

Astro/Space Seminar, 5 April 2016

Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data

Shotaro Sakai

Department of Physics and Astronomy, University of Kansas

Collaborators:

L. Andersson², T. E. Cravens¹, D. L. Mitchell³, C. Mazelle⁴, A. Rahmati^{3,1}, C. M. Fowler², S. W. Bougher⁵, E. M. B. Thiemann², F. G. Eparvier², J. M. Fontenla⁶, P. R. Mahaffy⁷, J. E. P. Connerney⁷, and B. M. Jakosky²

1: University of Kansas, 2: LASP, University of Colorado Boulder, 3: SSL, University of California, 4: IRAP, 5: University of Michigan, 6: NorthWest Research Associates, 7: NASA GSFC

Introduction

- Martian atmospheric escape
 - Thermal escape and non thermal escape
 - Focus on the photochemical escape

[Courtesy: NASA]

Introduction

- Photochemical escape
 - Key parameter: path of oxygen atom
 - O₂⁺ dissociative recombination [e.g., Nagy and Cravens, 1988; Fox and Hać, 2009]

 $O_2^+ + e^- \rightarrow O + O$ (4 energy channels)

 $P = 2\alpha n_{O2+} n_{e-} \text{ [cm}^{-3} \text{ s}^{-1}\text{] (O primary production rate)}$ $\alpha = 2.4 \times 10^{-7} (300/T_e)^{0.70} \text{ [cm}^3 \text{ s}^{-1}\text{] (dissociative)}$ recombination rate coefficient)

• Thermal electron temperature affects the dissociative recombination rate in the ionosphere.

Introduction

- Electron temperature in the ionosphere
 - Determined due to the balance between heating and cooling.
 - Heating: Energetic photoelectron (collision with suprathermal electron)
 - \rightarrow It is also modeled in this study.
 - Cooling: Collision (e-neutral and e-ion); vibrational, rotational and electronic excitational cooling by neutrals; chemical reaction of O⁺ and CO₂⁺

Electron temperature is really important in the ionosphere!!

Motivation

- Investigate the electron temperature and also photoelectron distributions in the Martian ionosphere.
 - Dependences on:
 - Magnetic field topology
 - Solar irradiance model
- Model comparison with MAVEN SWEA and LPW
- O₂⁺ dissociative recombination: Implication for photochemical escape

MAVEN

- Launch: Nov. 18, 2013
- MOI: Sep. 21, 2014
- Orbit
 - Period: 4.5 hrs
 - Periapsis: 150 km (125 km at "deep-dip" campaign)
 - Apoapsis: ~6000 km

- Mars Atmosphere and Volatile Evolution Mission (MAVEN)
 - Goal
 - Determining of the role that loss of atmospheric gas to space played in changing the Martian climate through time.
 - Where did the atmosphere and water go from Mars?
 - How much of the Martian atmosphere has been lost over time?
 - Measuring the current rate of escape to space.
 - Gathering enough information about the relevant processes to allow extrapolation backward in time.

MAVEN

- Instruments
 - Solar Wind Electron Analyzer (SWEA)
 - Solar Wind Ion Analyzer (SWIA)
 - Suprathermal and Thermal Ion Composition (STATIC)
 - Solar Energetic Particle (SEP)
 - Langmuir Probe and Waves (LPW)
 - Extreme Ultraviolet Monitor (EUVM)
 - Magnetometer (MAG)
 - Imaging Ultraviolet Spectrograph (IUVS)
 - Neutral Gas and Ion Mass Spectrometer (NGIMS)

In-situ observations before MAVEN

- Only two Viking landers observed the electron temperature in the ionosphere [Hanson and Mantas, 1988].
- Three electron populations
 - T_{e1} ≈ 3000 K
 - Thermal electrons
 - T_{e2} ≈ 30000 K
 - Photoelectrons
 - T_{e3}≈200000 K
 - Electrons of solar wind origin

Electron temperatures measured by Viking [Hanson and Mantas, 1988] TEMPERATURE (KELVIN)

Models before MAVEN

 Several models were successful in reproducing the Te of Viking observations [*Chen+*, 1978; *Johnson*, 1978; *Rohrbaugh+*, 1979; *Singhal and Whitten*, 1988; *Choi+*, 1998; *Matta+*, 2014].

350

Recent work [Matta+, 2014]

- Model required topside heat fluxes of
 - e⁻ Flux: 1.5 × 10¹⁰ [eV cm⁻² s⁻¹] 100
 - Ion Flux: 2 × 10⁷ [eV cm⁻² s⁻¹]

to match the Viking observations.

MAVEN observations

Selection of orbits

- Orbits 819 (03/03/15), 873 (03/13/15) and 337 (12/01/14)
- Criteria
 - Magnetic dip angle ≈ 0° (almost solar wind condition)
 - Avoided the crustal magnetic field from the surface.
 - Mars does not have intrinsic magnetic fields such as the Earth's. MARS CRUSTAL MAGNETISM ABr MARS GLOBAL SURVEYOR MAG/ER
 - Insignificant solar flare
 - Dayside

Crustal magnetic field mapping [Connerney+, 2005] East Longitude

CU/LASP • GSFC • UCB/SSL • LM • JPL

Model

Solar irradiance model

10⁻⁶

0

20

- Input solar irradiances
 - Test 2 cases
 - 1. HESSR
 - Based on the Solar Irradiance Physical Modeling system [e.g., *Fontenla*+, 2011]
 - 2. FISM-M

40 60 80 100 120 Wavelength [nm] Example of solar irradiance [Sakai+, submitted]

Photoelectron heating rate

- Two-stream photoelectron transport code [e.g., Sakai+, 2015]
 - Calculates up-flow and down-flow energy flux of photoelectrons (heating rate in ionosphere)

 $\langle \mu \rangle \frac{d\Phi^{\pm}}{ds} = -\sum_{k} n_{k} \left(s \right) \left(\sigma_{a}^{k} + p_{s}^{k} \sigma_{s}^{k} \right) \Phi^{\pm} \left(\varepsilon, s \right) + \sum_{k} n_{k} \left(s \right) p_{e}^{k} \sigma_{e}^{k} \Phi^{\mp} \left(\varepsilon, s \right) + \frac{q \left(\varepsilon, s \right)}{2} + q^{\pm} \left(\varepsilon, s \right)$

- Background atmosphere
 - Fitted to NGIMS from MTGCM
 - NGIMS (Neutral Gas and Ion Mass Spectrometer onboard MAVEN)
 - MTGCM (Mars Thermospheric 200 General Circulation Model [e.g., 150 Bougher, 2012])

Electron temperature

• Energy equation

$$\frac{3}{2}n_sk_B\frac{\partial T_s}{\partial t} + \frac{3}{2}n_sk_B\mathbf{u}_s\cdot\nabla T_s + \frac{3}{2}n_sk_BT_s\nabla\cdot\mathbf{u}_s + \frac{3}{2}\left(T_s - T_n\right)S_s + \nabla\cdot\left(-K_s\nabla T_s\right)$$

$$= \sum_t \frac{n_sm_s\nu_{st}}{m_s + m_t} \left[3k_B\left(T_t - T_s\right) + m_t\left(\mathbf{u}_s - \mathbf{u}_t\right)^2\right] + Q_s - L_s$$

- Background atmosphere
 - Neutral temperature from MTGCM

Neutral temperature [Sakai+, submitted]

Magnetic topology

- It is complex because solar wind-induced magnetic fields and local crustal magnetic fields are both present [*Acuña*+, 1998].
- Categorized as four general types
 - 1. Draped/induced fields that are open to the solar wind and/or magnetotail at both ends (solar wind origin)
 - 2. Draped, largely horizontal fields, open at one end to the solar wind and/or magnetotail and attached to Mars at the other end (solar wind origin)
 - 3. Crustal fields that are closed at both ends and are attached to the planet (crustal field origin)
 - 4. Crustal fields closed at one end and open to the solar wind or tail at the other end and with significant radial components (crustal field origin)

Magnetic topology

- It is complex because solar wind-induced magnetic fields and local crustal magnetic fields are both present [*Acuña*+, 1998].
- Categorized as four general types
 - 1. Draped/induced fields that are open to the solar wind and/or magnetotail at both ends (solar wind origin)
 - 2. Draped, largely horizontal fields, open at one end to the solar wind and/or magnetotail and attached to Mars at the other end (solar wind origin)
 - 3. Crustal fields that are closed at both ends and are attached to the planet (crustal field origin)
 - 4. Crustal fields closed at one end and open to the solar wind or tail at the other end and with significant radial components (crustal field origin)

Coordinate

1. Draped/induced fields that are open to the solar wind and/or magnetotail at both ends (nested draped field lines)

[Sakai+, submitted]

Results: Comparison with SWEA

- Photoelectron fluxes for Orbits 819 and 873
 - Below 250 km: Model agree with SWEA within a factor of 2.5.
 - 200 km in low E: N_e/N_n is important [Sakai+, 2015].
 - Above 300 km: Tail electron and solar wind affect the fluxes

Results: Comparison with SWEA

- Flux with HESSR (red) > Flux with FISM-M (magenta)
 - HESSR irradiance is higher than FISM-M.
- Heating rate
 - Peak heating rate around altitude of the maximum density

Results: Comparison with LPW

- Electron temperatures for Orbits 819 and 873
 - Models agree with LPW observations above 250 km.
 - Te with HESSR is higher than that of FISM-M.
 - Successful on obtaining high electron temperatures without invoking topside heat fluxes.
 MAVEN/LPW 2015/03/03 Orbit 819
 MAVEN/LPW 2015/03/13 Orbit 873

Results: Comparison with SWEA

Nested draped field lines

 Models does not agree with SWEA observations above 250 km.

CU/LASP • GSFC • UCB/SSL • LM • JPL

Model and SWEA photoelectron fluxes for Orbit 337 [Sakai+, submitted]

Coordinate

Draped, largely horizontal fields, open at one end to the solar wind and/or magnetotail and attached to Mars at the other end

[Sakai+, submitted]

Results: Comparison with SWEA

Photoelectron fluxes for Orbit 337

Single field line

- Models agree with SWEA below 70 eV
 - Transport from low altitude is important.
- Tail electrons or solar wind are related to fluxes above 70 eV.

CU/LASP • GSFC • UCB/SSL • LM • JPL

Model and SWEA photoelectron fluxes for Orbit 337 [Sakai+, submitted]

Results: Comparison with LPW

Electron temperature for Orbit 337

Single field line (black)

- Model is lower than LPW.
 - Tail electron could be a heat source of thermal electrons

Dissociative recombination

- O₂⁺ dissociative recombination for Orbits 819 and 873
- DR rate coefficient
 - α = 2 × 10⁻⁷ [cm³ s⁻¹] at
 150 km
 - $\alpha = 1.3 \times 10^{-7} \text{ [cm}^3 \text{ s}^{-1}\text{]}$ near the exobase
 - Differences between model and observations are about 30 – 100%.
 - It will affect ionospheric density calculations and hot oxygen atom production rate.

O₂⁺ DR rate coefficients [Sakai+, submitted]

Summary

- Investigated the photoelectron fluxes and thermal electron temperatures in the Martian upper atmosphere.
- Successful on producing high electron temperatures at high altitudes without invoking heat fluxes from the top.
- The topology and position of magnetic field lines are important factors in determining the profile of T_e and photoelectron distribution.
 - Orbits 819 and 873: Draped nested fields
 - Orbit 337: Single field line; Transport from low altitude
- O₂⁺ DR rate coefficients differences between model and LPW are about 30 100 %.
 - This difference will affect ionospheric density calculations and hot oxygen atom production rates.

References

MARINE Attmosphere and Volatile Evolution Mission CU/LASP • GSFC • UCB/SSL • LM • JPL

- Acuña, m. H., et al. (1998), Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 279, 1676-1680.
- Bougher, S. W. (2012), Coupled MGCM-MTGCM Mars thermosphere simulations and resulting data products in support of the MAVEN mission, *JPL/CDP report*, pp. 1-9, 6 August.
- Chen, R. H., T. E. Cravens, and A. F. Nagy (1978), The Martian ionosphere in light of the Viking observations, J. Geophys. Res., 83, 3871-3876.
- Choi, Y. W., J. Kim, K. W. Min, A. F. Nagy, and K. I. Oyama (1998), Effect of the magnetic field on the energetics of Mars ionosphere, Geophys. Res. Lett., 25, 2753-2756.
- Connerney, J. E. P., M. H. Acuña, N. F. Ness, G. Kletetschka, D. L. Mitchell, R. P. Lin, and H. Reme (2005), Tectonic implications of Mars crustal magnetism, Proc. Nati. Acad. Sci. USA, 102, 42, 14970-14975.
- Fontenla, J. M., J. Harder, W. Livingston, M. Snow, and T. Woods (2011), High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res., 116, D20108.
- Fox, J. L., and A. B. Hac (2009), Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method, Icarus, 204, 527-544.
- Hanson, W. B., and G. P. Mantas (1988), Viking electron temperature measurements: Evidence of a magnetic field in the martian ionosphere, J. Geophys. Res., 93, 7538-7544.
- Johnson, R. E. (1978), Comment on ion and electron temperatures in the martian upper atmosphere, Geophys. Res. Lett., 5, 989-992.
- Nagy, A. F., and T. E. Cravens (1988), Photoelectron fluxes in the ionosphere, J. Geophys. Res., 75, 6260-6270.
- Matta, M., M. Galand, L. Moore, M. Mendillo, and P. Withers (2014), Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations, *Icarus*, 227, 78-88.

References

- Rohrbaugh, R. P., J. S. Nisbet, E. Bleuler, and J. R. Herman (1979), The effect of energetically produced O₂⁺ on the ion temperatures of the martian thermosphere, J. Geophys. Res., 84, 3327-3338.
- Sakai, S., A. Rahmati, D. L. Mitchell, T. E. Cravens, S. W. Bougher, C. Mazelle, W. K. Peterson, F. G. Epavier, J. M. Fontenla, and B. M. Jakosky (2015), Model insights into energetic photoelectrons measured at Mars by MAVEN, *Geophys. Res. Lett.*, 42, 8894-8900.
- Sakai, S., L. Andersson, T. E. Cravens, D. L. Mitchell, C. Mazelle, A. Rahmati, C. M. Fowler, S. W. Bougher, F. G. Eparvier, E. M. B. Thiemann, J. M. Fontenla, P. R. Mahaffy, J. E. P. Connerney, and B. M. Jakosky (2016), Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data, *J. Geophys. Res. Space Physics*, submitted.
- Singhal, R. P., and R. C. Whitten (1988), Thermal structure of the ionosphere of Mars: Simulations with oneand two-dimensional models, Icarus, 74, 357-364.