Dust-plasma interaction in Saturn's inner magnetosphere and its magnetosphereionosphere coupling

Shotaro Sakai

Department of Physics and Astronomy, University of Kansas

Collaborators:

S. Watanabe¹, M. W. Morooka², M. K. G. Holmberg^{3,4}, J. –E. Wahlund³, D. A. Gurnett⁵, W. S. Kurth⁵

1: Department of Systems and Informatics, Hokkaido Information University

2: LASP, University of Colorado at Boulder

3: Swedish Institute of Space Physics, Uppsala

4: Department of Astronomy and Physics, Uppsala University

5: Department of Astronomy and Physics, The University of Iowa

Outline

- 1. Modeling of the inner magnetosphere
 - Based on Sakai et al. [2013]
- 2. Modeling of the ionosphere
- 3. Magnetosphere-ionosphere coupling
- 4. Summary

Introduction

Enceladus plume & E ring

- Enceladus plume (~3.95 Rs)
 - Water gas
- E ring
 - 3 8 Rs
 - Water group ion
 - Dust
 - Source: Mainly Enceladus plume
 - Kepler motion

Enceladus & E ring [NASA/JPL]

Co-rotation deviation by dusts?

- Ion observations from the Cassini RPWS/LP in Saturn's magnetosphere
 - Ion has slower speed than the co-rotation [Wahlund et al., 2009; Morooka et al., 2011; Holmberg et al., 2012].

Co-rotation deviation by dusts?

- Ion observations from the Cassini RPWS/LP in Saturn's magnetosphere
 - Ion has slower speed than the co-rotation [Wahlund et al., 2009; Morooka et al., 2011; Holmberg et al., 2012].
 - Do dusts affect the ion velocities in the inner magnetosphere?

Purpose of this thesis

- Investigation of dust-plasma interaction and magnetosphere-ionosphere coupling in the Saturn's inner magnetosphere
- Understanding of generation process for magnetospheric current, electric field and ion-dust collision
- Understanding of relationship of ionospheric conductivity with the magnetospheric ion speed

Plasma in the plume

- Density
 - N_e/N_i < 0.01 at 1.3 R_E ~ 0.7 at 11 R_E

- Ion speed
 - $V_i \sim V_{Kepler}$

Modeling of the inner magnetosphere

Model

- Multi-fluid model (H⁺, H₂O⁺, dust, e⁻)
- 1 dimension (radial direction), 2 R_S to 10 R_S
 - V_r , V_{ϕ} are calculated.

- Initial condition
 - Ion speed: Co-rotation speed; Dust speed: Keplerian speed
- Boundary condition
 - Inner boundary
 - Ion speed: Co-rotation speed; Dust speed: Keplerian speed
 - Open outer boundary

Inner magnetospheric model

- Momentum equations
 - H^+ , H_2O^+ , e^- and dust

$$\rho_{k} \frac{\partial \mathbf{v}_{k}}{\partial t} + \rho_{k} (\mathbf{v}_{k} \cdot \nabla) \mathbf{v}_{k} = n_{k} q_{k} (\mathbf{E} + \mathbf{v}_{k} \times \mathbf{B}) - \nabla p_{k} - \rho_{k} \mathbf{g} + \sum_{l} \rho_{k} \mathbf{v}_{kl} (\mathbf{v}_{k} - \mathbf{v}_{l}) - \sum_{l} S_{k,l} (\mathbf{v}_{k} - \mathbf{v}_{l})$$

Chemical term

 $\begin{array}{c|cccc} S_k & \text{Production rate} \\ n_k & \text{Number density} \\ \mathbf{B} & \text{Magnetic field} \\ q_d & \text{Charge quantity of dust} \\ r_d & \text{Dust radius} \\ \phi & \text{Dust surface potential} \\ \varepsilon_0 & \text{Permittivity} \end{array} \qquad \begin{array}{c|cccc} \mathbf{V}_k & \text{Velocity} \\ \mathbf{E} & \text{Electric field} \\ \mathbf{g} & \text{Gravity} \\ \mathbf{g} & \text{Gravity} \\ \rho_k & \text{Mass density} \\ p & \text{Pressure} \\ e & \text{Charge quantity} \\ \mathbf{V}_{kl} & \text{Collision frequency} \end{array}$

Chemical reactions

- For ion production rate
 - Water group ion and H⁺
 - 9 reactions

Reactions	Rates [m ³ s ⁻¹]	References	
$\mathrm{H^{+}+H_{2}O}\rightarrow\mathrm{H+H_{2}O^{+}}$	2.60×10 ⁻¹⁵	Burger et al. [2007], Lindsay et al. [1997]	
$O^+ + H_2O \rightarrow O + H_2O^+$	2.13×10 ⁻¹⁵	Burger et al. [2007], Dressler et al. [2006]	
$\mathrm{H_2O^{+}+H_2O} \rightarrow \mathrm{H_2O+H_2O^{+}}$	5.54×10 ⁻¹⁶	Burger et al. [2007], Lishawa et al. [1997]	
$H_2O^+ + H_2O \rightarrow OH + H_3O^+$	3.97×10 ⁻¹⁶	Burger et al. [2007], Lishawa et al. [1997]	
$OH^+ + H_2O \rightarrow OH + H_2O^+$	5.54×10 ⁻¹⁶	Burger et al. [2007], Itikawa and Mason [2005]	
$H_2O + e \rightarrow H_2O^+ + 2e$		Burger et al. [2007], Itikawa and Mason [2005]	
$H_2O + e \rightarrow OH^+ + H + 2e$	10 ⁻¹⁸ (total)	Burger et al. [2007], Itikawa and Mason [2005]	
$H_2O + e \rightarrow O^+ + H_2 + 2e$		Burger et al. [2007], Itikawa and Mason [2005]	
$H_2O + e \rightarrow H^+ + OH + 2e$	10 ⁻²²	Burger et al. [2007], Itikawa and Mason [2005]	

Inner magnetospheric model

- Momentum equations
 - H^+ , H_2O^+ , e^- and dust

$$\rho_{k} \frac{\partial \mathbf{v}_{k}}{\partial t} + \rho_{k} (\mathbf{v}_{k} \cdot \nabla) \mathbf{v}_{k} = n_{k} q_{k} (\mathbf{E} + \mathbf{v}_{k} \times \mathbf{B}) - \nabla p_{k} - \rho_{k} \mathbf{g} + \sum_{l} \rho_{k} \mathbf{v}_{kl} (\mathbf{v}_{k} - \mathbf{v}_{l}) - \sum_{l} S_{k,l} (\mathbf{v}_{k} - \mathbf{v}_{l})$$

Electric field Collision term Chemical term

• Dust:
$$q_d = 4\pi\varepsilon_0 r_d \phi$$

• $r_d = 100 \text{ nm}; \phi = -2 \text{ V}$

 S_k Production rate V_k Velocity n_k Number densityEElectric field \mathbf{B} Magnetic field \mathbf{g} Gravity q_d Charge quantity of dust ρ_k Mass density r_d Dust radiuspPressure ϕ Dust surface potentialeCharge quantity \mathcal{E}_0 Permittivity \mathcal{V}_{kl} Collision frequency

Electric field

- \mathbf{j} Current density \mathbf{E}_{cor} Co-rotational Electric field M-I coupling for deriving electric field, E Σ_{i}^{o} lonospheric conductivity $\Sigma_i (\mathbf{E}_{cor} - \mathbf{E}) = \mathbf{j}D$ v_{thk} Thermal velocity $\mathbf{j} = en_i \mathbf{v}_i - en_e \mathbf{v}_e - q_d n_d \mathbf{v}_d$ $\downarrow \downarrow \downarrow \downarrow$ $\mathbf{E} = \mathbf{E}_{cor} - \frac{\mathbf{j}D}{\mathbf{n}}$ Thickness of dust distribution
 - Ionospheric conductivity Σ_i : 1 S ullet

D

Thickness of dust

Density profile & Thickness of dust

2 cases for dust density N_d

- 3 cases for thickness of dust distribution D
 - 1. $D = R_S$ 2. $D = 2 R_S$
 - 3. $D = 3 R_{s}$

Results: Ion velocity

Results: Ion velocity

Comparison with LP observation

Consistent with observations in N_d > ~10⁵ m⁻³ and/or
 D > 1 R_s.

Comparison with LP observation

- V_i is slower when \sum_i is smaller.
- V_i strongly depends on \sum_i .

Summary of IM-modeling

- Co-rotation lag
 - Dust-plasma interaction
 - The dust–plasma interaction is significant when D is large and/or N_d is high.
 - $N_{d max} > \sim 10^5 m^{-3}$
 - *D* > 1 R_s
 - The inner magnetospheric total current along a magnetic field line weakens E.
- Ionosphere and magnetosphere are strongly coupled.
 - V_i depends on \sum_i .

Modeling of the ionosphere & Magnetosphere-ionosphere coupling

Co-rotation deviation by dusts?

- Ionospheric Pedersen conductivity
 - E depends on the conductivity.

$$\rho_k \frac{\partial \mathbf{v}_k}{\partial t} + \rho_k (\mathbf{v}_k \cdot \nabla) \mathbf{v}_k = n_k q_k (\mathbf{E} + \mathbf{v}_k \times \mathbf{B}) - \nabla p_k - \rho_k \mathbf{g} + \sum_l \rho_k \mathbf{v}_{kl} (\mathbf{v}_k - \mathbf{v}_l) - \sum_l S_{k,l} (\mathbf{v}_k - \mathbf{v}_l)$$

Electric field

$$\Sigma_i \mathbf{E}_{cor} - \mathbf{E} = \mathbf{j}D$$

Pedersen conductivity

$$\sigma_{p} = \sum_{i} \frac{v_{i}}{v_{in}^{2} + \omega_{ci}^{2}} \frac{n_{i}e^{2}}{m_{i}} + \frac{v_{e}}{v_{en}^{2} + \omega_{ce}^{2}} \frac{n_{e}e^{2}}{m_{e}} \qquad \Sigma_{i} = \int_{z_{1}}^{z_{2}} \sigma_{p} ds$$

- However, it is one of the open questions.
 - ~0.1-100 S [Connerney et al., 1983; Cheng and Waite, 1988]
 - ~0.02 S [Saur et al., 2004]
 - 1--10 S [Cowley et al., 2004; Moore et al., 2010]
- We find the ionospheric N_i for deriving \sum_i .

Saturn's ionosphere

- N_e observation from Cassini occultations
 - N_e (average between dusk and dawn)
 - Peak density: ~10¹⁰ m⁻³; Peak alt.: ~1200 km

Saturn's ionosphere

Purpose

- Construction of an ionospheric model including the inner magnetosphere.
- Estimation of the ionospheric Pedersen conductivity from plasma density in the Saturn's ionosphere
- Investigation of the influence of magnetosphere to ionosphere

3 dimensional ionospheric model

• Primitive equations

• Ion
Density:
$$\frac{\partial \rho_i}{\partial t} + \frac{1}{A} \frac{\partial (A\rho_i v_{i||})}{\partial s} = S_i - L_i$$

Momentum: $\rho_i \frac{\partial v_{i||}}{\partial t} + \rho_i v_{i||} \frac{\partial v_{i||}}{\partial s} = n_i e E_{||} - \frac{\partial p_i}{\partial s} - \rho_i g - \sum_k \rho_i v_{ik} (v_{i||} - v_{k||})$
Temperature: $T_i = T_e$
• Electron
Density: $n_e = \sum_i n_i$
Momentum: $E_{||} = -\frac{1}{en_e} \frac{\partial p_e}{\partial s}$
Temperature: $\frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{A} \frac{\partial}{\partial s} (A\kappa_e \frac{\partial T_e}{\partial s}) = Q_{EUV} + Q_{coll} + Q_{joule} + Q_{ph,ionos}$

 $\mathcal{V}_{||}$ Field-aligned Velocity $E_{||}$ Electric field

Magnetic flux cross-section

Model

- Dipole coordinate system
 - Along the magnetic field line \rightarrow 1 dimension
 - + Increasing the number of magnetic field line \rightarrow 2 dimensions
 - + Time evolution \rightarrow 3 dimensions

3 dimensional ionospheric model

- Primitive equations
- A Magnetic flux cross-section Ion g Gravity and CF Density: $\frac{\partial \rho_i}{\partial t} + \frac{1}{A} \frac{\partial (A \rho_i v_{i,\parallel})}{\partial s} = S_i - L_i$ T Temperature Q Heating rate κ Diffusion coefficient Momentum: $\rho_i \frac{\partial v_{i,\parallel}}{\partial t} + \rho_i v_{i,\parallel} \frac{\partial v_{i,\parallel}}{\partial s} = n_i e E_{\parallel} - \frac{\partial p_i}{\partial s} - \rho_i g - \sum_i \rho_i v_{i,\parallel} \left(v_{i,\parallel} - v_{k,\parallel} \right)$ Temperature: $T_i = T_e$ N_{i} (H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺), V_i (H⁺, H₂⁺, H₃⁺, He⁺, [H₂O⁺, H₃O⁺ = 0]), Electron T_e, T_i Density: $n_e = \sum_i n_i$ Momentum: $E_{\parallel} = -\frac{1}{en_e} \frac{\partial p_e}{\partial s}$ Temperature: $\frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{A} \frac{\partial}{\partial s} \left(A \kappa_e \frac{\partial T_e}{\partial s} \right) = Q_{EUV} + Q_{coll} + Q_{joule} + Q_{ph,ionos}$

 $\mathcal{V}_{||}$ Field-aligned Velocity $E_{||}$ Electric field

Source & Loss

- Chemical reactions of 6 ion components
 - H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺
 - 29 reactions

Chemical reaction	Rate coefficients	References		
$\mathbf{H} + h\nu \to \mathbf{H}^+ + e^-$		Moses and Bass [2000] $H^+ + H_2O \rightarrow H_2O^+ + H_2O$	8.2×10^{-15}	Moses and Bass [2000];
$\mathrm{H}_2 + h\nu \to \mathrm{H}^+ + \mathrm{H} + e^-$		Moses and Bass [2000]		Anicich [1993]
$H_2 + h\nu \rightarrow H_2^+ + e^-$		Moses and Bass [2000] $H_2^+ + H \rightarrow H^+ + H_2$	6.4×10^{-16}	Moses and Bass [2000];
$\mathrm{He} + h\nu \to \mathrm{He}^+ + e^-$		Moses and Bass [2000]		Anicich [1993]
$H_2O + h\nu \rightarrow H^+ + OH + e^-$		Moses and Bass $[2000]$ $H_2^+ + H_2 \rightarrow H_3^+ + H_3$	2.0×10^{-15}	Moses and Bass [2000];
$H_2O + h\nu \rightarrow H_2O^+ + e^-$		Moses and Bass [2000]		Kim and Fox [1994]
$\mathrm{H^+} + e^- \to \mathrm{H}$	$1.9\times 10^{-16}T_e^{-0.7}$	Moses and Bass [2000]; $H_2^+ + H_2O \rightarrow H_2O^+ + H_2$	3.9×10^{-15}	Moses and Bass [2000]; Anicich [1993]
	10 0.4	Kim and Fox [1994] $H^+ + H_0 \Omega \rightarrow H_0 \Omega^+ + H_0$	3.4×10^{-15}	Moses and Base [2000]
$\mathrm{H}_2^+ + e^- \to \mathrm{H} + \mathrm{H}$	$2.3 \times 10^{-12} T_e^{-0.4}$	Moses and Bass [2000]; $\Pi_2 + \Pi_2 O \to \Pi_3 O \to \Pi_1$	0.4×10	Anicich [1993]
		Kim and Fox [1994] $H_{+}^{+} + H_{2}\Omega \rightarrow H_{2}\Omega^{+} + H_{2}$	5.3×10^{-15}	Moses and Bass [2000].
$\mathrm{H}_3^+ + e^- \to \mathrm{H}_2 + \mathrm{H}$	$7.6 \times 10^{-13} T_e^{-0.5}$	Moses and Bass [2000]; $\Pi_3 + \Pi_2 \odot + \Pi_3 \odot + \Pi_2$	0.0 × 10	Anicich [1993]
		Kim and Fox [1994] $He^+ + H_2 \rightarrow H^+ + H + He$	8.8×10^{-20}	Matcheva et al. [2001]:
$\mathrm{H}_3^+ + e^- \rightarrow 3\mathrm{H}$	$9.7 \times 10^{-13} T_e^{-0.5}$	Moses and Bass [2000];	0.0	Perry [1999]
		Kim and Fox [1994] $\operatorname{He^{+}} + \operatorname{H}_{2} \to \operatorname{H}_{2}^{+} + \operatorname{He}$	9.4×10^{-21}	Moses and Bass [2000];
$\mathrm{He^{+}} + e^{-} \to \mathrm{He}$	$1.9 \times 10^{-16} T_e^{-0.7}$	Moses and Bass [2000];		Kim and Fox [1994]
		Kim and Fox [1994] $He^+ + H_2O \rightarrow H^+ + OH + He$	1.9×10^{-16}	Moses and Bass [2000];
$H_2O^+ + e^- \rightarrow O + H_2$	$3.5 \times 10^{-12} T_e^{-0.5}$	Moses and Bass [2000];		Anicich [1993]
	C C	Miller et al. [1997] $He^+ + H_2O \rightarrow H_2O^+ + He$	5.5×10^{-17}	Moses and Bass [2000];
$H_2O^+ + e^- \rightarrow OH + H$	$2.8 \times 10^{-12} T_{\circ}^{-0.5}$	Moses and Bass [2000];		Anicich [1993]
2	e	Miller et al. [1997] $H_2O^+ + H_2 \rightarrow H_3O^+ + H_3$	7.6×10^{-16}	Moses and Bass [2000];
$H_3O^+ + e^- \rightarrow H_2O + H$	$6.1 \times 10^{-12} T_{\circ}^{-0.5}$	Moses and Bass [2000]:		Anicich [1993]
	-е	Miller et al. [1997] $H_2O^+ + H_2O \rightarrow H_3O^+ + OH$	1.9×10^{-15}	Moses and Bass $[2000];$
$H_2O^+ + e^- \rightarrow OH + 2H$	$1.1 \times 10^{-11} T^{-0.5}$	Moses and Bass [2000]:		Anicich [1993]
	e	$Miller \ et \ al. \ [1997]$		
$H^+ + H_2 \rightarrow H_2^+ + H_2$	see text	Moses and Bass [2000]		
$H^+ + H_2 + M \rightarrow H^+_2 + M$	3.2×10^{-41}	Moses and Bass [2000]		
	0.2 / 10	Kim and For [1994]		

3 dimensional ionospheric model

- Primitive equations
- A Magnetic flux cross-section • Ion g Gravity and CF $\frac{\partial \rho_i}{\partial t} + \frac{1}{A} \frac{\partial (A \rho_i v_{i,\parallel})}{\partial s} = S_i - L_i$ T Temperature Density: ${\it Q}~~{\rm Heating}~{\rm rate}$ κ Diffusion coefficient Momentum: $\rho_i \frac{\partial v_{i,\parallel}}{\partial t} + \rho_i v_{i,\parallel} \frac{\partial v_{i,\parallel}}{\partial s} = n_i e E_{\parallel} - \frac{\partial p_i}{\partial s} - \rho_i g - \sum_i \rho_i v_{i,\parallel} \left(v_{i,\parallel} - v_{k,\parallel} \right)$ Temperature: $T_i = T_e$ N_{i} (H⁺, H₂⁺, H₃⁺, He⁺, H₂O⁺ and H₃O⁺), V_{i} (H⁺, H₂⁺, H₃⁺, He⁺, [H₂O⁺, H₃O⁺ = 0]), Electron T_e, T_i Density: $n_e = \sum_i n_i$ Momentum: $E_{\parallel} = -\frac{1}{en_e} \frac{\partial p_e}{\partial s}$ EUV, collision, Joule heating, photoelectron Temperature: $\frac{\partial T_e}{\partial t} = \frac{2}{3} \frac{1}{A} \frac{\partial}{\partial s} \left(A \kappa_e \frac{\partial T_e}{\partial s} \right) = Q_{EUV} + Q_{coll} + Q_{joule} + Q_{ph,ionos}$ Heat flow, Q_{HF} Heating rate

 V_{\parallel} Field-aligned Velocity

 E_{\parallel}^{\prime} Electric field

Background neutral atmosphere

N_i, V_i, σ_p (L=5, LT=12)

- - Maximum around 1000 km

N_{i}, T_{e}, Q_{e} (L=5, LT=12)

- ٦_e
 - 2000 K at ~1200 km
 - T_e drastically increases.
- Q_{Joule} and Q_{coll} are important at low altitude.
- Q_{HF} is contributing to heat process above topside.

Diurnal variations of N $_{\rm e}, T_{\rm e}$ and $\sigma_{\rm p}$ (L=5)

- Start to increase after 6 LT
- Max: ~14 LT
- ${\rm N_e}$ and $\sigma_{\rm p}$ decreases at high altitudes.
- Max: ~12 LT
- T_e is kept to high temperature in all LT by Q_{HF}.

Pedersen conductivity

$$\sigma_{p} = \sum_{i} \frac{v_{i}}{v_{in}^{2} + \omega_{ci}^{2}} \frac{n_{i}e^{2}}{m_{i}} + \frac{v_{e}}{v_{en}^{2} + \omega_{ce}^{2}} \frac{n_{e}e^{2}}{m_{e}}$$

$$\Sigma_i = \int_{z_1}^{z_2} \sigma_p ds$$

- LT dependence of \sum_i
- ∑_i decreases with increase of Rs

- 1. Modeling of inner magnetosphere with dust-plasma interaction
- 2. Modeling of ionosphere
- 3. Magnetosphere-ionosphere coupling

- 1. Modeling of inner magnetosphere with dust-plasma interaction
- 2. Modeling of ionosphere
- 3. Magnetosphere-ionosphere coupling

- 1. Modeling of inner magnetosphere with dust-plasma interaction
- 2. Modeling of ionosphere
- 3. Magnetosphere-ionosphere coupling

• V_i depends on LT.

Summary in ionospheric model

- Ionospheric plasma distribution
 - H_3^+ is dominant at L=5.
 - Peak: 10⁹-10¹⁰ m⁻³
 - $\rm T_{\rm e}$ is much higher than that of previous studies at high altitude.
 - 2000 K at ~1200 km; 10000 K at ~5000 km
 - Joule heating and collision heating are important at low altitude, and heat flow at high altitude.
- Ionospheric conductivity
 - Pedersen conductivity depends on LT.
 - Day -> Dusk -> Night -> Dawn
 - The magnetospheric ion speed shows the same tendency as the diurnal variation of conductivity.

Conclusion of this thesis

From Observations

- Inner magnetoshpheric ion speed is slow down from the co-rotation speed.
- Ion speed is Keplerian in the Enceladus plume.

From Modelings

 Ion speed is slow down from the co-rotation speed due to dust-plasma interaction and magnetosphereionosphere coupling.

Future works

- Improvement of the model:
 - Dust size distribution
 - Charged distribution of dust

Reference Works

- Sakai, S., S. Watanabe, M. W. Morooka, M. K. G. Holmberg, J. –E. Wahlund, D. A. Gurnett, and W. S. Kurth (2013), Dustplasma interaction through magnetosphere-ionosphere coupling in Saturn's plasma disk, *Planet. Space Sci.*, 75, 11-16, doi:10.1016/j.pss.2012.11.003.
- **Sakai, S.**, and S. Watanabe (2014), High-speed flow and high temperature plasma in Saturn's mid-latitude ionosphere, in preparation.
- Sakai, S., M. W. Morooka, J. E Wahlund, and S. Watanabe (2014), Dusty plasma distribution of Enceladus plume observed by Cassini RPWS/LP, in preparation.