

ior

Ion energy distributions and densities in the plume of Enceladus

Shotaro Sakai¹

Collaborators

Thomas E. Cravens¹, Nojan Omidi², Mark E. Perry³, J. Hunter Waite Jr.⁴

- 1: Department of Physics and Astronomy, University of Kansas
- 2: Solana Scientific Inc.
- 3: The Johns Hopkins University Applied Physics Lab
- 4: Southwest Research Institute

Outline

- Enceladus, Saturn's inner magnetosphere and E ring
- Enceladus plume observations
 - Cassini INMS and CAPS
- Model description
 - Equation, chemical reactions, model settings...
 - Some cases of electric and magnetic field
- Results & Discussions
 - Model comparisons with CAPS, INMS and LP
- Summary

Enceladus

- Enceladus (~3.95 R_S)
 - Equatorial radius: 247 km
 - Orbital radius: 238.02 x 10³ km
 - ~3.95 R_s
 - Mass: 7.0 x 10¹⁹ kg
 - Atmosphere: (Thin) Water vapor

Enceladus [NASA]

Enceladus plume & E ring

- Enceladus plume (~ $3.95 R_S$)
 - Water gas
- E ring
 - 3 8 R_S (overlapping with inner magnetosphere)
 - Water group ion
 - Dust
 - Source: Mainly Enceladus plume

Enceladus & E ring [NASA/JPL]

- Outline
 - Launch date: Oct. 15,1997
 - Development & Operation: NASA, ESA

Cassini

- Orbit Insertion: Jul. 1, 2004
- Now Operating!
 - EOM: Sep. 15(?), 2017
- Instruments (3 major)
 - Optical remote sensing
 - Electric-magnetic field, particles and Cassini [Gurnett et al., 2004] wave observation
 - Microwave remote sensing

INMS & CAPS

- Ion and Neutral Spectrometer (INMS)
 - Can measure the mass number of ions and neutrals (1 < amu < 99)
 - Two sources
 - Closed source: ex. N_2 , CH_4
 - Species not to react with the antechamber surface
 - Open source: Radicals and ions
- Cassini Plasma Spectrometer (CAPS)
 - Electron spectrometer (ELS)
 - Electron energy distribution
 - Ion mass spectrometer (IMS)
 - Ion energy (and mass) distribution
 - Ion beam spectrometer (IBS)

INMS [Waite et al., 2004]

Enceladus flybys

- Enceladus plume encounter,
 - Cassini had 22 Enceladus orbits.
 - E03 and E07 orbits are the^o focus of this presentation. -2

THE UNIVERSITY OF KANSAS

Enceladus flybys

- Enceladus plume encounter
 - Cassini had 22 Enceladus⁴ orbits.
 - E03 and E07 orbits are the focus of this presentation.

Cassini trajectories 9 **E03** 8 2 7 6 Z [R_e] **E07** -2 5 -4 4 -6 3 -8 2 -10 _0 X [R_e] -2 2 4 -4 Co-rotation direction [Sakai et al., 2016]

KANSAS

Ion species in the plume

INMS observations in the plume for E03 orbit

• H_3O^+ is dominant. $H_2O^+ + H_2O -> H_3O^+ + OH$

INMS (H_2O^+ & H_3O^+) for E03 & E07 KUKANSAS

- INMS counts
 - H₃O⁺ is dominant.
 - Max.: ~10

CAPS/IMS for E03 & E07

- CAPS energy spectrum
 - Low energy plasma
 - ~19:07 for E03; ~07:42 for E07

z [R_

Motivation & Method

- Investigation of the ion environment in Enceladus plume
 - Where do low energy ions come from?
 - What are the physical processes need to explain INMS (and CAPS) data?
 - Electric field or Magnetic field?

- Method
 - Test-particle simulation of water group ions

Test particle simulation

Equation of motion

$$m_i \frac{d\mathbf{v}_i}{dt} = q(\mathbf{E} + \mathbf{v}_i \times \mathbf{B})$$

Enceladus coordinate system

- Where do ions in the plume come from?
 - 1. Charge exchange between background ions and neutral plume
 - Charge eXchange front model (CX model)
 - 2. Photoionization in the plume
 - Photoionization Plume model (PP model)

• Where do ions in the plume come from?

Models

- 1. Charge exchange between background ions and neutral plume
 - Charge eXchange front model (CX model)
- 2. Photoionization in the plume
 - Photoionization Plume model (PP model)

Test particle simulation

- Charge eXchange Front Model (CX)
 - Interaction of the background ion with the plume gas
 - Particle generator: H_2O^+ at X = -5 R_E
 - Initial V based on the bulk speed: $V_z = 0$
 - Disk input (particle number of 5 millions)
 - Ion velocity is smaller than the co-rotation velocity in the inner magnetosphere [Holmberg et al., 2012, Sakai et al., 2013].

Simulation settings

Area of simulation

• -5 $R_E < X < 5 R_E$; -5 $R_E < Y < 5 R_E$; -10 $R_E < Z < 5 R_E$

• Move to next particle when a particle is out of this area.

• Plume neutral density (H₂O gas)

• Based on Saur et al. [2008]

$$n_{plume} = n_0 \left(\frac{R_E}{r}\right)^2 \exp\left[-\left(\frac{\Theta}{H_{\Theta}}\right)^2 - \frac{r - R_E}{H_d}\right]$$

• $n_0 = 2.5 \times 10^9 \text{ cm}^{-3}$, $H_{\odot} = 12 \text{ deg.}$, $H_d = 948 \text{ km}$ [*Fleshman et al.*, 2010] **Reactions with the plume**

- H₂O⁺ & H₃O⁺
- Charge exchange & Chemical reactions

[Sakai et al., 2016]

 10^{2}

Chemical reactions

- H₂O⁺ -> H₃O⁺ [*Lishawa et al.*, 1990]
 - Proton transfer channel

Atom pickup channel

σ_{pt} > σ_{api}, so the proton transfer channel is adopted.
One order of magnitude higher

Chemical reactions

- H₂O⁺ -> H₃O⁺ [*Lishawa et al.*, 1990]
 - Proton transfer channel $H_2O^+ H_2O^+$
 - Atom pickup channel

σ_{pt} > σ_{api}, so the proton transfer channel is adopted.
 One order of magnitude higher

BE fields for E03 & E07

- Magnetic and electric fields used in this simulation
- Based on Omidi et al.
 [2012]
- 3 cases for E in the plume
 - 1) Omidi's field
 - No changes
 - 2) Reduced E_y
 - 25% of Omidi's E_y
 - 3) Reduced E_y & E_z
 - 25% of Omidi's E_y[∞]
 - E_z = -10 μV/m

Before showing results

- What are outputs of this simulation?
 - The number of particles into each bin

Convert this number to flux, total count for INMS comparison and density every bin.

Results

Results: Flux for E03 & E07

- Energy vs. Flux distribution (Cassini reference frame)
- E₇ is important for obtaining the low energy ion.
- lons are moving to $-\frac{1}{2}$ Z direction.
- E_z can be generated ^{b 3} by dust [e.g., Farrell et al., 2010] or pressure gradient of B 2 plasma in Z direction.
- Note that the units of models are different from CAPS.

10

9

8

10

9

8

10

9

8

4

3

2

Ion counts: Comparison with INMS KUKANSAS

Calculated ion counts: INMS: ≈10, Model: 100-1000

- Where do ions in the plume come from?
 - 1. Charge exchange between background ions and neutral plume
 - Charge eXchange front model (CX model)
 - 2. Photoionization in the plume
 - Photoionization Plume model (PP model)

- Where do ions in the plume come from?
 - 1. Charge exchange between background ions and neutral plume
 - Charge eXchange front model (CX model)
 - 2. Photoionization in the plume
 - Photoionization Plume model (PP model)

Photoionization

- Photoionization Plume Model (PP)
 - See ions generated by photoionization
 - Particle generator: H_2O^+ in the plume
 - Initial V = 0
 - Ion starts the gyromotion.
- Photoionization rate

• I = 5.1 × 10⁻⁹ s⁻¹ [e.g., *Moses and Bass*, 2000]

Ion counts: Comparison with INMS KUKANSAS

Calculated ion counts: INMS: ≈10, Model: 100-1000

Model: Flux vs. Counts

CAPS required the low energy ions in the plume!

	lon energy (CAPS: E < 10 eV)	Counts (INMS: ~10)
Omidi's field	E > 10 eV	10-100
Reduced E	1 eV < E < 10 eV	100-1000

Why are INMS counts lower than model counts in reduced E?

INMS vs. Model

- Why are INMS counts lower than model?
 - Pointing direction of INMS is important.
 - A slightly shift of the INMS phase-space volume would reduce the model counts.

[Sakai et al., 2016]

Ion density in the plume

- Ion density: 400-800 cm⁻³
 - Langmuir Probe: ~10⁴ cm⁻³ [Morooka et al., 2011]
 - Previous model: 100-1000 cm⁻³ [Kriegel et al., 2014]
 - E_y is still low?

More reduced E field

- Energy-Flux distribution: 25% vs. 10% of Omidi's E_v
- 10% of Omidi's E_v
 - Consistent with a velocity of ~1 km/s [Kriegel et al., 2011]
- Fluxes did not have big changes in both cases.
 - lons somewhat get stuck upstream.

KANSAS

lon density

- Ion density: 500-1000 cm⁻³
 - Langmuir Probe: ~10⁴ cm⁻³ [Morooka et al., 2011]
 - Still lower than LP
 - Other effect?: Critical ionization velocity effect [Meier et al., 2015]
 - Note that model ion count with 10% of E_y is almost similar to 25% of E_y .

Summary

- Energy vs. flux distribution
 - Vertical electric field is important for obtaining the low energy ion detected by CAPS.
 - The electric field could be generated by dust or pressure gradient of plasma in Z direction.
- Ion species
 - H_3O^+ is dominant which is consistent with INMS.
 - Our total count is not consistent with INMS results.
 - Direction where INMS is looking significantly affects it.
- Ion density
 - 400-1000 cm⁻³ from our model
 - It is lower than LP even if more reduced E is considered, but almost consistent with previous models.

References

- Cravens, T. E. et al. (2009), Plume iononsphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer, *Geophys. Res. Lett.*, 36, L08106.
- Gurnett, D. A. et al. (2004), The Cassini Radio and Plasma Wave Investigation, Space Sci. Rev., 114, 395-463.
- Farrell, W. M. et al. (2010), Modification of plasma in the near-vicinity of Enceladus by the enveloping dust, *Geophys. Res. Lett.*, 37, L20202.
- Fleshman, B. L. et al. (2010), Modeling the Enceladus plume-plasma interaction, *Geophys. Res. Lett.*, 37, L03202.
- Holmberg, M. K. G. et al. (2012), Ion densities and velocities in the inner plasma torus of Saturn, *Planet. Space Sci.*, 73, 151-160.
- Kriegel, H. et al. (2014), Ion densities and magnetic signatures of dust pickup at Enceladus, *J. Geophys. Res. Space Physics*, *119*, 2740-2774.
- Kristic, P. S. and D. R. Schultz (1999), Elastic scattering and charge transfer in slow collisions: isotopes of H and H⁺ colliding with isotopes of H and with He, *J. Phys. B*, 32, 3487-3509.
- Lishawa, C. R. et al. (1990), Cross sections and product kinetic energy analysis of H₂O⁺-H₂O collisions at suprathermal energies, *J. Chem. Phys*, 93, 3196-3206.
- Meier, P. et al. (2015), Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations, *Planet. Space Sci.*, *119*, 208-221.

References

- Morooka, M. W. et al. (2011), Dusty plasma in the vicinity of Enceladus, *J. Geophys. Res.*, *116*, A12221.
- Moses, J. I., and S. F. Bass (2000), The effects of external material on the chemistry and structure of Saturn's ionosphere, *J. Geophys. Res.*, 105, 7013-7052.
- Omidi, N. et al. (2012), Flow stagnation at Enceladus: The effects of neutral gas and charged dust, *J. Geophys. Res.*, *117*, A06230.
- Sakai, S. et al. (2013), Dust-plasma interaction through magnetosphere-ionosphere coupling in Saturn's plasma disk, *Planet. Space Sci.*, 75, 11-18.
- Sakai, S. et al. (2016), Ion energy distributions and densities in the plume of Enceladus, *Planet. Space Sci.*, in press.
- Saur, J. et al. (2008), Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations, *Geophys. Res. Lett.*, 35, L20105.
- Waite, J. H. Jr. et al. (2004), The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation, *Space Sci. Rev.*, *114*, 113-231.