

Dust-plasma interaction in Saturn's inner magnetosphere and its magnetosphereionosphere coupling

Shotaro Sakai Department of Natural History Sciences, Hokkaido University

Outline

1. Introduction

- 1. Saturn's system
- 2. Plasma and dust in Saturn's inner magnetosphere
- 3. Modeling of the inner magnetosphere
- 2. Modeling of the ionosphere
- 3. Magnetosphere-ionosphere coupling
- 4. Summary

Introduction

Saturn's system

- (1 Rs)
- Mass: 5.68×10²⁶ kg
- Equatorial gravity: 10.44 m/s²
 Satellites#: 64
- Revolution period: 29.46 year Exploration of Saturn: Pioneer

- Equatorial radius: 60,268 km Magnetic moment: 4.6×10¹⁸ T/m³
 - Tilt of magnetic axis respect to rotational axis: < 1°
- Rotation period: 0.436 day
 Rings: D, C, B, A, F, G and E
 - 11, Voyager 1 and 2, Cassini

Saturn's system [NASA/JPL]

Enceladus plume & E ring

- Enceladus plume (~3.95 Rs)
 - Water gas
- E ring
 - 3 8 Rs
 - Water group ion
 - Dust
 - Source: Mainly Enceladus plume
 - Kepler motion

HOKKAIDO UNIVERSITY

Enceladus & E ring [NASA/JPL]

Saturn's magnetosphere

Courtesy of the Cassini MIMI team

Saturn's magnetosphere

Courtesy of the Cassini MIMI team

Why Saturn?

- Quite different from Earth's magnetosphere
 - Source of plasma
 - Satellites and rings [Moncuquet et al., 2005; Persoonet al., 2005; Wahlund et al., 2005; Sittler et al., 2006]
 - Enceladus plume [Porco et al., 2006; Waite et al., 2006]
 - Dust
 - Charged dust of E ring from satellites [Wahlund et al., 2005, 2009]
- Also different from Jovian magnetosphere
 - Dust is also existence [Johnson et al., 1980; Morfill et al., 1980].
 - Acceleration of dust by the magnetic force [Horányi et al., 1993]
 - Strong magnetic field (200 times than Saturn's)
- \rightarrow Plasma can affect dust in Saturn's magnetosphere!!
 - Because of smaller magnetic field

Electron depletion

- Electron depletion
 - $N_i > N_e$
 - N_e/N_i < 1% [*Morooka et al.*, 2011].
 - Negatively charged dust? [Wahlund et al., 2009; Morooka et al., 2011]
 7, [R_E] N[cm⁻³] N_e/N_i

Dusts around Enceladus

Total dust density: 10⁴—10⁷ m⁻³

$$n_{dtot} = \int_{r_{\min}}^{r_{\max}} n_d(r_d) dr_d \approx \frac{e(n_i - n_e)}{4\pi\varepsilon_0 U_{SC}} \frac{2 - \mu}{1 - \mu} \frac{1}{r_{\min}}$$

Co-rotation deviation by dusts?

- Ion observations from the Cassini RPWS/LP in Saturn's magnetosphere
 - V_i < V_{cor} [Wahlund et al., 2009; Morooka et al., 2011; Holmberg et al., 2012].

HOKKAIDO UNIVERSITY

Co-rotation

• Magnetospheric plasma should be co-rotating.

Co-rotation velocity:
$$\mathbf{v}_{cor} = \frac{\mathbf{E}_{cor} \times \mathbf{B}}{B^2}$$

HOKKAIDO UNIVERSITY

Co-rotation deviation by dusts?

- Ion observations from the Cassini RPWS/LP in Saturn's magnetosphere
 - V_i < V_{cor} [Wahlund et al., 2009; Morooka et al., 2011; Holmberg et al., 2012].

HOKKAIDO UNIVERSITY

• Dusts affect V_i in the inner magnetosphere?

Comparison with LP observation HOKKAIDO UNIVERSITY

Magnetospheric ion velocity [Sakai et al., 2013]

Inner magnetospheric model

- Momentum equations
 - H⁺, H₂O⁺, e⁻ and dust

$$\rho_{k} \frac{\partial \mathbf{v}_{k}}{\partial t} + \rho_{k} (\mathbf{v}_{k} \cdot \nabla) \mathbf{v}_{k} = n_{k} q_{k} (\mathbf{E} + \mathbf{v}_{k} \times \mathbf{B}) - \nabla p_{k} - \rho_{k} \mathbf{g} + \sum_{l} \rho_{k} v_{kl} (\mathbf{v}_{k} - \mathbf{v}_{l}) - \sum_{l} S_{k,l} (\mathbf{v}_{k} - \mathbf{v}_{l})$$
Electric field Collision term Chemical term
$$\bullet \text{ Dust: } q_{d} = 4 \pi \varepsilon_{0} r_{d} \phi$$

$$\bullet r_{d} = 100 \text{ nm; } \phi = -2 \text{ V}$$

$$\downarrow N \qquad 2 \text{ Rs to 10 Rs, one dimension}$$

$$\downarrow S \qquad 2 \text{ Rs} \qquad 10 \text{ Rs}$$

$$\downarrow V_{k} \text{ Velocity}$$

$$E \text{ Electric field}$$

$$\downarrow V_{k} \text{ Velocity}$$

$$E \text{ Electric field}$$

$$g \text{ Gravity}$$

$$\rho_{k} \text{ Mass density}$$

$$P \text{ Pressure}$$

$$e \text{ Charge quantity}$$

$$\downarrow V_{kl} \text{ Collision frequency}$$

HOKKAIDO UNIVERSITY

Electric field

- M-I coupling for deriving electric field, E $\sum_{i} (\mathbf{E}_{cor} - \mathbf{E}) = \mathbf{j}D$ $\mathbf{j} = en_{i}\mathbf{v}_{i} - en_{e}\mathbf{v}_{e} - q_{d}n_{d}\mathbf{v}_{d}$ $\downarrow \downarrow \downarrow$ $\mathbf{E} = \mathbf{E}_{cor} - \frac{\mathbf{j}D}{\Sigma_{i}}$ Thickness of dust distribution
 - Ionospheric conductivity Σ_i : 1 S

HOKKAIDO UNIVERSITY

Comparison with LP observation hokkaido UNIVERSITY

Magnetospheric ion velocity [Sakai et al., 2013]

Comparison with LP observation hokkaido UNIVERSITY

$$\rho_k \frac{\partial \mathbf{v}_k}{\partial t} + \rho_k (\mathbf{v}_k \cdot \nabla) \mathbf{v}_k = n_k q_k (\mathbf{E} + \mathbf{v}_k \times \mathbf{B}) - \nabla p_k - \rho_k \mathbf{g} + \sum_l \rho_k \mathbf{v}_{kl} (\mathbf{v}_k - \mathbf{v}_l) - \sum_l S_{k,l} (\mathbf{v}_k - \mathbf{v}_l)$$

- 3 cases for \sum_{i}
 - 0.1 S
 - 1 S
 - 10 S
- V_i is slower when \sum_i is smaller.
- V_i strongly depends on \sum_i .

Co-rotation deviation by dusts?

- Ionospheric Pedersen conductivity
 - E depends on the conductivity.

$$\rho_{k} \frac{\partial \mathbf{v}_{k}}{\partial t} + \rho_{k} (\mathbf{v}_{k} \cdot \nabla) \mathbf{v}_{k} = n_{k} q_{k} (\mathbf{E} + \mathbf{v}_{k} \times \mathbf{B}) - \nabla p_{k} - \rho_{k} \mathbf{g} + \sum_{l} \rho_{k} \mathbf{v}_{kl} (\mathbf{v}_{k} - \mathbf{v}_{l}) - \sum_{l} S_{k,l} (\mathbf{v}_{k} - \mathbf{v}_{l})$$

Electric field

HOKKAIDO UNIVERSITY

$$\Sigma_i (\mathbf{E}_{cor} - \mathbf{E}) = \mathbf{j}D$$

Pedersen conductivity

$$\sigma_{p} = \sum_{i} \frac{v_{i}}{v_{in}^{2} + \omega_{ci}^{2}} \frac{n_{i}e^{2}}{m_{i}} + \frac{v_{e}}{v_{en}^{2} + \omega_{ce}^{2}} \frac{n_{e}e^{2}}{m_{e}} \qquad \Sigma_{i} = \int_{z_{1}}^{z_{2}} \sigma_{p} ds$$

- One of the open questions.
 - ~0.1-100 S [Connerney et al., 1983; Cheng and Waite, 1988]
 - ~0.02 S [Saur et al., 2004]
 - 1--10 S [Cowley et al., 2004; Moore et al., 2010]
- Estimate the ionospheric N_i for deriving \sum_i .

Saturn's ionosphere

- N_e observation from Cassini occultations
 - N_e (average between dusk and dawn)
 - Peak density: ~10¹⁰ m⁻³; Peak alt.: ~1200 km

Saturn's ionosphere

- Model [Moore et al. 2008]
 - N_e
 - Average peak density: ~10¹⁰ m⁻³
 - Peak alt.: ~1200 km
 - T_e
 - Max: 500 K
 - Alt.: > 1500 km
- Only below ~3000 km
 - Magnetospheric effect?

- Construction of an ionospheric model including the inner magnetosphere.
- Estimation of the ionospheric Pedersen conductivity from plasma density in the Saturn's ionosphere
- Investigation of the influence of magnetosphere to ionosphere

Modeling of the ionosphere

3 dimensional ionospheric model in hokkaido UNIVERSITY

Primitive equations

 $n_e = \sum n_i$

• Ion

Density:

Momentum

Density:
$$\frac{\partial \rho_i}{\partial t} + \frac{1}{A} \frac{\partial (A \rho_i v_{i,||})}{\partial s} = S_i - L_i$$
Temperature
Q Heating rate
 K Diffusion coefficientMomentum: $\rho_i \frac{\partial v_{i,||}}{\partial t} + \rho_i v_{i,||} \frac{\partial v_{i,||}}{\partial s} = n_i eE_{||} - \frac{\partial p_i}{\partial s} - \rho_i g - \sum_k \rho_i v_{i,k} (v_{i,||} - v_{k,||})$ Temperature: $T_i = T_e$ • Electron $N_i (H^+, H_2^+, H_3^+, He^+, H_2O^+ and H_3O^+), V_i (H^+, H_2^+, H_3^+, He^+, H_2O^+ and H_3O^+), T_i = T_i$

l_e, l_i

Density:

Momentu

Temperat

$$\text{Im:} \quad E_{\parallel} = -\frac{1}{en_e} \frac{\partial p_e}{\partial s}$$
$$\text{ture:} \quad \frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{A} \frac{\partial}{\partial s} \left(A\kappa_e \frac{\partial T_e}{\partial s} \right) = Q_{EUV} + Q_{coll} + Q_{joule} + Q_{ph,ionos} + Q_{ph,mag}$$

 $\mathcal{V}_{||}$ Field-aligned Velocity $E_{||}$ Electric field

- Magnetic flux cross-section
- Gravity and CF g
- ture
- rate
- coefficient

Model

HOKKAIDO UNIVERSITY

- Dipole coordinate system
 - Along the magnetic field line \rightarrow 1 dimension
 - + Increasing the number of magnetic field line \rightarrow 2 dimensions
 - + Time evolution \rightarrow 3 dimensions

3 dimensional ionospheric model hokkaido UNIVERSITY

 $\mathcal{V}_{||}$ Field-aligned Velocity $E_{||}$ Electric field Primitive equations A Magnetic flux cross-section • Ion g Gravity and CF Density: $\frac{\partial \rho_i}{\partial t} + \frac{1}{A} \frac{\partial (A \rho_i v_{i,\parallel})}{\partial s} = Source and Loss rate$ TTemperature Q Heating rate κ Diffusion coefficient Momentum: $\rho_i \frac{\partial v_{i,\parallel}}{\partial t} + \rho_i v_{i,\parallel} \frac{\partial v_{i,\parallel}}{\partial s} = n_i e E_{\parallel} - \frac{\partial p_i}{\partial s} - \rho_i g - \sum_i \rho_i v_{i,\parallel} \left(v_{i,\parallel} - v_{k,\parallel} \right)$ Temperature: $T_i = T_e$ N_{i} (H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺), V_{i} (H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺), Electron T_e, T_i Density: $n_e = \sum_i n_i$ Momentum: $E_{\parallel} = -\frac{1}{en_{a}} \frac{\partial p_{e}}{\partial s}$ Temperature: $\frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{A} \frac{\partial}{\partial s} \left(A \kappa_e \frac{\partial T_e}{\partial s} \right) = Q_{EUV} + Q_{coll} + Q_{joule} + Q_{ph,ionos} + Q_{ph,mag}$

Source & Loss

- Chemical reactions of 6 ion components
 - H^+ , H_2^+ , H_3^+ , He^+ , H_2O^+ and H_3O^+
 - 29 reactions

Chemical reaction	Rate coefficiants	References		
$\mathbf{H} + h\nu \to \mathbf{H}^+ + e^-$		Moses and Bass [2000] $H^+ + H_2O \rightarrow H_2O^+ + H_2O$	8.2×10^{-15}	Moses and Bass [2000];
$\mathrm{H}_2 + h\nu \to \mathrm{H}^+ + \mathrm{H} + e^-$		Moses and Bass [2000]		Anicich [1993]
$\mathrm{H}_2 + h\nu \to \mathrm{H}_2^+ + e^-$		Moses and Bass [2000] $H_2^+ + H \rightarrow H^+ + H_2$	6.4×10^{-16}	Moses and Bass [2000];
$\mathrm{He} + h\nu \to \mathrm{He}^+ + e^-$		Moses and Bass [2000]		Anicich [1993]
$H_2O + h\nu \rightarrow H^+ + OH + e^-$		Moses and Bass [2000] $\operatorname{H}_2^+ + \operatorname{H}_2 \to \operatorname{H}_3^+ + \operatorname{H}$	2.0×10^{-15}	Moses and Bass [2000];
$H_2O + h\nu \rightarrow H_2O^+ + e^-$		Moses and Bass [2000]	o o do 15	Kim and Fox [1994]
$\mathrm{H^+} + e^- \to \mathrm{H}$	$1.9 \times 10^{-16} T_e^{-0.7}$	Moses and Bass [2000]; $H_2^+ + H_2O \rightarrow H_2O^+ + H_2$	3.9×10^{-15}	Moses and Bass $[2000];$
		Kim and Fox [1994] \mathbf{u}^+ + \mathbf{u} \mathbf{o} - \mathbf{u} \mathbf{o}^+ + \mathbf{u}	2 4 10-15	Anicich [1993]
$\mathrm{H}_2^+ + e^- \to \mathrm{H} + \mathrm{H}$	$2.3 \times 10^{-12} T_e^{-0.4}$	Moses and Bass [2000]; $H_2^+ + H_2^- O \rightarrow H_3^- O^+ + H_2^-$	3.4×10^{-10}	Moses and Bass [2000];
		Kim and Fox [1994] $H^+ + H_2 O \rightarrow H_2 O^+ + H_2$	5.2×10^{-15}	Masses and Bass [2000].
$\mathrm{H}_3^+ + e^- \to \mathrm{H}_2 + \mathrm{H}$	$7.6 \times 10^{-13} T_e^{-0.5}$	Moses and Bass [2000]; $\Pi_3 + \Pi_2 O \rightarrow \Pi_3 O + \Pi_2$	0.3×10	Anicich [1993]
		Kim and Fox [1994] $He^+ + H_2 \rightarrow H^+ + H + He$	8.8×10^{-20}	Matcheva et al. [2001]:
$\mathrm{H}_3^+ + e^- \to 3\mathrm{H}$	$9.7 \times 10^{-13} T_e^{-0.5}$	Moses and Bass [2000];	010 1 20	Perry [1999]
		Kim and Fox [1994] $\operatorname{He}^+ + \operatorname{H}_2 \to \operatorname{H}_2^+ + \operatorname{He}$	9.4×10^{-21}	Moses and Bass [2000];
$\mathrm{He^{+}} + e^{-} \to \mathrm{He}$	$1.9 \times 10^{-16} T_e^{-0.7}$	Moses and Bass [2000];		Kim and Fox [1994]
		Kim and Fox [1994] $\operatorname{He}^+ + \operatorname{H}_2 O \to \operatorname{H}^+ + \operatorname{OH} + \operatorname{He}$	$1.9 imes 10^{-16}$	Moses and Bass [2000];
$\mathrm{H}_{2}\mathrm{O}^{+} + e^{-} \to \mathrm{O} + \mathrm{H}_{2}$	$3.5 imes 10^{-12} T_e^{-0.5}$	Moses and Bass [2000];		Anicich [1993]
		Miller et al. [1997] $\operatorname{He}^+ + \operatorname{H}_2\operatorname{O} \to \operatorname{H}_2\operatorname{O}^+ + \operatorname{He}$	5.5×10^{-17}	Moses and Bass [2000];
$H_2O^+ + e^- \rightarrow OH + H$	$2.8 \times 10^{-12} T_e^{-0.5}$	Moses and Bass [2000];	10	Anicich [1993]
		$Miller \ et \ al. \ [1997] \qquad H_2O^+ + H_2 \rightarrow H_3O^+ + H$	7.6×10^{-16}	Moses and Bass [2000];
$\rm H_3O^+ + e^- \rightarrow \rm H_2O + \rm H$	$6.1 \times 10^{-12} T_e^{-0.5}$	Moses and Bass [2000]; $\mathbf{H} \odot^+$ + $\mathbf{H} \odot^-$ = $\mathbf{H} \odot^+$ + \mathbf{OH}	1.0 10-15	Anicich [1993]
		$Miller \ et \ al. \ [1997] \qquad H_2O^+ + H_2O \rightarrow H_3O^+ + OH$	1.9×10^{-10}	Moses and Bass [2000];
$H_3O^+ + e^- \rightarrow OH + 2H$	$1.1 \times 10^{-11} T_e^{-0.5}$	Moses and Bass [2000];		Anicich [1995]
		Miller et al. [1997]		
$\mathrm{H^+} + \mathrm{H_2} \to \mathrm{H_2^+} + \mathrm{H}$	see text	Moses and Bass [2000]		
$\mathrm{H^+} + \mathrm{H_2} + \mathrm{M} \rightarrow \mathrm{H_2^+} + \mathrm{M}$	3.2×10^{-41}	Moses and Bass [2000]:		

Kim and Fox [1994

3 dimensional ionospheric model hokkaido UNIVERSITY

 \mathcal{V}_{\parallel} Field-aligned Velocity Primitive equations E''_{II} Electric field Magnetic flux cross-section • Ion Gravity and CF $\frac{\partial \rho_i}{\partial t} + \frac{1}{A} \frac{\partial (A \rho_i v_{i,\parallel})}{\partial c} = S_i - L_i$ Temperature TDensity: Heating rate 0 Diffusion coefficient к $\rho_{i}\frac{\partial v_{i,\parallel}}{\partial t} + \rho_{i}v_{i,\parallel}\frac{\partial v_{i,\parallel}}{\partial s} = n_{i}eE_{\parallel} - \frac{\partial p_{i}}{\partial s} - \rho_{i}g - \sum_{i}\rho_{i}v_{i,\parallel}\left(v_{i,\parallel} - v_{k,\parallel}\right)$ Momentum: Temperature: $T_i = T_e$ N_{i} (H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺), V_{i} (H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺), Electron T_e, T_i Density: $n_e = \sum_i n_i$ $E_{\parallel} = -\frac{1}{en_e} \frac{\partial p_e}{\partial s}$ Momentum: EUV, collision, Joule heating, photoelectron Temperature: $\frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{A} \frac{\partial}{\partial s} \left(A \kappa_e \frac{\partial T_e}{\partial s} \right) = Q_{EUV} + Q_{coll} + Q_{joule} + Q_{ph,ionos} + Q_{ph,mag}$ Heat flow, Q_{HF} Heating rate

Background neutral atmosphere hokkaido UNIVERSITY

 $N_{i}, \sigma_{p}, T_{e}, Q_{e}$ (L=5, LT=12) HOKKAIDO UNIVERSITY Plasma density Electron temperature Electron heating rate Pedersen conductivity 10000 • • T_{e} Q_{EUV} а H^{+} 9000 H, Q_{ph,ionos} H, ⊣ Q_{coll} 8000 He⁺ ' Q_{hf} 7000 H_xO⁺ Q_{ioule} Altitude [km] 6000 e⁻ 5000 4000 3000 2000 1000

10⁴

- 10⁸ **10**¹⁰ 10^{2} 10^{3} 10⁶ 10 Density [m⁻³] Temperature [K]
 - H_3^+ is dominant. Max: ~10¹⁰ m⁻³
- - 2000 K at ~1200 km
 - T_e drastically increases.

 Q_{Joule} and Q_{coll} are important at low altitude.

10⁻¹⁷

10⁻¹³

Conductivity [S/m]

10⁻⁹

10⁻⁵

 Q_{HF} is contributing to heat process above topside.

 10^{2}

10⁵

 10^{-7} 10^{-4} 10^{-1}

Heating rate [K/s]

- - Maximum around 1000 km

Diurnal variations of N_e , T_e and σ_p (L=5) to kkaido UNIVERSITY

- Ν_e, σ_p
 - Start to increase after 6 LT
 - Max: ~14 LT
 - $\rm N_e$ and $\sigma_{\rm p}$ decreases at high altitudes.

• Max: ~12 LT

Г_е

- $T_{\rm e}$ is kept to high temperature in all LT by $\rm Q_{\rm HF}.$

M-I coupling

Pedersen conductivity

- 1. Modeling of inner magnetosphere with dust-plasma interaction
- 2. Modeling of ionosphere
- 3. Magnetosphere-ionosphere coupling

- 1. Modeling of inner magnetosphere with dust-plasma interaction
- 2. Modeling of ionosphere
- 3. Magnetosphere-ionosphere coupling

- 1. Modeling of inner magnetosphere with dust-plasma interaction
- 2. Modeling of ionosphere
- 3. Magnetosphere-ionosphere coupling

HOKKAIDO UNIVERSITY

Summary

- Ionospheric plasma distribution
 - H_3^+ is dominant at L=5.
 - Peak: 10⁹-10¹⁰ m⁻³
 - $\rm T_e$ is much higher than that of previous studies at high altitude.
 - 2000 K at ~1200 km; 10000 K at ~5000 km
 - Joule heating and collision heating are important at low altitude, and heat flow at high altitude.
- Ionospheric conductivity
 - Pedersen conductivity depends on LT.
 - Day > Dusk > Night > Dawn
 - The magnetospheric ion speed shows the same tendency as the diurnal variation of conductivity.

Conclusion

- Ion speed is slow down from the co-rotation speed due to dust-plasma interaction and magnetosphereionosphere coupling.
- The inner magnetosphere and ionosphere are strongly coupled.