2012年5月31日,探査観測セミナー

土星内部磁気圏におけるダスティプラズマと電離 圏の影響によるイオン速度遅延

博士後期課程 2 年 堺 正太朗

Outline

- 1. Introduction
 - 1. 土星系
 - 土星, Enceladus, E リング, 磁気圏
 - 2. 内部磁気圈
 - ダスト,電子密度の減少,共回転遅延
- 2. モデリング
 - 1. モデル, パラメター
 - 2. 結果, 議論
 - 3. まとめ

Introduction

Saturn's system

- 赤道半径: 60,268 km (1 Rs)
- 質量: 5.68×10²⁶ kg
- •密度: 690 kg/m³
- 赤道重力: 10.44 m/s²
- 公転周期: 29.46 year
- 自転周期: 0.436 day

- 磁気モーメント: 4.6×10¹⁸ T/m³
- •赤道磁場: 2.1×10⁻⁵(Rs/r)³ T
- 自転軸に対する磁気軸の傾き

: < 1°

- リング: 内側から D, C, B, A, F, G, E
- ・ 衛星の数: 64

• 3 – 8 Rs

組成

位置

E ring

- 水グループのイオン (~80 %) [Young et al., 2005]
- ダスト (水氷) [Kurth et al., 2006; Kempf et al., 2008]
- 供給源
 - Enceladus プリュームが主

Enceladus plume [NASA/JPL/Space Science Institute]

- Enceladus
 - 赤道半径
 - 247 km
 - 大気組成
 - 主成分: 水蒸気 [Waite et al., 2006]
 - 特徴
 - 南極からのプリューム [Porco et] al., 2006]

Enceladus & E ring [NASA/JPL/Space Science Institute]

Saturn's magnetosphere

Courtesy of the Cassini MIMI team

Saturn's magnetosphere

Courtesy of the Cassini MIMI team

Why Saturn?

- 土星磁気圏は地球磁気圏とは全く異なる構造
 - プラズマ供給源
 - 衛星やリング [Moncuquet et al., 2005; Persoon et al., 2005; Wahlund et al., 2005; Sittler et al., 2006]
 - Enceladus $\mathcal{T} \cup \neg \bot$ [Porco et al., 2006; Waite et al., 2006]
 - ・ダスト
 - ・ 衛星起源の E リング荷電ダスト [Wahlund et al., 2005, 2009]
- 木星磁気圏とも異なる構造
 - 木星磁気圏にもダストは存在 [Johnson et al., 1980; Morfill et al., 1980]
 - 木星の赤道磁場は土星よりも~200倍大きい
 - ダストが電磁気力によって加速される [Horányi et al., 1993]
- → 土星磁気圏では磁場が木星ほど大きくないためにプラズマがダ ストの影響を受ける可能性がある!!

本当に影響されるのだろうか??

Depletion of electrons

- 電子密度がイオン密度に比べて小さい [Wahlund et al., 2009, Yaroshenko et al., 2009, Morooka et al., 2011]
 - $n_e/n_i < \sim 0.5$
 - しかし, プラズマは準中性状態のはず (n_e = n_i)
- →Wahlund et al. [2009] では負に帯電したダストが大量に存在していると予想 [Wahlund et al., 2009].

Dusts around Enceladus

• Enceladus 周辺では

Co-rotation deviation by dusts?

- Cassini RPWS/LP による内部磁気圏イオン観測
 - ・ プラズマ圏中のプラズマは普通,惑星の自転と共に運動するはず (共回転運動) [e.g. Blanc et al., 2005].

- イオン速度が共回転速度より遅い. [Wahlund et al., 2005, 2009; Morooka et al., 2011; Holmberg et al., submitted].
 - ケプラー速度に近いイオンも存在
 - ・ ダストがイオンの運動に影響?

Co-rotation deviation by dusts?

- イオンモデリング
 - イオン速度は共回転速度 50-90%
 - ダスト密度が大きい and/or ダスト層の厚さが大きい時 LP による 観測と一致 [Sakai et al., submitted]
 - $n_d > \sim 10^5 \text{ m}^{-3}$ and/or D > 1 Rs
 - このモデルは電離圏の影響を考慮していない
 - 伝導度を定数で与えている
 - $\Sigma_i = 1.0 \text{ S}$

lon speed profile [Sakai et al., submitted]

Ionospheric condition

- 電離圈伝導度
 - 磁気圏電場は電離圏伝導度に強く依存

 $\frac{\partial(\rho_k \mathbf{v}_k)}{\partial t} + \nabla \cdot (\rho_k \mathbf{v}_k \mathbf{v}_k) = n_k q_k \mathbf{E} + \mathbf{v}_k \times \mathbf{B} - \nabla p_k - \rho_k \mathbf{g} + \sum_l \rho_k \mathbf{v}_{kl} (\mathbf{v}_k - \mathbf{v}_l) + \sum_l S_{k,l} \mathbf{v}_l - L_k \mathbf{v}_l$

 $\sum_{i} (\mathbf{E}_{cor} - \mathbf{E}) = \mathbf{j}D$

$$\mathbf{j} = e n_i \mathbf{v}_i - e n_e \mathbf{v}_e - q_d n_d \mathbf{v}_d$$

- 伝導度はまだよくわかっていない
 - ~0.1--100 S [Connerney et al., 1983; Cheng and Waite, 1988]
 - 0.014 S (Voyager 1), 0.035 S (Voyager 2) [Saur et al., 2004]
 - 1--10 S [Cowley et al., 2004; Moore et al., 2010]

Purpose of this study & method

- HOKKAIDO UNIVERSITY
- 内部磁気圏プラズマの電離圏による影響を調査
 - 電離圏伝導度,特に Pedersen 伝導度は磁気圏プラズマの速度 に影響する
 - Pedersen 伝導度がダストープラズマ相互作用にどのような影響 を与えるか示す
- 手法
 - イオンモデリング
 - ・2 次元:磁力線に平行方向と垂直方向

モデリング

Modeling

- 基礎方程式 $\frac{\partial \rho_k}{\partial t} + \nabla \cdot \left(\rho_k \mathbf{v}_k \right) = S_k - L_k$ $\frac{\partial(\rho_k \mathbf{v}_k)}{\partial t} + \nabla \cdot (\rho_k \mathbf{v}_k \mathbf{v}_k) = n_k q_k (\mathbf{E} + \mathbf{v}_k \times \mathbf{B}) - \nabla p_k - \rho_k \mathbf{g} + \sum_l \rho_k \mathbf{v}_{kl} (\mathbf{v}_k - \mathbf{v}_l) + \sum_l S_{k,l} \mathbf{v}_l - L_k \mathbf{v}_l$
- M-I 結合 $\Sigma_i (\mathbf{E}_{cor} - \mathbf{E}) = \mathbf{j}D$ $\mathbf{j} = en_i \mathbf{v}_i - en_e \mathbf{v}_e - q_d n_d \mathbf{v}_d$

 $=\sum v_{en}$

• Pedersen 伝導度

$$\sigma_p = \sum_i \frac{\nu_i}{\nu_{in}^2 + \omega_{ci}^2} \frac{n_i e^2}{m_i} + \frac{\nu_e}{\nu_{en}^2 + \omega_{ce}^2} \frac{n_e e^2}{m_e} \qquad \nu_i = \sum_n \nu_{in}$$
$$\nu_e = \sum_n \nu_{en}$$

$$\Sigma_i = \int_{z_1}^{z_2} \sigma_p ds$$

V Velocity E Electric field Magnetic field g Gravity \mathbf{P}_{kl} Momentum transfer m Mass ρ Mass density *p* Pressure q Charge quantity V_{kl} Collision frequency \mathbf{M}_{k} Mass loading S_k Production rate L_{k} Loss rate κ Reaction rate n_k Number density i Current \mathbf{E}_{cor} Co-rotational Electric field Σ_i lonospheric conductivity dz Thickness of dust

Chemical reactions

• 55 chemical equations

電離圏での H⁺, H₂⁺, H₃⁺, He⁺, CH₄⁺, CH₅⁺, C₃H₅⁺, H₂O⁺, H₃O⁺
 の密度を計算

Chemical reaction	Rate coefficients	References			
$\mathrm{H} + h\nu \rightarrow \mathrm{H}^+ + e^-$		original	$H_3^+ + H \rightarrow H_2^+ + H_2$	$2.0 imes 10^{-15}$	Yell and Miller, 2004
$\mathrm{H}_2 + h\nu \rightarrow \mathrm{H}^+ + \mathrm{H} + e^-$		original	$H_3^+ + CH_4 \rightarrow CH_5^+ + H_2$	$2.4 imes 10^{-15}$	Moses and Bass, 2000; Anicich, 1993
$\mathrm{H}_2 + h \nu \rightarrow \mathrm{H}_2^+ + e^-$		original	$H_3^+ + H_2O \rightarrow H_3O^+ + H_2$	$5.3 imes 10^{-15}$	Moses and Bass, 2000; Anicich, 1993
$\text{He}+h\nu \rightarrow \text{He}^+ + e^-$		original	$\mathrm{He^{+}} + \mathrm{H} \rightarrow \mathrm{H^{+}} + \mathrm{He}$	$2.1 imes 10^{-15}$	高橋, 2005
$CH_4 + h\nu \rightarrow CH_4^+ + e^-$		original	$\mathrm{He^+} + \mathrm{H_2} \rightarrow \mathrm{H^+} + \mathrm{H} + \mathrm{He}$	8.8×10^{-20}	Matcheva et al., 2001; Perry, 1999
$H_2O + h\nu \rightarrow H_2O^+ + e^-$		original	$\mathrm{He^+} + \mathrm{H_2} \rightarrow \mathrm{H_2^+} + \mathrm{He}$	$9.4 imes 10^{-21}$	Moses and Bass, 2000; Kim and Fox, 1994
$\mathrm{H^+} + e^- \rightarrow \mathrm{H} + h\nu$	$6.3 imes 10^{-18} \left(300/T_e ight)^{0.64}$	Yell and Miller, 2004	$\mathrm{He^+} + \mathrm{CH_4} \rightarrow \mathrm{H^+} + \mathrm{CH_3} + \mathrm{He}$	$4.8 imes 10^{-16}$	Moses and Bass, 2000; Kim and Fox, 1994
$\mathrm{H_{2^{+}}} + e^{-} \rightarrow \mathrm{H} + \mathrm{H}$	$2.3 imes 10^{-13} \left(300/T_e ight)^{0.4}$	Kim and Fox, 1994; Auerbach, 1977	$\mathrm{He^+} + \mathrm{CH_4} \rightarrow \mathrm{CH^+} + \mathrm{H} + \mathrm{H_2} + \mathrm{He}$	$2.4 imes 10^{-16}$	Moses and Bass, 2000; Kim and Fox, 1994
$\mathrm{H_3^+} + e^- \rightarrow \mathrm{H_2} + \mathrm{H}$	$7.6 imes 10^{-13} \left(1/T_e ight)^{0.5}$	Moses and Bass, 2000; Kim and Fox, 1994	$\mathrm{He^+} + \mathrm{CH_4} \rightarrow \mathrm{CH_2^+} + \mathrm{H_2} + \mathrm{He}$	8.5×10^{-16}	Moses and Bass, 2000; Kim and Fox, 1994
${ m H_3^+} + e^- ightarrow 3{ m H}$	$9.7 imes 10^{-13} (1/T_e)^{0.5}$	Moses and Bass, 2000; Kim and Fox, 1994	$\mathrm{He^+} + \mathrm{CH_4} \rightarrow \mathrm{CH_3^+} + \mathrm{H} + \mathrm{He}$	8.5×10^{-17}	Moses and Bass, 2000; Kim and Fox, 1994
$\mathrm{He^+} + e^- \rightarrow \mathrm{He} + h\nu$	$4.0 imes 10^{-18} \left(250/T_e ight)^{0.7}$	Matcheva, 2001; Kim and Fox, 1994	$\mathrm{He^+} + \mathrm{CH_4} \rightarrow \mathrm{CH_4^+} + \mathrm{He}$	$5.1 imes 10^{-17}$	Moses and Bass, 2000; Kim and Fox, 1994
$CH_4^+ + e^- \rightarrow {}^3CH_2 + 2H$	$3.0 imes10^{-12}$	Moses and Bass, 2000; Kim and Fox, 1994	$He^+ + H_2O \rightarrow H^+ + OH + He$	1.9×10^{-16}	Moses and Bass, 2000; Anicich, 1993
$CH_4^+ + e^- \rightarrow CH_3 + H$	$3.0 imes10^{-12}$	Moses and Bass, 2000; Kim and Fox, 1994	$He^+ + H_2O \rightarrow OH^+ + H_+He$	$2.6 imes 10^{-16}$	Moses and Bass, 2000; Anicich, 1993
$\mathrm{CH}_5^+ + e^- \rightarrow {}^3\mathrm{CH}_2 + \mathrm{H} + \mathrm{H}_2$	$1.5 imes 10^{-11} \left(1/T_e ight)^{0.5}$	Moses and Bass, 2000; Kim and Fox, 1994	$He^+ + H_2O \rightarrow H_2O^+ + He$	5.5×10^{-17}	Moses and Bass, 2000: Anicich, 1993
$\mathrm{CH_5^+} + e^- \rightarrow \mathrm{CH_3} + 2\mathrm{H}$	$3.8 imes 10^{-12} \left(1/T_e ight)^{0.5}$	Moses and Bass, 2000; Kim and Fox, 1994	$CH_4^+ + H_2$ to $CH_5^+ + H$	$3.0 imes 10^{-17}$	Moses and Bass, 2000; Kim and Fox, 1994
$C_3H_5^+ + e^- \rightarrow C_3H_3 + H_2$	$2.6 \times 10^{-12} \left(1/T_e\right)^{0.5}$	Moses and Bass, 2000; Miller et al., 1997	$CH_4^+ + CH_4 \rightarrow CH_5^+ + CH_3$	1.5×10^{-15}	Moses and Bass. 2000: Kim and Fox. 1994
$C_3H_5^+ + e^- \rightarrow CH_3C_2H + H$	$2.6 imes 10^{-12} (1/T_e)^{0.5}$	Moses and Bass, 2000; Miller et al., 1997	$CH_4^+ + H_2O \rightarrow H_3O^+ + CH_3$	2.5×10^{-15}	Moses and Bass, 2000; Anicich, 1993
$\mathrm{H}_2\mathrm{O}^+$ + $e^ \rightarrow$ O + H ₂	$2.0 \times 10^{-13} \left(300/T_e \right)^{0.5}$	Tao et al., 2011; Miller et al., 1997	$CH_5^+ + H \rightarrow CH_4^+ + H_2$	$1.5 imes 10^{-16}$	Moses and Bass, 2000; Kim and Foc, 1994
$H_2O^+ + e^- \rightarrow OH + H$	$1.6 imes 10^{-13} \left(300/T_e ight)^{0.5}$	Tao et al., 2011; Miller et al., 1997	$CH_5^+ + H_2O \rightarrow H_3O^+ + CH_4$	3.7×10^{-15}	Tao et al., 2011, Anicich, 1993
$\mathrm{H_3O^+} + e^- \rightarrow \mathrm{H_2O} + \mathrm{H}$	$3.5 \times 10^{-11} \left(300/T_e \right)^{0.5}$	Tao et al., 2011; Miller et al., 1997	$H_2O^+ + H_2 \rightarrow H_3O^+ + H_3$	$7.6 imes 10^{-16}$	Tao et al., 2011: Anicich, 1993
$H_3O^+ + e^- \rightarrow OH + 2H$	$6.5 \times 10^{-11} \left(300/T_e \right)^{0.5}$	Tao et al., 2011; Miller et al., 1997	$H_2O^+ + CH_4 \rightarrow H_2O^+ + CH_2$	1.1×10^{-15}	Moses and Bass. 2000: Anicich. 1993
$\rm H^+ + \rm H_2 \rightarrow \rm H_2^+ + \rm H$	$1.0 \times 10^{-15} \exp(-21960/2000)$	Yell and Miller, 2004	$H_2O^+ + H_2O \rightarrow H_2O^+ + OH$	1.9×10^{-15}	Moses and Bass. 2000: Anicich. 1993
$\mathrm{H^+} + \mathrm{H_2} + \mathrm{M} \rightarrow \mathrm{H_3^+} + \mathrm{M}$	$3.2 imes 10^{-41}$	Moses and Bass, 2000; Kim and Fox, 1994			,,,,
$\rm H^+ + CH_4 \rightarrow CH_4^+ + H$	$8.1 imes10^{-16}$	Moses and Bass, 2000; Kim and Fox, 1994			
$\rm H^+ + \rm H_2O \rightarrow \rm H_2O^+ + \rm H$	$8.2 imes 10^{-15}$	Moses and Bass, 2000; Anicich, 1993			
$H_2^+ + H \rightarrow H^+ + H_2$	$6.4 imes10^{-16}$	Moses and Bass, 2000; Anicich, 1993			
$\mathrm{H_2^+} + \mathrm{H_2} \rightarrow \mathrm{H_3^+} + \mathrm{H}$	$2.0 imes 10^{-15}$	Moses and Bass, 2000; Kim and Fox, 1994			
$\mathrm{H_2^+} + \mathrm{CH_4} \rightarrow \mathrm{CH_3^+} + \mathrm{H_+} \mathrm{H_2}$	$2.3 imes 10^{-15}$	Moses and Bass, 2000; Kim and Fox, 1994			
$\mathrm{H_2^+} + \mathrm{CH_4} \rightarrow \mathrm{CH_4^+} + \mathrm{H_2}$	$1.4 imes 10^{-15}$	Moses and Bass, 2000; Kim and Fox, 1994			
$\rm H_2^+ + CH_4 \rightarrow CH_5^+ + H$	$1.1 imes 10^{-15}$	Moses and Bass, 2000; Kim and Fox, 1994			
$\mathrm{H_2^+} + \mathrm{H_2O} \rightarrow \mathrm{H_2O^+} + \mathrm{H_2}$	$3.9 imes 10^{-15}$	Moses and Bass, 2000; Anicich, 1993			
$H_2^+ + H_2O \rightarrow H_3O^+ + H_3O^+$	$3.4 imes10^{-15}$	Moses and Bass, 2000; Anicich, 1993			

Density profile in the ionosphere hokkaido UNIVERSITY

- 昼, 夕方
 - H⁺ が全高度で主
 成分
- 真夜中と明け方
 - 高高度では H⁺ が 主成分
 - 低高度では H₃⁺ が 主成分
- 伝導度に効くのは 密度の大きい低高 度領域

Pedersen conductivity

モデリング

~内部磁気圈~

Parameters

- 内部磁気圏中の密度プロフ ァイル
 - $n_d = 3.2 \times 10^4$ m⁻³ at 2 Rs
 - $n_w = n_e + \frac{q_d}{e}n_d n_p$
 - $n_w : n_p = 5 : 1$
- ・ダスト層の厚さ
 ・ D = 1 Rs

Ion velocities

Comparison with observations

- < 5 Rs
 - 基本的に観測と一致
- > 5 Rs
 - センスが少し違う
 - ダスト密度の与え方次 第で速度分布が変わる
- 観測値のばらつきはイオ ン速度の LT 依存性を反 映している可能性
 - ・電離圏伝導度が速度の
 LT 依存に寄与

Summary & Future works

- イオン速度モデリング
 - 昼 > 夕方 > 真夜中 > 明け方のLT依存性が見られる
 - < 5 Rs
 - 基本的には観測と一致
 - > 5 Rs
 - 観測と速度分布のセンスが異なる
 - ダスト密度の分布を変えることで対応できそう
 - 観測のばらつきはイオン速度の LT 依存性を反映している可能性

- Future works
 - 太陽照射の高度依存を考慮
 - 磁気圏側の電気伝導度の影響
 - 伝導度のフィッティング方法
 - 内部磁気圏密度の与え方