta}{r^2} + 3\eta V_{term} r_c \frac{r_c \beta + 2\eta}{r_c \beta + 3\eta} \frac{\cos \theta}{r^2}$$

$$-3\eta V_{term} \frac{\beta r_c^4}{r_c \beta + 3\eta} \frac{\cos \theta}{r^4}, \qquad (D.142)$$

$$p_{r\theta} = \eta \left[\frac{1}{r} \frac{\partial u_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) \right]$$

$$= -\frac{3}{2} \eta V_{term} \frac{\beta r_c^4}{r_c \beta + 3\eta} \frac{\cos \theta}{r^4} \qquad (D.143)$$

となる. 従って 式 (D.142), (D.143) より, 球面での応力は

$$p_{rr}|_{r=r_c} = -p_{\infty} + \frac{3}{2}\eta V_{term} \frac{r_c\beta + 6\eta}{r_c\beta + 3\eta} \cos\theta,$$

$$p_{r\theta}|_{r=r_c} = -\frac{3}{2}\eta V_{term} \frac{\beta}{r_c\beta + 3\eta} \sin\theta$$
(D.144)

となる. $p_{rr}, p_{r\theta}$ の x_1 軸に平行な成分の球面上での積分 D_p, D_f を求めると,

$$D_{p} = \iint p_{rr}|_{r=r_{c}} \cos\theta dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(-p_{\infty} + \frac{3}{2} \eta V_{term} \frac{r_{c}\beta + 6\eta}{r_{c}\beta + 3\eta} \cos\theta \right) \cos r_{c}^{2} \sin\theta d\theta d\phi$$

$$= 2\pi \eta V_{term} r_{c} \frac{r_{c}\beta + 6\eta}{r_{c}\beta + 3\eta}, \qquad (D.145)$$

$$D_{f} = -\iint p_{r\theta}|_{r=r_{c}} \sin\theta dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(-\frac{3}{2} \eta V_{term} \frac{\beta}{r_{c}\beta + 3\eta} \sin\theta \right) \sin\theta r_{c}^{2} \sin\theta d\theta d\phi$$

$$= 4\pi \eta \pi r_{c} \frac{r_{c}\beta}{r_{c}\beta + 3\eta} \qquad (D.146)$$

となる. 従って 式 (D.145), (D.146) より球に働く抵抗 D は

$$D = D_p + D_f = 6\pi\eta V_{term} r_c \frac{r_c\beta + 2\eta}{r_c\beta + 3\eta}$$
(D.147)

となり,式(D.54)が導かれる.

付録E 離散化

本付録では、本研究で開発した2次元雲解像モデルの離散化の詳細について述べる.

E.1 格子の配置

本モデルでは水平方向, 鉛直方向の格子点の配置方法としてそれぞれ Arakawa C グリッド, Lorenz グリッドを採用している. Arakawa C グリッドとは水平方向のベ クトル量とスカラー量を半格子ずらして配置する格子点の配置方法のことを言う. Arakawa C グリッドは重力波を表現するのに適しているとされている (Arakawa and Lamb, 1977). Lorenz グリッドとは鉛直方向のベクトル量とスカラー量を半格子ず らして配置する格子点の配置方法のことを言う. スカラー量の格子点を (*i*,*k*), ベク トル量の水平成分に対する格子点を (*i*(*u*),*k*), ベクトル量の鉛直成分に対する格子 点を (*i*,*k*(*w*)), 格子の角に相当する点を (*i*(*u*),*k*(*w*)) のように表すことにすると, 格 子点の配置は図 E.1 のように表される.

E.2 空間方向の離散化

本節では空間微分の離散化方法とその為に必要な平均操作について説明した上で, 準圧縮方程式系の空間方向の離散化について述べる.

E.2.1 平均操作

E.1 節で述べたようにスカラー量の格子点とベクトル量の格子点は互いに半格子ず つずれている. 数値計算を行なう上でベクトル量をスカラー量の格子点で評価した り, 或いはスカラー量をベクトル量の格子点で評価する必要がある. その際, 平均操 作を行なうことによって半格子ずれた点での値を評価することとする.

以下,計算に必要な平均操作を示す.但し ϕ , H, V はそれぞれスカラー量, ベクトル

量の水平成分,ベクトル量の鉛直成分を表す.また下付き添字は格子点位置を表している.

$$\phi_{i(u),k} = \frac{\phi_{i+1,k} + \phi_{i,k}}{2},$$
 (E.1)

$$\phi_{i,k(w)} = \frac{\phi_{i,k+1} + \phi_{i,k}}{2},$$
(E.2)

$$\phi_{i(u),k(w)} = \frac{\phi_{i,k} + \phi_{i+1,k} + \phi_{i,k+1} + \phi_{i+1,k+1}}{4}, \quad (E.3)$$

$$H_{i,k} = \frac{H_{i(u),k} + H_{i-1(u),k}}{2},$$
(E.4)

$$H_{i,k(w)} = \frac{H_{i(u),k+1} + H_{i-1(u),k+1} + H_{i(u),k} + u_{i-1(u),k}}{4},$$
(E.5)

$$H_{i(u),k(w)} = \frac{H_{i(u),k+1} + H_{i(u),k}}{2},$$
(E.6)

$$V_{i,k} = \frac{V_{i,k(w)} + V_{i,k-1(w)}}{2},$$
(E.7)

$$V_{i(u),k} = \frac{V_{i+1,k(w)} + V_{i,k(w)} + V_{i+1,k-1(w)}, V_{i,k-1(w)}}{4},$$
(E.8)

$$V_{i(u),k(w)} = \frac{V_{i+1,k(w)} + V_{i,k(w)}}{2}.$$
(E.9)

E.2.2 空間微分の離散化

空間微分の離散化について述べる. 音波に関連する項の空間微分については2次 精度の中心差分を用い,その他の項の空間微分については4次精度の中心差分を用いる.

以下に 2 次精度の中心差分を用いた微分操作を示す. 但し ψ は格子の角に相当する点で評価している変数を表す.

$$\left(\frac{\partial\phi}{\partial x}\right)_{i(u),k} = \frac{\phi_{i+1,k} - \phi_{i,k}}{\Delta x}, \qquad (E.10)$$

$$\left(\frac{\partial\phi}{\partial z}\right)_{i,k(w)} = \frac{\phi_{i,k+1} - \phi_{i,k}}{\Delta z}, \qquad (E.11)$$

$$\left(\frac{\partial H}{\partial x}\right)_{i,k} = \frac{H_{i(u),k} - H_{i-1(u),k}}{\Delta x},$$
(E.12)

$$\left(\frac{\partial H}{\partial z}\right)_{i(u),k(w)} = \frac{H_{i(u),k+1} - H_{i(u),k}}{\Delta z},$$
(E.13)

$$\left(\frac{\partial V}{\partial x}\right)_{i(u),k(w)} = \frac{V_{i+1,k(w)} - V_{i,k(w)}}{\Delta x},$$
(E.14)

$$\left(\frac{\partial V}{\partial z}\right)_{i,k} = \frac{V_{i,k(w)} - V_{i,k-1(w)}}{\Delta x},$$
(E.15)

$$\left(\frac{\partial\psi}{\partial x}\right)_{i,k(w)} = \frac{\psi_{i(u),k(w)} - \psi_{i-1(u),k(w)}}{\Delta x}, \quad (E.16)$$

$$\left(\frac{\partial\psi}{\partial z}\right)_{i(u),k} = \frac{\psi_{i(u),k(w)} - \psi_{i(u),k-1(w)}}{\Delta z}, \qquad (E.17)$$

$$\left(\frac{\partial\phi}{\partial z}\right)_{i,k} = \frac{\phi_{i,k(w)} - \phi_{i,k-1(w)}}{\Delta z}, \qquad (E.18)$$

$$\left(\frac{\partial(\phi H)}{\partial x}\right)_{i,k} = \frac{\phi_{i(u),k}H_{i(u),k} - \phi_{i-1(u),k}H_{i-1(u),k}}{\Delta x}, \quad (E.19)$$

$$\left(\frac{\partial(\phi V)}{\partial z}\right)_{i,k} = \frac{\phi_{i,k(w)}V_{i,k(w)} - \phi_{i,k-1(w)}V_{i,k-1(w)}}{\Delta z}.$$
(E.20)

以下,4次精度の中心差分を用いた微分操作を示す.

$$\left(\frac{\partial\phi}{\partial x}\right)_{i(u),k} = \frac{9}{8} \frac{\phi_{i+1,k} - \phi_{i,k}}{\Delta x} - \frac{1}{24} \frac{\phi_{i+2,k} - \phi_{i-1,k}}{\Delta z}, \quad (E.21)$$

$$\left(\frac{\partial\phi}{\partial z}\right)_{i,k(w)} = \frac{9}{8}\frac{\phi_{i,k+1} - \phi_{i,k}}{\Delta x} - \frac{1}{24}\frac{\phi_{i,k+2} - \phi_{i,k-1}}{\Delta z}, \quad (E.22)$$

$$\left(\frac{\partial H}{\partial x}\right)_{i,k} = \frac{9}{8} \frac{H_{i(u),k} - H_{i-1(u),k}}{\Delta x} - \frac{1}{24} \frac{H_{i+1(u),k} - H_{i-2(u),k}}{\Delta z}, \quad (E.23)$$

$$\left(\frac{\partial H}{\partial z}\right)_{i(u),k(w)} = \frac{9}{8} \frac{H_{i(u),k+1} - H_{i(u),k}}{\Delta x} - \frac{1}{24} \frac{H_{i(u),k+2} - H_{i(u),k-1}}{\Delta z}, \quad (E.24)$$

$$\left(\frac{\partial V}{\partial x}\right)_{i(u),k(w)} = \frac{9}{8} \frac{V_{i+1,k(w)} - V_{i,k(w)}}{\Delta x} - \frac{1}{24} \frac{V_{i+2,k(w)} - V_{i-1,k(w)}}{\Delta z}, \quad (E.25)$$

$$\left(\frac{\partial V}{\partial z}\right)_{i,k} = \frac{9}{8} \frac{V_{i,k(w)} - V_{i,k-1(w)}}{\Delta x} - \frac{1}{24} \frac{V_{i,k+1(w)} - V_{i,k-2(w)}}{\Delta z},$$

$$\left(\frac{\partial \psi}{\partial y}\right) = 9 \psi_{i(u),k(w)} - \psi_{i-1(u),k(w)} - 1 \psi_{i+1(u),k(w)} - \psi_{i-2(u),k(w)}$$

$$(E.26)$$

$$\left(\frac{\partial\psi}{\partial x}\right)_{i,k(w)} = \frac{9}{8} \frac{\psi_{i(u),k(w)} - \psi_{i-1(u),k(w)}}{\Delta x} - \frac{1}{24} \frac{\psi_{i+1(u),k(w)} - \psi_{i-2(u),k(w)}}{\Delta z},$$
(E.27)

$$\left(\frac{\partial\psi}{\partial z}\right)_{i(u),k} = \frac{9}{8} \frac{\psi_{i(u),k(w)} - \psi_{i(u),k-1(w)}}{\Delta x} - \frac{1}{24} \frac{\psi_{i(u),k+1(w)} - \psi_{i(u),k-2(w)}}{\Delta z},$$
(E.28)

$$\left(\frac{\partial\phi}{\partial z}\right)_{i,k} = \frac{9}{8} \frac{\phi_{i,k(w)} - \phi_{i,k-1(w)}}{\Delta x} - \frac{1}{24} \frac{\phi_{i,k+1(w)} - \phi_{i,k-2(w)}}{\Delta z}, \quad (E.29)$$

$$\left(\frac{\partial(\phi H)}{\partial x}\right)_{i,k} = \frac{9}{8} \frac{\phi_{i(u),k} H_{i(u),k} - \phi_{i-1(u),k} H_{i-1(u),k}}{\Delta x}$$

(E.31)

$$\left(\frac{\partial(\phi V)}{\partial z}\right)_{i,k} = \frac{-\frac{1}{24}\frac{\phi_{i+1(u),k}H_{i+1(u),k} - \phi_{i-2(u),k}H_{i-2(u),k}}{\Delta z}, \quad (E.30)$$
$$-\frac{9}{8}\frac{\phi_{i,k(w)}V_{i,k(w)} - \phi_{i,k-1(w)}V_{i,k-1(w)}}{\Delta x} -\frac{1}{24}\frac{\phi_{i,k+1(w)}V_{i,k+1(w)} - \phi_{i,k-2(w)}V_{i,k-2(w)}}{\Delta z}. \quad (E.31)$$

E.2.3 準圧縮方程式系の空間方向の離散化

E.2節の結果を用いて主成分凝結を考慮した準圧縮方程式系を空間方向に離散化す ると、以下のように書ける.

水平方向の運動方程式

$$\frac{\partial u_{i(u),k}}{\partial t} = -u_{i(u),k} \left(\frac{\partial u}{\partial x}\right)_{i(u),k} - w_{i(u),k} \left(\frac{\partial u}{\partial z}\right)_{i(u),k}
- c_{pv}\overline{\theta}_{i(u),k} \left(\frac{\partial \Pi}{\partial x}\right)_{i(u),k} + [D_u]_{i(u),k} + [D_u^{sfc}]_{i(u),k}.$$
(E.32)

ここで

$$\begin{aligned} &[D_{u}]_{i(u),k} \\ &= 2 \left[\frac{\partial}{\partial x} \left\{ (K_{m})_{i,k} \left(\frac{\partial u}{\partial x} \right)_{i,k} \right\} \right]_{i(u),k} \\ &+ \left[\frac{\partial}{\partial z} \left\{ (K_{m})_{i(u),k(w)} \left(\frac{\partial w}{\partial x} \right)_{i(u),k(w)} + (K_{m})_{i(u),k(w)} \left(\frac{\partial u}{\partial z} \right)_{i(u),k(w)} \right\} \right]_{i(u),k} \\ &- \frac{2}{3C_{m}^{2}l^{2}} \left(\frac{\partial K_{m}^{2}}{\partial x} \right)_{i(u),k}, \end{aligned}$$
(E.33)
$$\\ &\left[D_{u}^{sfc} \right]_{i(u),k} = \delta_{1k} \left[\frac{\partial}{\partial z} (C_{D}V_{sfc}u_{z_{1}}) \right]_{i(u),k} \end{aligned}$$

である.

鉛直方向の運動方程式

$$\frac{\partial w_{i,k(w)}}{\partial t} = -u_{i,k(w)} \left(\frac{\partial w}{\partial x}\right)_{i,k(w)} - w_{i,k(w)} \left(\frac{\partial w}{\partial z}\right)_{i,k(w)} - c_{pv}\overline{\theta}_{i,k(w)} \left(\frac{\partial \Pi}{\partial z}\right)_{i,k(w)} + [D_w]_{i,k(w)} + g\left(\frac{\theta'}{\overline{\theta}} - \frac{R}{p_0}\frac{\overline{\theta}}{\overline{\Pi}^{c_{vv}/R}}\rho_s\right)_{i,k(w)} (E.35)$$

ここで

$$[D_w]_{i,k(w)}$$

$$= 2\left[\frac{\partial}{\partial z}\left\{(K_m)_{i,k}\left(\frac{\partial w}{\partial z}\right)_{i,k}\right\}\right]_{i,k(w)}$$

$$+ \left[\frac{\partial}{\partial x}\left\{(K_m)_{i(u),k(w)}\left(\frac{\partial w}{\partial x}\right)_{i(u),k(w)} + (K_m)_{i(u),k(w)}\left(\frac{\partial u}{\partial z}\right)_{i(u),k(w)}\right\}\right]_{i,k(w)}$$

$$- \frac{2}{3C_m^2 l^2}\left(\frac{\partial K_m^2}{\partial z}\right)_{i,k(w)}$$
(E.36)

である.

圧力方程式

$$\frac{\partial \Pi_{i,k}}{\partial t} = -\frac{\overline{c}_{i,k}^2}{c_{pv}\overline{\rho}_{i,k}\overline{\theta}_{i,k}^2} \left[\left(\frac{\partial}{\partial x} (\overline{\rho}\overline{\theta}u) \right)_{i,k} + \left(\frac{\partial}{\partial z} (\overline{\rho}\overline{\theta}w) \right)_{i,k} \right] \\
+ \frac{\overline{c}_{i,k}^2}{c_{pv}\overline{\rho}_{i,k}\overline{\theta}_{i,k}} \left(\frac{L}{c_{pv}\overline{T}_{i,k}} - 1 \right) [M_{cond}]_{i,k} \\
+ \frac{\overline{c}_{i,k}^2}{c_{pv}\overline{\theta}_{i,k}^2\overline{\Pi}_{i,k}} \left([Q_{rad}]_{i,k} + [Q_{dis}]_{i,k} \right).$$
(E.37)

雲密度の式

$$\frac{\partial \rho_{si,k}}{\partial t} = -\left[\frac{\partial}{\partial x}\left(\rho_{s}u\right)\right]_{i,k} - \left[\frac{\partial}{\partial z}\left(\rho_{s}w\right)\right]_{i,k} + [M_{cond}]_{i,k} + [M_{fall}]_{i,k} + [D_{\rho_{s}}]_{i,k}.$$
(E.38)

ここで

$$[M_{cond}]_{i,k} = \frac{4\pi r_{di,k}\overline{\rho}_{i,k}N^*}{R_{h_{i,k}}}(S_{i,k}-1), \qquad (E.39)$$

$$R_{hi,k} = \frac{L^2}{kR[\theta^2]_{i,k}[\Pi^2]_{i,k}},$$
(E.40)

$$S_{i,k} = \frac{p_0^{\frac{6p0}{R}} \Pi_{i,k}}{[p_*]_{i,k}},$$
(E.41)

$$[M_{fall}]_{i,k} = \left[\frac{\partial}{\partial z} \left(\rho_s V_{term}\right)\right]_{i,k}, \qquad (E.42)$$

$$V_{term_{i,k}} = [C_{sc}]_{i,k} \frac{2 [r_d^2]_{i,k} g \rho_I}{9 \eta_{i,k}}, \qquad (E.43)$$

$$r_{di,k} = \left(r_{aero}^3 + \frac{3\rho_{si,k}}{4\rho_I \pi \overline{\rho}_{i,k} N^*}\right)^{1/3},$$
(E.44)

$$[C_{sc}]_{i,k} = 1 + \frac{4}{3} [K_n]_{i,k}, \qquad (E.45)$$

$$[K_n]_{i,k} = \frac{\lambda_{i,k}}{r_{di,k}}, \tag{E.46}$$

$$\lambda_{i,k} = \frac{k_B \overline{\theta}_{i,k}}{\sqrt{2\pi\sigma^2 p_0 \overline{\Pi}_{i,k}^{c_{vv}/R}}},$$
(E.47)

$$\eta_{i,k} = \eta_{ref} \left(\frac{T_{ref} + C_{CO_2}}{\overline{\theta}_{i,k} \overline{\Pi}_{i,k} + C_{CO_2}} \right) \left(\frac{\overline{\theta}_{i,k} \overline{\Pi}_{i,k}}{T_{ref}} \right)^{3/2}, \quad (E.48)$$

$$[D_{\rho_s}]_{i,k} = \left[u_{i(u),k} \left(\frac{\partial \rho_s}{\partial x} \right)_{i(u),k} \right]_{i,k} + \left[w_{i,k(w)} \left(\frac{\partial \rho_s}{\partial z} \right)_{i,k(w)} \right]_{i,k}$$
(E.49)

である.

熱力学の式

$$\frac{\partial \theta_{i,k}}{\partial t} = -u_{i,k} \left(\frac{\partial \theta}{\partial x} \right)_{i,k} - w_{i,k} \left(\frac{\partial \theta}{\partial z} \right)_{i,k} + \frac{1}{\overline{\Pi}_{i,k}} \frac{L[M_{cond}]_{i,k}}{\overline{\rho}_{i,k}c_{pv}} + \frac{1}{\overline{\Pi}_{i,k}} \left([Q_{rad}]_{i,k} + [Q_{dis}]_{i,k} \right) + [D_{\theta}]_{i,k} + \left[D_{\theta}^{sfc} \right] (E.50)$$

ここで

$$[D_{\theta}]_{i,k} = \left[u_{i(u),k} \left(\frac{\partial \theta}{\partial x} \right)_{i(u),k} \right]_{i,k} + \left[w_{i,k(w)} \left(\frac{\partial \theta}{\partial z} \right)_{i,k(w)} \right]_{i,k}, \quad (E.51)$$
$$\left[D_{\theta}^{sfc} \right]_{i,k} = \delta_{1k} \left\{ \frac{\partial}{\partial z} [C_D V_{sfc} \rho (T_{z_1} - T_{sfc})] \right\}_{i,k} \quad (E.52)$$

乱流拡散係数の式

$$\frac{\partial K_{mi,k}}{\partial t} = -u_{i,k} \left(\frac{\partial K_m}{\partial x} \right)_{i,k} - w_{i,k} \left(\frac{\partial K_m}{\partial z} \right)_{i,k} - \frac{3gC_m^2 l^2}{2\overline{\theta}_{i,k}} \left(\frac{\partial \theta'}{\partial z} \right)_{i,k} + C_m^2 l^2 \left[\left(\frac{\partial u}{\partial x} \right)_{i,k}^2 + \left(\frac{\partial w}{\partial z} \right)_{i,k}^2 \right] + \frac{C_m^2 l^2}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)_{i,k}^2 - \frac{K_{mi,k}}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \right)_{i,k} + \frac{1}{2} \left[\left(\frac{\partial^2 K_m^2}{\partial x^2} \right)_{i,k} + \left(\frac{\partial^2 K_m^2}{\partial z^2} \right)_{i,k} \right] + \left(\frac{\partial K_m}{\partial x} \right)_{i,k}^2 + \left(\frac{\partial K_m}{\partial z} \right)_{i,k}^2 - \frac{C_{\varepsilon}}{2C_m l^2} K_{mi,k}^2.$$
(E.53)

E.3 時間方向の離散化

本節では準圧縮方程式の時間方向の離散化について述べる.

E.3.1 モード別時間分割法

一般に安定に計算を進める為には少なくとも CFL 条件を満たしている必要がある. 例えば簡単な例として 1 次元移流方程式

$$\frac{\partial \phi}{\partial t} + U \frac{\partial \phi}{\partial x} = 0 \tag{E.54}$$

を考えると, CFL 条件は

$$\frac{U\Delta t}{\Delta x} \le 1 \tag{E.55}$$

と表される. 但し *U*, Δ*t* はそれぞれ移流の速さ, 時間ステップである. 系において 様々な速度スケールの現象が生じている場合, 最も速い速度スケールを持つ現象が CFL 条件に制約を加えることになる.

準圧縮方程式は音波を解に含んでいる.本研究では対流に着目しているので,音波 自体はあまり重要ではない.しかし音波の位相速度は対流の速度スケールに比べ て 10 倍程度大きい.従ってたとえ対流のみに着目しようとしても,計算を安定に進 めるために時間ステップを小さくとらなければならなくなり,計算のコストが高く なってしまう.そこで計算の効率化を図るためにモード別時間分割法を採用する. モード別時間分割法とは時間ステップを2種類用意し,短い方の時間ステップで音 波に関連する項を解き,長い時間ステップで音波に関連しない移流項や拡散項を解 くという方法である.短い時間ステップで時間積分を行なっている間は長い時間ス テップで評価する項の値は一定とみなして計算を行なう.モード別時間分割法の概 念図を 図 E.2 に示す.

凝結に関連する項は音波にも移流にも直接関連しないので, 解くべき時間ステップ は凝結の時間スケールによって決まると考えられる. Kitamori (2006) は Odaka et al. (1998) の火星乾燥対流の実験結果をもとに CFL 条件を満たす長い時間ステップと 短い時間ステップの最大値をそれぞれ 5.0 [s], 0.5 [s] と見積もった. また Kitamori (2006) は流れの存在しない火星大気での拡散成長についての数値計算を行ない, 凝 結の時間スケールが 1 – 20 [s] 程度となることを見出した. そこで Kitamori (2006) 同様, 凝結に関連する項を短い時間ステップで解くこととする. 本文書では長い時 間ステップを Δt , 短い時間ステップを $\Delta \tau$ と書くことにする.

E.3.2 音波減衰項

モード別時間分割法を用いると音波についての CFL 条件を満たしているにもかか わらず計算不安定を起こすことがある (Skamarock and Klemp, 1992). この計算不 安定を抑制する為に, 運動方程式 (E.32), (E.35) の Π' を

$$\Pi' - \alpha \text{Div} \tag{E.56}$$

で置き換える. 但し Div $\equiv (\partial u/\partial x) + (\partial w/\partial z)$ である. 音波を選択的に減衰させる 為には, 係数 α を適切な値に設定する必要がある. 本モデルでは Kitamori (2006) に 従い

$$\alpha = 5.0 \times 10^{-7} \times \frac{\min[(\Delta x)^2, (\Delta z)^2]}{\Delta \tau}$$
(E.57)

とする.

E.3.3 数值粘性項

移流項の空間微分を中心差分を用いて離散化すると計算不安定が生じることがある.この計算不安定を抑制する為に運動方程式,熱力学の式,雲密度の式の移流項に 人工的な数値粘性項を加える.即ち任意の予報変数φに関する方程式に数値粘性項

$$\nu_H \frac{\partial^2 \phi}{\partial x^2} + \nu_V \frac{\partial^2 \phi}{\partial z^2} \tag{E.58}$$

を付加する. 係数 *v_H*, *v_V* については

$$\nu_H = \nu_V = 1.0 \times 10^{-4} \times \frac{\min[(\Delta x)^2, (\Delta z)^2]}{\Delta t}$$
(E.59)

とする.

E.3.4 準圧縮方程式系の時間方向の離散化

音波及び凝結に関する項は短い時間ステップ $\Delta \tau$ で,それ以外の項は長い時間ステッ プ Δt で離散化する. 音波に関連する項の離散化には HE-VI (horizontally explicit vertically implicit) 法を用いる. 即ち u の式は前進差分, w, Π' の式は後退差分 (クラ ンク・ニコルソン法) で離散化する. 音波に関連しない項の項はリープフロッグ法 で離散化する.

以下,時間積分により求まる量を $\phi^{t+\Delta t}$, $\phi^{\tau+\Delta \tau}$,時間積分によって得られている最新 の物理量を ϕ^{t} , ϕ^{τ} ,最新の物理量の1ステップ前の時刻での物理量を $\phi^{t-\Delta t}$, $\phi^{\tau-\Delta \tau}$ と表すこととする.

水平方向の運動方程式の離散化

(E.32)を離散化すると

$$u_{i(u),k}^{\tau+\Delta\tau} = u_{i(u),k}^{\tau} - \left(c_{pv}\overline{\theta}\frac{\partial[\Pi']^{\tau}}{\partial x}\right)_{i,u(k)}\Delta\tau + F_{u_{i(u),k}}^{t}\Delta\tau$$
(E.60)

となる. F_u は音波, 凝結に関連しない項で

$$F_{ui(u),k}^{t} = -\left(u^{t}\frac{\partial u^{t}}{\partial x}\right)_{i(u),k} - \left(w^{t}\frac{\partial u^{t}}{\partial z}\right)_{i(u),k} + \left[D_{u}\right]_{i(u),k}^{t-\Delta t} + \left[D_{u}^{sfc}\right]_{i(u),k}^{t}$$
(E.61)

である. 乱流拡散項は Tsuboki and Sakakibara (2001) と同様に全て時刻 $t - \Delta t$ での 値で評価する.

鉛直方向の運動方程式と圧力方程式の離散化

本モデルでは HE-VI 法を用いるので, 鉛直方向の運動方程式と圧力方程式を連立 させて解く. (E.35) において音波減衰項, 圧力勾配項はそれぞれ前進差分, 後退差分 で離散化する. (E.37) において水平方向のフラックス項, 鉛直方向のフラックス項 はそれぞれ前進差分, 後退差分で離散化する. (E.35) 及び (E.37) を離散化すると

$$w_{i,k(w)}^{\tau+\Delta\tau} = w_{i,k(w)}^{\tau} - c_{pv}\overline{\theta}_{i,k(w)} \left[\beta \frac{\partial [\Pi']^{\tau+\Delta\tau}}{\partial z} + (1-\beta) \frac{\partial [\Pi']^{\tau}}{\partial z}\right]_{i,k(w)} \Delta\tau + F_{w_{i,k(w)}}^{t} \Delta\tau,$$
(E.62)

$$\begin{aligned} [\Pi']_{i,k}^{\tau+\Delta\tau} &= [\Pi']_{i,k}^{\tau} - \left[\frac{\overline{c}^2}{c_{pv}\overline{\rho}\overline{\theta}^2}\frac{\partial}{\partial x}(\overline{\rho}\overline{\theta}u^{\tau+\Delta\tau})\right]_{i,k}\Delta\tau \\ &-\beta\left[\frac{\overline{c}^2}{c_{pv}\overline{\rho}\overline{\theta}^2}\frac{\partial}{\partial z}(\overline{\rho}\overline{\theta}w^{\tau+\Delta\tau})\right]_{i,k}\Delta\tau - (1-\beta)\left[\frac{\overline{c}^2}{c_{pv}\overline{\rho}\overline{\theta}^2}\frac{\partial}{\partial z}(\overline{\rho}\overline{\theta}w^{\tau})\right]_{i,k}\Delta\tau \\ &+ \left[\frac{\overline{c}^2}{c_{pv}\overline{\theta}}\left(\frac{L}{c_{pv}\overline{T}}-1\right)\frac{M_{cond}^{\tau}}{\overline{\rho}}\right]_{i,k}\Delta\tau \\ &+ \left[\frac{\overline{c}^2}{c_{pv}\overline{\theta}^2\overline{\Pi}}(Q_{rad}+Q_{dis})\right]_{i,k}\Delta\tau \end{aligned}$$
(E.63)

となる. 但し β は後退差分における重み係数を表し, クランク・ニコルソン法の場合 $\beta = 0.5$ とする. また F_w は音波, 凝結に関連しない項で

$$F_{wi,k(w)}^{t} = -\left(u^{t}\frac{\partial w^{t}}{\partial x}\right)_{i,k(w)} - \left(w^{t}\frac{\partial w^{t}}{\partial z}\right)_{i,k(w)} + g\frac{[\theta']_{i,k(w)}^{t}}{\overline{\theta}_{i,k(w)}} - g\frac{R}{p_{0}}\frac{\overline{\theta}_{i,k(w)}}{\overline{\Pi}_{i,k(w)}^{c_{vv}/R}}\rho_{i,k(w)}^{t} + [D_{w}]_{i,k(w)}^{t-\Delta t}$$
(E.64)

である. (E.63) に (E.60), (E.62) を代入して $u^{\tau+\Delta\tau}$, $w^{\tau+\Delta\tau}$ を消去し, 式を整理する と以下のような行列で表記出来る.

$$\begin{pmatrix} A_1 & B_2 & \cdots & 0 & 0 \\ C_1 & A_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & A_{km-1} & B_{km} \\ 0 & 0 & \cdots & C_{km-1} & A_{km} \end{pmatrix} \begin{pmatrix} \Pi'_{1,1} & \Pi'_{2,1} & \cdots & \Pi'_{km-1,1} & \Pi'_{km,1} \\ \Pi'_{1,2} & \Pi'_{2,2} & \cdots & \Pi'_{km-1,2} & \Pi'_{km,2} \\ \vdots & \vdots & & \vdots & \vdots \\ \Pi'_{1,km-1} & \Pi'_{2,km-1} & \cdots & \Pi'_{km-1,km-1} & \Pi'_{km,km-1} \\ \Pi'_{1,km} & \Pi'_{2,km} & \cdots & \Pi'_{km-1,km} & \Pi'_{km,km} \end{pmatrix}^{\tau+\Delta\tau}$$

$$= \begin{pmatrix} D_{1,1} & D_{2,1} & \cdots & D_{km-1,1} & D_{km,1} \\ D_{1,2} & D_{2,2} & \cdots & D_{km-1,2} & D_{km,2} \\ \vdots & \vdots & & \vdots & & \vdots \\ D_{1,km-1} & D_{2,km-1} & \cdots & D_{km-1,km-1} & D_{km,km-1} \\ D_{1,km} & D_{2,km} & \cdots & D_{km-1,km} & D_{km,km} \end{pmatrix}^{\tau}$$
(E.65)

ここで km は鉛直方向の格子点の総数である. (E.65) の左辺の係数行列の各成分は 以下のように表される.

$$A_{1} = 1 + \beta^{2} \left[\frac{\overline{c}^{2} (\Delta \tau)^{2}}{c_{pv} \overline{\rho} \overline{\theta}^{2}} \right]_{1} \frac{1}{(\Delta z)^{2}} (c_{pv} \overline{\rho} \overline{\theta}^{2})_{i,1(w)}, \qquad (E.66)$$

$$A_{k} = 1 + \beta^{2} \left[\frac{\overline{c}^{2} (\Delta \tau)^{2}}{c_{pv} \overline{\rho} \overline{\theta}^{2}} \right]_{k} \frac{1}{(\Delta z)^{2}} [(c_{pv} \overline{\rho} \overline{\theta}^{2})_{i,k(w)} + (c_{pv} \overline{\rho} \overline{\theta}^{2})_{i,k-1(w)}],$$

$$(k = 2, 3, \dots, km - 1)$$
(E.67)

$$A_{km} = 1 + \beta^2 \left[\frac{\overline{c}^2 (\Delta \tau)^2}{c_{pv} \overline{\rho} \overline{\theta}^2} \right]_{km} \frac{1}{(\Delta z)^2} (c_{pv} \overline{\rho} \overline{\theta}^2)_{i,km-1(w)}, \qquad (E.68)$$

$$B_{k} = -\beta^{2} \left[\frac{\overline{c}^{2} (\Delta \tau)^{2}}{c_{pv} \overline{\rho} \overline{\theta}^{2}} \right]_{k-1} \frac{1}{(\Delta z)^{2}} (c_{pv} \overline{\rho} \overline{\theta}^{2})_{i,k-1(w)}, \qquad (E.69)$$

$$C_{k} = -\beta^{2} \left[\frac{\overline{c}^{2} (\Delta \tau)^{2}}{c_{pv} \overline{\rho} \overline{\theta}^{2}} \right]_{k+1} \frac{1}{(\Delta z)^{2}} (c_{pv} \overline{\rho} \overline{\theta}^{2})_{i,k(w)}, \qquad (E.70)$$

$$D_{i,1} = [\Pi']_{i,1}^{\tau} - (1-\beta) \left[\frac{\overline{c}^2 \Delta \tau}{c_{pv} \overline{\rho} \overline{\theta}^2} \right]_1 \left[\frac{\partial (\overline{\rho} \overline{\theta} w^{\tau})}{\partial z} \right]_{i,1} - \left[\frac{\overline{c}^2 \Delta \tau}{c_{pv} \overline{\theta}} \right]_1 \left[\frac{\partial u^{\tau+\Delta \tau}}{\partial x} \right]_{i,1} + F_{i,1}$$
$$-\beta \left[\frac{\overline{c}^2 (\Delta \tau)^2}{c_{pv} \overline{\rho} \overline{\theta}^2} \right]_1 \frac{1}{\Delta z} (c_{pv} \overline{\rho} \overline{\theta}^2)_{i,0(w)} E_{i,0(w)}, \qquad (E.71)$$

$$D_{i,k} = [\Pi']_{i,k}^{\tau} - (1-\beta) \left[\frac{\overline{c}^2 \Delta \tau}{c_{pv} \overline{\rho} \overline{\theta}^2} \right]_k \left[\frac{\partial (\overline{\rho} \overline{\theta} w^{\tau})}{\partial z} \right]_{i,k} - \left[\frac{\overline{c}^2 \Delta \tau}{c_{pv} \overline{\theta}} \right]_k \left[\frac{\partial u^{\tau+\Delta \tau}}{\partial x} \right]_{i,k} + F_{i,k},$$

$$(k = 2, 3, ..., km - 1)$$

$$D_{i,km} = [\Pi']_{i,km}^{\tau} - (1 - \beta) \left[\frac{\overline{c}^2 \Delta \tau}{c_{pv} \overline{\rho} \overline{\theta}^2} \right]_{km} \left[\frac{\partial (\overline{\rho} \overline{\theta} w^{\tau})}{\partial z} \right]_{i,km} - \left[\frac{\overline{c}^2 \Delta \tau}{c_{pv} \overline{\theta}} \right]_{km} \left[\frac{\partial u^{\tau + \Delta \tau}}{\partial x} \right]_{i,km}$$

$$+ F_{i,km} + \beta \left[\frac{\overline{c}^2 (\Delta \tau)^2}{c_{pv} \overline{\rho} \overline{\theta}^2} \right]_{km} \frac{1}{\Delta z} (c_{pv} \overline{\rho} \overline{\theta}^2)_{i,km(w)} E_{i,km(w)}.$$
(E.72)
(E.72)
(E.72)
(E.73)

但し

$$E_{i,k(w)} = \left[\frac{\partial (\alpha \operatorname{Div})^{\tau}}{\partial z}\right]_{i,k(w)} - (1 - \beta) \left[\frac{\partial [\Pi']^{\tau}}{\partial z}\right]_{i,k(w)} + \left[\frac{F_{w}^{t}}{c_{pv}\overline{\theta}}\right]_{i,k(w)}, \quad (E.74)$$

$$F_{i,k} = -\beta \left(\frac{\overline{c}^{2}\Delta\tau}{c_{pv}\overline{\rho}\overline{\theta}}\right)_{i,k} \left[\frac{\partial}{\partial z} \left\{\overline{\rho}\overline{\theta} \left(w^{\tau} - c_{pv}\overline{\theta}\Delta\tau \left\{(1 - \beta)\frac{\partial [\Pi']^{\tau}}{\partial z} - \frac{\partial (\alpha \operatorname{Div})^{\tau}}{\partial z}\right\} + F_{w}^{t}\Delta\tau\right)\right\}_{i,k(w)} + \frac{\overline{c}^{2}}{c_{pv}\overline{\theta}} \left(\frac{L}{c_{pv}\overline{T}} - 1\right) \frac{M_{cond}^{\tau}}{\overline{\rho}}\Delta\tau + \frac{\overline{c}^{2}}{c_{pv}\overline{\theta}^{2}\overline{\Pi}}(Q_{rad} + Q_{dis})\Delta\tau\right]_{i,k} \quad (E.75)$$

である. (E.65) の左辺の係数行列は 3 重対角行列となっているので, Thomas 法を用いて時刻 $\tau + \Delta \tau$ での II' の値を求めることができる (Thomas, 1949). 本モデルでは計算ライブラリ LAPACK を用いて (E.65) を解いている.

雲密度の式の離散化

雲密度の時間積分を行なうに当たっては,先ず音波・凝結に関連しない項と雲粒落 下項を計算し,次に負の雲密度の発生を防ぐ処置を行い,最後に音波・凝結に関連 する項を計算する¹⁴⁾.即ち,(E.38)を離散化すると以下のように書ける.

$$\rho_{s_{i,k}}^{*} = \rho_{s_{i,k}}^{\tau} + [M_{fall}]_{i,k}^{\tau} \Delta \tau + [F_{\rho_s}]_{i,k}^{t} \Delta \tau, \qquad (E.76)$$

$$\rho_{s_{i,k}}^{**} = \text{FillNeg.}[\rho_{s_{i,k}}^*], \qquad (E.77)$$

$$\rho_{s_{i,k}}^{\tau+\Delta\tau} = \rho_{s_{i,k}}^{**} + [M_{cond}]_{i,k}^{**} \Delta\tau.$$
(E.78)

ここで FillNeg.[$\rho_{s_{i,k}}$] は負の雲密度の発生を防ぐ為の処置を表し, $\rho_{s_{i,k}}$ は処理を行なった後の雲密度の暫定値, F_{ρ_s} は音波・凝結に関連しない項であり,

$$[F_{\rho_s}]_{i,k}^t = -\left[\frac{\partial}{\partial x}(\rho_s^t u^t)\right]_{i,k} - \left[\frac{\partial}{\partial z}(\rho_s^t w^t)\right]_{i,k} + D_{\rho_s^t i,k}^t.$$
(E.79)

である.

熱力学の式の離散化

¹⁴⁾負の雲密度の発生を防ぐ処置の具体的な手順については, E.4 節を参照されたい.

(E.50)を離散化すると

$$\theta_{i,k}^{\prime\tau+\Delta\tau} = \theta_{i,k}^{\prime\tau} + F_{\theta_{i,k}}^{t} \Delta\tau + \frac{1}{\overline{\Pi}_{i,k}} \frac{L\left[M_{cond}\right]_{i,k}^{**}}{c_{pv}\overline{\rho}_{i,k}} \Delta\tau$$
(E.80)

,

となる. F_{θ} は音波・凝結に関連しない項であり

$$F_{\theta i,k}^{t} = -u_{i,k}^{t} \left(\frac{\partial \theta'^{t}}{\partial x}\right)_{i,k} - w_{i,k}^{t} \left(\frac{\partial \theta'^{t}}{\partial z}\right)_{i,k} - w_{i,k}^{t} \left(\frac{\partial \overline{\theta}^{t}}{\partial z}\right)_{i,k} + \frac{1}{\overline{\Pi}_{i,k}} (Q_{rad} + Q_{dis})_{i,k}^{t} + [D_{\theta}]_{i,k}^{t-\Delta t} + [D_{\theta}^{sfc}]_{i,k}^{t}$$
(E.81)

である.

乱流拡散係数の式の離散化

(E.53)をリープフロッグ法を用いて離散化すると

$$K_{m_{i,k}}^{t+\Delta t} = K_{m_{i,k}}^{t-\Delta t} + 2\Delta t [F_{K_m}]_{i,k}^t$$
(E.82)

となる. ここで

$$\begin{split} [F_{K_m}]_{i,k}^t &= -\left[u_{i(u),k}\left(\frac{\partial K_m}{\partial x}\right)_{i(u),k}\right]_{i,k}^t - \left[w_{i,k(w)}\left(\frac{\partial K_m}{\partial z}\right)_{i,k(w)}\right]_{i,k}^t \\ &- \left[\frac{3gC_m^{-2}l^2}{2\overline{\theta}}\left(\frac{\partial \theta'}{\partial z}\right)_{i,k(w)}\right]_{i,k}^{t-\Delta t} \\ &+ C_m^{-2}l^2 \left[\left(\frac{\partial u}{\partial x}\right)^2\right]_{i,k}^{t-\Delta t} + C_m^{-2}l^2 \left[\left(\frac{\partial w}{\partial z}\right)^2\right]_{i,k}^{t-\Delta t} \\ &+ \frac{C_m^{-2}l^2}{2} \left[\left\{\left(\frac{\partial u}{\partial z}\right)_{i(u),k(w)}\right\}_{i,k}^{t-\Delta t} + \left\{\left(\frac{\partial w}{\partial x}\right)_{i(u),k(w)}\right\}_{i,k}^{t-\Delta t}\right]^2 \\ &- \frac{1}{3}[K_m]_{i,k}^{t-\Delta t} \left[\left(\frac{\partial u}{\partial x}\right)_{i,k}^{t-\Delta t} + \left(\frac{\partial w}{\partial z}\right)_{i,k}^{t-\Delta t}\right] \\ &+ \frac{1}{2} \left[\left\{\frac{\partial}{\partial x}\left(\frac{\partial K_m^2}{\partial x}\right)_{i(u),k}\right\}_{i,k}^{t-\Delta t} + \left\{\frac{\partial}{\partial z}\left(\frac{\partial K_m^2}{\partial z}\right)_{i,k(w)}\right\}_{i,k}^{t-\Delta t}\right] \\ &+ \left[\left\{\left(\frac{\partial K_m}{\partial x}\right)^2\right\}_{i(u),k}\right]_{i,k}^{t-\Delta t} + \left[\left\{\left(\frac{\partial K_m}{\partial z}\right)^2\right\}_{i,k(w)}\right]_{i,k}^{t-\Delta t}\right] \\ &- \frac{C_{\varepsilon}}{2C_m l^2}[K_m^2]_{i,k}^{t-\Delta t} \end{split}$$
(E.83)

である. Tsuboki and Sakakibara (2001) と同様に移流項を時刻 t で, それ以外の項を 時刻 $t - \Delta t$ で評価した.

E.3.5 Robert, Asselin の時間フィルター

E.3 節で述べた通り, 長い時間ステップの計算ではリープフロッグ法を用いている. リープフロッグ法では時刻 $t - \Delta t$ の値を用いて時刻 $t + \Delta$ の値を求める為, 隣 接する時間ステップ間で物理量の値に大きな食い違いや振動が生じる恐れがある. この問題を回避する為, 長い時間ステップの計算を 1 回行なう度に Robert (1966), Asselin (1972) が考案した時間フィルターを適用する. 本モデルでは $u, w, \theta', \Pi', \rho_s, K_m$ の時間積分に対してフィルターをかける.

時間フィルター適用前の変数を ϕ ,時間フィルター適用後の変数を $\overline{\phi}$ とすると

$$\overline{\phi^t} = \phi^t + \mu_a (\overline{\phi^{t-\Delta t}} - 2\phi^t + \phi^{t+\Delta t})$$
(E.84)

と表される. ここで μ_a はフィルターの強さを表す係数であり, 本モデルでは Klemp and Wilhelmson (1978), Tsuboki and Sakakibara (2001) と同様に $\mu_a = 0.1$ とした.

E.4 負の雲密度の発生を防ぐ処置に関して

本モデルでは中央差分を用いることで生じる負の雲密度を防ぐ為,全質量が保存されるように負の雲密度の穴埋めを行なっている.雲密度に対する穴埋めを行なう関数 FillNegativeMMC の中の式を具体的に書き下すと,以下のようになる.

$$+\min(0.0, \rho_s(i, k+1)) * QSUMPN(i, k+1)] \\+0.25 * [\min(0.0, \rho_s(i-2, k)) * QSUMPN(i-2, k) \\+\min(0.0, \rho_s(i+2, k)) * QSUMPN(i+2, k) \\+\min(0.0, \rho_s(i, k-2)) * QSUMPN(i, k-2) \\+\min(0.0, \rho_s(i, k+2)) * QSUMPN(i, k+2)]\}$$

(E.86)

$$\hat{\rho}_s(i,k) = \rho_s(i,k) + DQFILL(i,k).$$
(E.87)

但し, ρ_s は穴埋め前の雲密度, ρ̂_s は穴埋め後の雲密度, DQFILL(i,k) は穴埋めす る量である. 例えばある一点のみで雲密度が負となった場合, この関数は負の点が ゼロとなるように隣接する点と2つ隣の点から雲を削って埋める. その際, 隣接す る各点は埋める量全体の 3/16 を負担し, 2つ隣の各点は埋める量全体の 1/16 を負 担する.

以下では、単純な場合として、ある一点(i,k) = (M,N)のみ穴埋め前の雲密度 が負である場合に、穴埋め前後での全雲質量が保存されることを示す. ある一 点(i,k) = (M,N)のみ穴埋め前の雲密度が負であるとき、(E.85)、(E.86) より (i,k) = (M-2,N), (M-1,N), (M,N), (M+1,N), (M+2,N), (M,N-2), (M,N-1), (M,N+1), (M,N+2)以外の点ではDQFILL(i,k) = 0となる. 以上の9点で のDQFILL(i,k)を書き下すと、

$$DQFILL(M-2,N) = 0.25 * \rho_s(M-2,N)\rho_s(M,N) * QSUMPN(M,N),$$
(E.88)

 $DQFILL(M-1,N) = 0.75 * \rho_s(M-1,N)\rho_s(M,N) * QSUMPN(M,N),$ (E.89)

 $DQFILL(M, N) = -\rho_s(M, N)$

(E.90)

$$DQFILL(M+1,N) = 0.75 * \rho_s(M+1,N)\rho_s(M,N) * QSUMPN(M,N),$$

(E.91)

 $DQFILL(M+2,N) = 0.25 * \rho_s(M+2,N)\rho_s(M,N) * QSUMPN(M,N),$ (E.92)

 $DQFILL(M, N-2) = 0.25 * \rho_s(M, N-2)\rho_s(M, N) * QSUMPN(M, N),$ (E.93)

 $DQFILL(M, N-1) = 0.75 * \rho_s(M, N-1)\rho_s(M, N) * QSUMPN(M, N),$ (E.94)

 $DQFILL(M, N+1) = 0.75 * \rho_s(M, N+1)\rho_s(M, N) * QSUMPN(M, N),$ (E.95) $DQFILL(M, N+2) = 0.25 * \rho_s(M, N+2)\rho_s(M, N) * QSUMPN(M, N),$ (E.96)

となる. 但し

$$QSUMPN(M, N) = \{0.75 * [\rho_s(M-1, N) + \rho_s(M+1, N) + \rho_s(M, N-1) + \rho_s(M, N+1)] + 0.25 * [\rho_s(M-2, N) + \rho_s(M+2, N) + \rho_s(M, N-2) + \rho_s(M, N+2)]\}^{-1}$$
(E.97)

である. 従って

$$\begin{split} \sum_{i} \sum_{k} \hat{\rho}_{s}(i,k) &= \sum_{i} \sum_{k} \left[\rho_{s}(i,k) + DQFILL(i,k) \right] \\ &= \sum_{i} \sum_{k} \rho_{s}(i,k) \\ &+ DQFILL(M-2,N) + DQFILL(M-1,N) \\ &+ DQFILL(M,N) + DQFILL(M+1,N) \\ &+ DQFILL(M,N) + DQFILL(M,N-2) \\ &+ DQFILL(M,N-1) + DQFILL(M,N+1) \\ &+ DQFILL(M,N+2) \\ &= \sum_{i} \sum_{k} \rho_{s}(i,k) - \rho_{s}(M,N) \\ &+ \rho_{s}(M,N) * QSUMPN(M,N) \\ &\{0.75 * [\rho_{s}(M-1,N) + \rho_{s}(M+1,N) \\ &+ \rho_{s}(M,N+1) + \rho_{s}(M,N+1)] \\ &+ 0.25 * [\rho_{s}(M-2,N) + \rho_{s}(M+2,N) \\ &+ \rho_{s}(M,N+2) + \rho_{s}(M,N+2)] \} \\ &= \sum_{i} \sum_{k} \sum_{k} \rho_{s}(i,k) - \rho_{s}(M,N) \\ &+ \rho_{s}(M,N) * QSUMPN(M,N) * QSUMPN(M,N)^{-1} \\ &= \sum_{i} \sum_{k} \sum_{k} \rho_{s}(i,k) \end{split}$$
(E.98)

となるので, 穴埋め前後での質量は相等しい.

同様に雲密度が負である点が複数ある場合についても, 穴埋め前後で質量は保存されると考えられる.

付録F 定常状態における平均鉛直流 の鉛直分布

本付録では、定常状態における凝結層での平均鉛直流の鉛直分布を理論的に導く. ここでは水平平均された系を考え、非断熱加熱として凝結と放射冷却を考慮し、放射冷却率は高度に依らず一定であるとする.また基本場は静水圧平衡にあり、かつ 飽和状態にあるものとする.更に温位の移流項については $|wd\theta'/dz| \ll |wd\overline{\theta}/dz|$ が成り立つものとする.このとき支配方程式は熱力学の式

$$w\frac{d\overline{\theta}}{dz} = \frac{1}{\overline{\Pi}} \left(\frac{LM_{cond}}{\overline{\rho}c_p} + Q_{rad} \right)$$
(F.1)

及び連続の式

$$\frac{d}{dz}\left(\overline{\rho}w\right) = -M_{cond} \tag{F.2}$$

である. この問題における未知数は $w \ge M_{cond}$ である. 凝結層を想定して領域下端 を凝結高度 $z = z_{LCL} \ge 0$,境界条件としてw = 0 (at $z = z_{LCL}$)を与えるものと する.

M_{cond}を消去すると,

$$w\frac{d\overline{\theta}}{dz} = -\frac{L}{\overline{\Pi}\overline{\rho}c_p}\frac{d}{dz}\left(\overline{\rho}w\right) + \frac{Q_{rad}}{\overline{\Pi}}$$
(F.3)

となる. 式 (F.3) の両辺に $\overline{\Pi}\overline{\rho}c_p/L$ を掛けると,

$$\frac{c_p}{L}\overline{\Pi}\frac{d\overline{\theta}}{dz}\overline{\rho}w = -\frac{d}{dz}\left(\overline{\rho}w\right) + \frac{c_pQ_{rad}}{L}\overline{\rho}$$
(F.4)

となる.基本場が静水圧平衡にあり、かつ飽和状態にあるとき、

$$c_{p}\overline{\theta}\frac{d\Pi}{dz} = -g, \qquad (F.5)$$

$$\overline{T} = T_{LCL}\exp\left[-\frac{g}{L}(z-z_{LCL})\right], \qquad (F.6)$$

$$\frac{d\overline{T}}{dz} = -\frac{g}{L}\overline{T} \approx -\frac{g}{L}T_{LCL}$$

となる. ここで $T_{LCL} = T(z_{LCL})$ である. 式 (F.5), (F.6) より

$$\overline{\Pi}\frac{d\overline{\theta}}{dz} = \frac{d}{dz}\left(\overline{\Pi\theta}\right) - \overline{\theta}\frac{d\overline{\Pi}}{dz} = \frac{d}{dz}\left(\overline{\Pi\theta}\right) + \frac{g}{c_p} \approx \frac{g}{c_p}\left(1 - \frac{c_p T_{LCL}}{L}\right)$$
(F.7)

であるので,式(F.4)は以下のように書き換えられる.

$$\frac{d}{dz}\left(\overline{\rho}w\right) + \frac{g}{L}\left(1 - \frac{c_p T_{LCL}}{L}\right)\overline{\rho}w = \frac{c_p Q_{rad}}{L}\overline{\rho}.$$
(F.8)

ここで $W = \overline{\rho}w$ と置くと, 境界条件は W = 0 (at $z = z_{LCL}$) となり, 式 (F.8) は

$$\frac{dW}{dz} + \frac{g}{L} \left(1 - \frac{c_p T_{LCL}}{L} \right) W = \frac{c_p Q_{rad}}{L} \overline{\rho}$$
(F.9)

と書き換えられる. 更に式 (F.4) 及び理想気体の状態方程式 $\overline{p} = \overline{p}R\overline{T}$ 及び静水圧平 衡の式 $d\overline{p}/dz = -\overline{p}g$ より

$$\frac{1}{\overline{\rho}} \frac{d\overline{\rho}}{dz} = -\frac{1}{\overline{T}} \frac{d\overline{T}}{dz} - \frac{g}{R\overline{T}}$$

$$= \frac{g}{L} - \frac{g}{RT_{LCL}} \exp\left[\frac{g}{L}(z - z_{LCL})\right],$$

$$\ln\left(\frac{\overline{\rho}}{\rho_{LCL}}\right) = \frac{g}{L}(z - z_{LCL}) - \frac{L}{RT_{LCL}} \left[e^{\frac{g}{L}(z - z_{LCL})} - 1\right],$$

$$\overline{\rho} = \rho_{LCL} \exp\left\{\frac{g}{L}(z - z_{LCL}) - \frac{L}{RT_{LCL}} \left[e^{\frac{g}{L}(z - z_{LCL})} - 1\right]\right\} (F.10)$$

となる. ここで想定している高度領域においては $(g/L)|z - z_{LCL}| < 10^{-1}$ であるの で, $e^{(g/L)(z-z_{LCL})} \approx 1 + (g/L)(z - z_{LCL})$ と近似すると,

$$\overline{\rho} \approx \rho_{LCL} \exp\left\{\frac{g}{L}(z - z_{LCL}) - \frac{L}{RT_{LCL}}\frac{g}{L}(z - z_{LCL})\right\}$$
$$= \rho_{LCL} \exp\left[\frac{g}{L}\left(1 - \frac{L}{RT_{LCL}}\right)(z - z_{LCL})\right]$$
(F.11)

となる.式(F.11)を式(F.9)に適用すると、

$$\frac{dW}{dz} + \frac{g}{L} \left(1 - \frac{c_p T_{LCL}}{L} \right) W \approx \frac{c_p Q_{rad} \rho_{LCL}}{L} \exp\left[\frac{g}{L} \left(1 - \frac{L}{RT_{LCL}} \right) (z - z_{LCL}) \right] F.12)$$

となる.式 (F.12) は 1 階の非斉次常微分方程式であり,その解は斉次の一般解 W₁ と非斉次の特別解 W₂ の和で表される.式 (F.12) より W₁, W₂ はそれぞれ

$$W_1 = C_1 \exp\left[-\frac{g}{L}\left(1 - \frac{c_p T_{LCL}}{L}\right)z\right], \qquad (F.13)$$

$$W_2 = C_2 \exp\left[-\frac{g}{L}\left(\frac{L}{RT_{LCL}} - 1\right)(z - z_{LCL})\right]$$
(F.14)

と表される. ここで *C*₁ は境界条件によって定まる定数である. また *C*₂ は式 (F.12), (F.14) より

$$-\frac{g}{L}\left(\frac{L}{RT_{LCL}}-1\right)C_2 + \frac{g}{L}\left(1-\frac{c_pT_{LCL}}{L}\right)C_2 = \frac{c_pQ_{rad}\rho_{LCL}}{L},$$
$$C_2 = \frac{c_pQ_{rad}\rho_{LCL}}{g}\left(2-\frac{L}{RT_{LCL}}-\frac{c_pT_{LCL}}{L}\right)^{-1} \approx -\frac{c_pQ_{rad}p_{LCL}}{gL} \quad (F.15)$$

と定まる. 更に境界条件より

$$C_1 = -C_2 \exp\left[\frac{g}{L}\left(1 - \frac{c_p T_{LCL}}{L}\right) z_{LCL}\right]$$
(F.16)

と定まる.以上より

$$W(z) \approx \frac{c_p Q_{rad} p_{LCL}}{gL} \exp\left[-\frac{g}{L}\left(1 - \frac{c_p T_{LCL}}{L}\right)(z - z_{LCL})\right] - \frac{c_p Q_{rad} p_{LCL}}{gL} \exp\left[-\frac{g}{L}\left(\frac{L}{RT_{LCL}} - 1\right)(z - z_{LCL})\right], \quad (F.17)$$

$$w(z) = \frac{c_p Q_{rad} p_{LCL}}{gL \rho_{LCL}} \exp\left[-\frac{g}{L}\left(2 - \frac{L}{RT_{LCL}} - \frac{c_p T_{LCL}}{L}\right)(z - z_{LCL})\right] - \frac{c_p Q_{rad} p_{LCL}}{gL \rho_{LCL}}$$

$$\approx \frac{c_p Q_{rad} p_{LCL}}{gL \rho_{LCL}} \left\{\exp\left[\frac{g}{RT_{LCL}}(z - z_{LCL})\right] - 1\right\}. \quad (F.18)$$

式 (F.18) より放射冷却が存在する凝結層 ($Q_{rad} < 0, z > z_{LCL}$) では w < 0 となり, 平均下降流が形成されることが分かる. また |w(z)| は高度とともに大きくなり,高 度 40 km で約 -1.0×10^{-4} m s⁻¹,高度 50 km で約 -3.5×10^{-4} m s⁻¹ となる (図 F.1). 以上より,本実験設定の下では,温位の擾乱成分の移流項が温位の基本場成分 の移流項に比べて小さいとみなせる場合,定常状態においては高度 50 km 付近で 10^{-4} m s⁻¹ 程度の平均下降流が存在することが理論的に示される.

また式 (F.18) より, 本実験設定の下では, 定常状態において高度 50 km 付近で温位 の移流が卓越することも示される. |w(z)| が高度とともに大きくなり, $|\overline{\Pi}|$ が高度と ともに小さくなることを考慮すると, 式 (F.7) より温位移流項 $-wd\overline{\theta}/dz$ もまた高 度とともに大きくなる. その為, 温位移流項の大きさはとある高度で凝結加熱項と 同程度になり, それよりも上の高度で放射冷却項と同程度になると考えられる. 以 下では凝結加熱項と移流項が同じ大きさになる高度 H_1 , 移流項と放射冷却項が釣 り合うようになる高度 H_2 の表式とそれらの値を求める. 式 (F.1), (F.7), (F.18) より

$$-w(H_1) \left. \frac{d\overline{\theta}}{dz} \right|_{z=H_1} + \frac{1}{\overline{\Pi}(H_1)} \left(\frac{LM_{cond}}{\overline{\rho}c_p} + Q_{rad} \right) = 0,$$

$$\begin{split} -2w(H_1) \left. \frac{d\theta}{dz} \right|_{z=H_1} + \frac{Q_{rad}}{\overline{\Pi}(H_1)}, &= 0\\ 2w(H_1) \left. \frac{d\overline{\theta}}{dz} \right|_{z=H_1} &= \left. \frac{Q_{rad}}{\overline{\Pi}(H_1)}, \\ w(H_1) &= \left. \frac{Q_{rad}}{2\overline{\Pi}(H_1) \left. \frac{d\overline{\theta}}{dz} \right|_{z=H_1}} \approx \frac{c_p}{2g} \frac{Q_{rad}}{1 - \frac{c_p T_{LCL}}{L}}, \\ \frac{Q_{rad} p_{LCL}}{L\rho_{LCL}} \left\{ \exp\left[\frac{g}{RT_{LCL}} (H_1 - z_{LCL}) \right] - 1 \right\} &= \left. \frac{1}{2} \frac{Q_{rad}}{1 - \frac{c_p T_{LCL}}{L}}, \end{split}$$

$$H_1 = z_{LCL} + \frac{RT_{LCL}}{g} \ln \left(1 + \frac{L}{2RT_{LCL}} \frac{1}{1 - \frac{c_p T_{LCL}}{L}} \right).$$
(F.19)

同様に

$$\begin{split} w(H_2) \left. \frac{d\overline{\theta}}{dz} \right|_{z=H_2} &= \left. \frac{Q_{rad}}{\overline{\Pi}(H_2)}, \\ w(H_2) &= \left. \frac{Q_{rad}}{\overline{\Pi}(H_2) \left. \frac{d\overline{\theta}}{dz} \right|_{z=H_2}} \approx \frac{c_p}{g} \frac{Q_{rad}}{1 - \frac{c_p T_{LCL}}{L}}, \\ \frac{Q_{rad} p_{LCL}}{L\rho_{LCL}} \left\{ \exp\left[\frac{g}{RT_{LCL}} (H_1 - z_{LCL}) \right] - 1 \right\} &= \left. \frac{Q_{rad}}{1 - \frac{c_p T_{LCL}}{L}}, \end{split}$$

$$H_2 = z_{LCL} + \frac{RT_{LCL}}{g} \ln \left(1 + \frac{L}{RT_{LCL}} \frac{1}{1 - \frac{c_p T_{LCL}}{L}} \right).$$
(F.20)

式 (F.19), (F.20) より $H_1 \approx 4.3 \times 10^4$ m, $H_2 \approx 4.9 \times 10^4$ m となる即ち, 本実験設定 の下では, 定常状態において高度 50 km 付近で温位の移流が卓越することになる (図 F.2).

付録G 雲粒の重力落下,冷却のタイ ムスケールの導出

雲密度が凝結に対する閾値と等しい場合に, 雲粒が雲の鉛直スケール D_{cloud} 程度落下するのに要する時間で重力落下のタイムスケールを評価するものとする. このとき

$$au_{fall} \sim \frac{D_{cloud}}{V_{term}}$$
 (G.1)

となる. ここで

$$V_{term} \sim \frac{2g\rho_I}{9\eta} \left(\frac{3\rho_s^T}{4\rho_I \pi \rho N_*}\right)^{2/3} \tag{G.2}$$

であるので,

$$\tau_{fall} \sim \frac{9\eta D_{cloud}}{2g\rho_I} \left(\frac{4\rho_I \pi \rho}{3\rho_s^T}\right)^{2/3} N_*^{2/3} \tag{G.3}$$

が導かれる.

次に式 (5.2)を導出する. 冷却のタイムスケールを, 等圧過程において飽和状態から 臨界飽和比に達するまでの時間で評価するものとする. 飽和比の定義より,

$$\frac{dS}{dt} = \frac{d}{dt} \left(\frac{p}{p_*}\right) \tag{G.4}$$

が成り立つ.式 (G.4) に Clausius-Clapeyron の式

$$\frac{dp_*}{dT} = \frac{Lp_*}{RT^2} \tag{G.5}$$

を適用すると,

$$\frac{dS}{dt} \sim -\frac{p}{p_*^2} \frac{dp_*}{dt}$$
$$= -\frac{p}{p_*^2} \frac{dp_*}{dT} \frac{dT}{dt}$$

$$= -\frac{SL}{RT^2} \frac{dT}{dt},$$

$$\frac{d}{dt}(\ln S) = -\frac{L}{RT^2} \frac{dT}{dt}$$
 (G.6)

となる. ここで式 (G.6) の右辺の係数 $L/(RT^2)$ をほぼ定数とみなせるものとし, S = 1から $S = S_{cr}$ まで積分すると,

$$\ln S_{cr} \sim -\frac{L}{RT^2} \Delta T \tag{G.7}$$

となる. ここで $\Delta T = T(S = S_{cr}) - T(S = 1)$ である. $\tau_{cool} \sim \Delta T/Q_{rad}$ より

$$\ln S_{cr} \sim -\frac{LQ_{rad}}{RT^2} \tau_{cool},$$

$$\tau_{cool} \sim -\frac{RT^2}{Q_{rad}L} \ln S_{cr}$$
(G.8)

が導かれる.

付録H CO₂ 氷静的エネルギー及びそれに基づく雲密度分布の導出

本付録では CO₂ 氷静的エネルギーの導出と CO₂ 氷静的エネルギーが高度に依らな いと仮定して得られる雲密度分布 (5.4) の導出を行なう.

先ず CO₂ 氷静的エネルギーを導出する. 1 kg の気相と $q_s = \rho_s/\rho_v$ kg の固相が含ま れている気塊について考える. 凝結が生じたら, 即飽和状態になると仮定し, また相 変化に伴う潜熱解放以外の非断熱加熱は無視できると仮定する. 更に $q_s \ll 1$ であ ると仮定する. このとき熱力学第一法則より,

$$0 = c_v dT + q_s c_s dT - \frac{p}{\rho_v^2} d\rho_v - L dq_s \tag{H.1}$$

と表される. ここで c_s は固相の比熱である. 理想気体の状態方程式 $p/\rho_v = RT$ より

$$\frac{p}{\rho_v^2}d\rho_v = \frac{dp}{\rho_v} - RdT \tag{H.2}$$

が成り立つので,

$$0 = c_p dT + q_s c_s dT - \frac{dp}{\rho_v} - L dq_s \tag{H.3}$$

となる. 但し式変形の途中で $c_p = c_v + R$ となることを用いた. $q_s \ll 1$ より, $c_s q_s \ll c_v$ であるので,

$$0 \approx c_p dT - \frac{dp}{\rho_v} - L dq_s \tag{H.4}$$

となる. $q_s \ll 1$ となるとき, 静水圧平衡において固相の存在を無視することが出来る. このとき静水圧平衡の式は

$$dp = -\rho_v g dz \tag{H.5}$$

と表される.式(H.5)を式(H.4)に代入して dpを消去すると,

$$0 = c_p dT + g dz - L dq_s$$

$$= d(c_p T + gz - Lq_s) \tag{H.6}$$

となる. 即ち, $h \equiv c_p T + g_z - Lq_s$ と置くと, この場合 h は近似的に保存される. h は地球大気の液水静的エネルギー (liquid water static energy) に相当する量であり, ここでは便宜上「CO₂ 氷静的エネルギー」と呼ぶことにする.

以下では気塊が良く鉛直方向に良く混合して CO₂ 氷静的エネルギーが高度に依ら ずほぼ一定であると仮定し, 雲の定常鉛直分布を導く.また雲層は静力学平衡にあ り, かつ完全に飽和しているものと仮定する.式 (H.6) より

$$\frac{d}{dz}(c_pT + gz - Lq_s) = 0 \tag{H.7}$$

となる. 式 (H.7) を $z = z_{LCL}$ から z まで積分すると,

$$c_p(T - T_{LCL}) + g(z - z_{LCL}) - L\frac{\rho_s(z)}{\rho_v(z)} = 0,$$

$$\rho_s(z) = \frac{\rho_v(z)}{L} \left[c_p(T - T_{LCL}) + g(z - z_{LCL}) \right]$$
(H.8)

となる. 雲層が完全に飽和しているとすれば, Clausius-Clapeyronの式より,

$$\frac{dT}{dz} = -\frac{gT}{L},$$

$$T(z) = \exp\left[-\frac{g}{L}(z - z_{LCL})\right]$$
(H.9)

となり,式(5.3)が得られる.またこのとき

$$\rho_v(z) = \frac{p_*}{RT} = \frac{A_{ant} \exp(-\frac{B_{ant}}{T})}{RT},$$
(H.10)

となる.式(H.10)を式(H.8)に代入すると,

$$\rho_s(z) = \frac{A_{ant} \exp(-\frac{B_{ant}}{T})}{LRT} \left[c_p(T - T_{LCL}) + g(z - z_{LCL}) \right]$$
(H.11)

となり,式(5.4)が得られる.

付録I 重力落下と凝結,潜熱加熱と放 射冷却のバランスに基づく雲密度分布 の導出

本付録では重力落下項と凝結項がほぼ釣り合い,潜熱加熱項と放射冷却項がほぼ釣り 合う場合に得られる雲密度に関する方程式(5.6)の導出と,それを Newton-Raphson 法で数値的に解く方法の説明を行なう.

先ず (5.6) を導出する. 重力落下項と凝結項がほぼ釣り合っているとすると,式 (2.5) より

$$\frac{\partial}{\partial z} \left(\rho_s V_{term} \right) \sim -M_{cond} \tag{I.1}$$

が成り立つ.また潜熱加熱項と放射冷却項が釣り合っているとすると,式(2.4)より

$$\frac{LM_{cond}}{\overline{\rho}c_p} \sim -Q_{rad} \tag{I.2}$$

となる.式(I.2)を式(I.1)に代入すると,

$$\frac{\partial}{\partial z} \left(\rho_s V_{term} \right) \sim \frac{c_p \overline{\rho} Q_{rad}}{L}.$$
(I.3)

となる.式(2.15),(2.16),(2.18)より

$$V_{term} = \frac{2g\rho_I}{9\eta(z)} \left(1 + \frac{4}{3}K_n\right) r_d^2$$

$$= \frac{2g\rho_I}{9\eta(z)} \left(1 + \frac{4}{3}\frac{\lambda(z)}{r_d}\right) r_d^2$$

$$= \frac{2g\rho_I}{9\eta(z)} \left(r_d + \frac{4}{3}\lambda(z)\right) r_d \qquad (I.4)$$

となる.式(I.4)を式(I.3)に代入すると,

$$\frac{\partial}{\partial z} \left[\frac{2g\rho_I}{9\eta(z)} \rho_s r_d \left(r_d + \frac{4}{3}\lambda(z) \right) \right] = \frac{c_p Q_{rad}}{L} \overline{\rho}(z)$$

$$= -\frac{c_p Q_{rad}}{Lg} \frac{\partial \overline{p}(z)}{\partial z}$$
$$= -\frac{\partial}{\partial z} \left[\frac{c_p Q_{rad}}{Lg} \overline{p}(z) \right]$$
(I.5)

となる. 但し, 式変形の途中で *Q_{rad}* が定数であること, 並びに基本場は静水圧平衡 にあることを用いた. 式 (I.5) をある高度 *z* から雲頂高度 *z_t* まで積分すると,

$$\frac{2g\rho_I}{9\eta(z)}\rho_s r_d\left(r_d + \frac{4}{3}\lambda(z)\right) + \frac{c_p Q_{rad}}{Lg}[\overline{p}(z) - \overline{p}(z_t)] = 0$$
(I.6)

となる. 式 (2.13) において $r_d \gg r_{aero}$ であるとみなすと,

$$r_{d} = \left(r_{aero}^{3} + \frac{3\rho_{s}}{4\rho_{I}\pi\overline{\rho}(z)N^{*}}\right)^{1/3}$$
$$\approx \left(\frac{3}{4\rho_{I}\pi\overline{\rho}(z)N^{*}}\right)^{1/3}\rho_{s}^{1/3}$$
(I.7)

と近似出来る.式(I.7)を式(I.6)に代入すると,

$$\frac{2g\rho_I}{9\eta(z)} \left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{1/3} \rho_s(z)^{4/3} \left[\left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{1/3} \rho_s(z)^{1/3} + \frac{4}{3}\lambda(z) \right] \\ + \frac{c_p Q_{rad}}{Lg} [\overline{p}(z) - \overline{p}(z_t)] = 0$$
(I.8)

となり,式(5.6)が得られる.

次に式 (5.6) を Newton-Raphson 法で数値的に解く方法について説明する. 計算の 便宜上,式 (I.8) において $X \equiv \rho_s^{1/3}$ と置くと,

$$\frac{2g\rho_I}{9\eta(z)} \left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{1/3} X(\rho_s)^4 \left[\left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{1/3} X(\rho_s) + \frac{4}{3}\lambda(z) \right] \\ + \frac{c_p Q_{rad}}{Lg} [\overline{p}(z) - \overline{p}(z_t)] = 0$$
(I.9)

となる. $X(\rho_s)$ の第 j 近似解を $X^{(j)}$ とすると,

$$X^{(j+1)} = X^{(j)} - \frac{f(X^{(j)})}{f'(X^{(j)})},$$
(I.10)

$$f(X) = \frac{2g\rho_I}{9\eta(z)} \left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{1/3} X^4 \left[\left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{1/3} X + \frac{4}{3}\lambda(z) \right] + \frac{c_p Q_{rad}}{Lg} [\overline{p}(z) - \overline{p}(z_t)],$$
(I.11)

$$f'(X) = \frac{2g\rho_I}{9\eta(z)} \left(\frac{3}{4\rho_I \pi \overline{\rho}(z)N^*}\right)^{1/3} X^3 \left[5\left(\frac{3}{4\rho_I \pi \overline{\rho}(z)N^*}\right)^{1/3} X + \frac{16}{3}\lambda(z)\right]$$
(I.12)

となる.式 (I.10) – (I.12) を解き, ρ_s の近似解を求める為には, 適切な第0近似解を 与える必要がある. 第0近似解の1つの候補として, Cunningham 補正なしの Stokes 則が成り立つ場合の雲分布が考えられる. このとき

$$\left(\frac{3}{4\rho_I \pi \overline{\rho}(z)N^*}\right)^{1/3} \rho_s(z)^{1/3} \gg \frac{4}{3}\lambda(z) \tag{I.13}$$

が成り立つので,式(I.8)より

$$\frac{2g\rho_I}{9\eta(z)} \left(\frac{3}{4\rho_I \pi \overline{\rho}(z) N^*}\right)^{2/3} \rho_s(z)^{5/3} + \frac{c_p Q_{rad}}{Lg} [\overline{p}(z) - \overline{p}(z_t)] \approx 0,$$

$$\rho_s(z) \approx \left[-\frac{9c_p Q_{rad} \eta(z)}{2Lg^2 \rho_I} \left(\frac{4\rho_I \pi \overline{\rho}(z) N^*}{3}\right)^{1/3} [\overline{p}(z) - \overline{p}(z_t)]\right]^{3/5}$$
(I.14)

となる. 従ってこのとき第0近似解は

$$X^{(0)} \approx \left[-\frac{9c_p Q_{rad} \eta(z)}{2Lg^2 \rho_I} \left(\frac{4\rho_I \pi \overline{\rho}(z) N^*}{3} \right)^{1/3} \left[\overline{p}(z) - \overline{p}(z_t) \right] \right]^{1/5}$$
(I.15)

となる. 経験的には,式(I.15)を第0近似解として計算を行なうと,発散することなく近似解が得られることが多い.

付録J 変数・定数リスト

本付録では本論文中で用いた変数・定数を列挙する.

記号	変数・定数名
x	水平座標
z	鉛直座標
t	時刻
u	水平流速
w	鉛直流速
heta	温位
П	エクスナー関数
$ ho_s$	雲密度
ho	気相密度
p	圧力
T	温度
С	音速
M_{cond}	凝結率
M_{fall}	落下率
D_m, D_h	乱流拡散項
Q_{cond}	温度に関する潜熱加熱項
Q_{rad}	温度に関する放射加熱項
Q_{dis}	温度に関する散逸加熱項
K_m	運動量に関する乱流拡散係数
K_h	熱に関する乱流拡散係数
S	飽和比
p_*	飽和蒸気圧
r_c	雲粒半径
$ ho_s^T$	雲密度に対する閾値
Δt	長い時間ステップ
$\Delta \tau$	短い時間ステップ

表 1: 変数・定数リスト.

記号	変数・定数名
$p_0 = 2.0 \times 10^5 \text{Pa}$	基準圧力
$R = 188.9 {\rm J} \ {\rm K}^{-1} \ {\rm kg}^{-1}$	単位質量あたりの気体定数
$c_v = 671.1 \mathrm{J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$	単位質量あたりの定積比熱
$c_p = 860.0 \mathrm{J} \mathrm{~K^{-1}~kg^{-1}}$	単位質量あたりの定圧比熱
$L=5.86\times 10^5~\mathrm{J~kg^{-1}}$	単位質量あたりの潜熱
$g = 3.72 \text{ m s}^{-2}$	重力加速度
S_{cr}	臨界飽和比
N_*	凝結核数密度
r_{aero}	凝結核半径
k	熱拡散係数
$ ho_I=1.565 imes10^3~\mathrm{kg}~\mathrm{m}^{-3}$	CO ₂ 氷の密度
$A_{ant}=7.94\times 10^{11}~{\rm Pa}$	Antoine 係数
$B_{ant}=3103.0~{\rm K}$	Antoine 係数
V_{term}	雲粒の終端速度
η	粘性係数
η_{ref}	粘性係数の基準値
T_{ref}	温度の基準値
C_{CO_2}	CO ₂ に関する Sutherland 係数
C_{sc}	Cunningham 補正係数
K_n	雲粒に対する Knudsen 数
λ	平均自由行程
$k_B = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$	ボルツマン定数
$\sigma = 3.3 \times 10^{-10} \text{ m}$	CO ₂ 分子の有効直径

表 2: 変数・定数リスト (続き).

謝辞

本論文を作成するに当たり、多くの方々に支えて頂き、或いは協力して頂きました. 指導教員である北海道大学の石渡正樹准教授にはご多忙にも拘らず多くの時間を 割いて頂き.研究の方針から個々の議論の子細に至るまで様々なコメントをして頂 きました. 北海道大学の小高正嗣助教には火星の主成分凝結対流を研究テーマとす るきっかけを作って頂き、多くの励ましの言葉を頂きました. ISAS の杉山耕一朗博 士研究員には雲物理に関して様々な助言を頂き,特にプログラムについて多くのこ とを学ばせて頂きました、九州大学の中島健介助教には雲物理に関して様々な助言 を頂き、特に凝結過程の改良に関して様々なアイディアを提供して頂きました、神 戸大学の林祥介教授、高橋芳幸助教には俯瞰的な視点の下で問題点の洗い出しや切 り分けを手助けして頂き、物事の本質の何たるかについて多くのことを学ばせて頂 きました. 北海道大学の倉本圭教授には惑星科学や大気熱力学などについて様々な 助言を頂き、幾度にわたって疑問の突破の糸口を提供して頂きました. 北海道大学 の渡部重十教授、高橋幸弘教授、遊馬芳雄教授、理化学研究所の西澤誠也氏にはセミ ナーなどで有益なコメントを頂き,陰に陽に研究生活を支えて頂きました.北守太 一氏は本研究で用いた雲対流モデルの原型を作り,主成分凝結の効果を考慮した火 星の雲対流の研究の端緒を切り開いて下さいました. 鶴巻亮一氏は同期として5年 間にわたって勉学・研究を共にし、時に教えつつ時に教わりつつ、知識の裾野を広 げて下さいました. 納多哲史氏は同じ GFD を志す者として共に勉学・研究に励み, 計算機から雑学的知識までいろいろと教えて下さいました. 馬場健聡氏, 荻原弘尭 氏は研究室の後輩として、いろいろな議論に付き合ってもらい、それらは私の研究 の一助となりました,北海道大学の地球流体力学研究室,惑星宇宙グループの皆様 並びに神戸大学の地球及び惑星大気科学教育研究室,惑星科学研究センターの皆様 には平素よりセミナーや研究生活を通して色々とお世話になりました. 北大ピアノ サークルの皆様には事ある毎に暖かい励ましの言葉を掛けて頂きました. 高校時代 の旧友たちは互いに異なる道を進んで各方面で活躍し、そうした事実が私の刺激と なり,研究を促進する為の良薬となりました.我が心の師藤田宜孝氏とは中学・高 |校時代に机を並べて数理について学ばせて頂き,私が数理分野への道へと進む端緒 を与えて下さいました.もう一人の我が心の師片田宗隆氏は私が母校を離れてもな おエールを送り続けて下さり、そのお陰で幾多の艱難を耐え忍ぶことが出来ました. また我が家族にはいつも暖かく見守って頂き,励まして頂き,精神的困難に立ち向
かう勇気を頂きました.父母は研究の道に邁進することを快諾してくれ,全面的に 支えてくれました.兄と義姉は浮世離れした私を常に保護者のように暖かく見守っ てくれました.今は亡き祖父母はいつでも無条件に自分を励まし,心の支えとなっ てくれました.生きているうちに完成することは相成りませんでしたが,ようやく 論文が完成したことを天上で喜んでくれていることでしょう.我が愛犬ハナコは疲 れて帰宅した自分の心を大いに癒してくれました.姪と甥との平和なひとときもま た私を癒してくれました.十余年経ち君達が大人になって,この論文を見る機会が あったときに,良くも悪くも何か感じるものがあったのなら,幸いです.

本論文の計算には主に九州大学情報基盤研究開発センターのSR16000及び宇宙航 空研究開発機構情報計算工学センターのFX1を使わせて頂きました. また本論文 の図の作成にあたっては,地球流体電脳倶楽部(http://www.gfd-dennou.org/)の提供 している地球流体電脳ライブラリ (DCL),電脳 Ruby 製品, gtool5 ライブラリを利 用しました.

終わりに,この論文は私と関わった全ての皆様がいなければ完成には至らなかった ものであり,夢と努力と感謝の結晶としてこれを皆様に捧げるものであります.改 めて皆様に心より感謝申し上げます.