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Solar Radiation
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Photochemistry in the Upper Atmosphere

Photoionization by EUV
O+hv—>0" +e

O,+hv—>0; +e
N, +hv— N, +e
He+hv — He" +e

Radiative Recombination
O"+e—>0+hv

He™ +e > He+ v

H" " +e > H+Av

Electron-lon Recombination
NO"+e—>N+O

O,+e—>0+0

N, +e—> N+N

lon-Molecule reactions
O"+N, > NO"+N

O"+0,>0+0;
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lonosphere and Thermosphere
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*lonization rate is <10 in F-region.

*Coupling between Atmosphere and Plasma is important for
the dynamics and photochemistry in the ionosphere/thermosphere.



Planetary lonosphere
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Plasmasphere

The Earth’s plasmasphere Is a torus of
cold (~1eV) and dense (~103cm-3) plasma
In the region of the inner magnetosphere.
H* Is the principal ion with ~20% He".

From dusk From north

olasmapause”  'MAGE  He+ (30.4nm)



Magnetospheric Convection

Solar wind

Plasmasphere
corotates with
the Earth.

Plasmapause

Magnetospheric
convection

Plasmaspheric erosion (plasma tail) is the result of
enhanced magnetospheric convection.




Plasmapause

Corcuff et al., 1972
Septembre 1968 The location of the
(01~ 05 ML plasmapause
depends on the
magnetospheric
disturbance.

Ne (cm-3)

Wave-like irregularity
In the plasmapause
results from transient,
localized processes
associated with
substorms.

Plasma is supplied
continuously from

Carpenter and Park, 1973 ionosphere.
_57_047K (Refilling)
L, =0o. . )

Plasmasphere Plasmapause



Topside lonosphere
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Momentum Equation in lonosphere

Momentum Equation for lon and Electron
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Modeling of Topside lonosphere
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Polar Wind

Axford [1968] pointed out that the lighter ions must escape
from the earth by the flux of escaping photo-electrons with

energies greater than 2.4 eV, and suggested the ion escape
speed of ~10 km/sec.

This phenomenon is called ‘Polar Wind’.

The polar wind is important as a source of magnetospheric

plasma [Shelley et al., 1982; Moore et al., 1986; Chappell et
al., 1987].

Tail of the

Magnetopause Magnetosphere

H+, He+ flow
A A
= Ambipolar Electric Field
X A

I electron
|

Banks, 1972



Topside Polar lonosphere
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Thermal lon Outflow
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Fig. 4. Parallel ion velocity of the polar wind in the dayside (06-18 MLT)
asr a function of altitude, averaged over all Kp levels and all invariant
latitudes above 80", See Figure 3 caption for explanation.

Near magnetic pole,
all ionospheric ions are flowing to Magnetosphere.
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Thermal lon Heating

ANDRE ET AL.: ANDRE ET AL.: AURORAL ION ENERGIZATION

a1V L —1

O+ % iy .o, Wiy~ In Cusp/Aurora regions,

2l Mk, e ‘W’% I ions are heated perpendicular
= to the local magnetic field line.

This is called TAl.
(Transversely Accelerated lon)

There is good correlation
between TAIl and
Electric/Magnetic field
variations.

(Low frequency waves)

T T T T T
ur 04.33.40 04.34.20 04.35.00 04.35.40 04.36.20

HLT 22.2 2.7 23.2 3.7 00.1
CGLAT 74.7 14.9 74.9 74.6 74.1
LONG -88.6 -84.5 ~B0.4 -76.3 =724
H (km) 1669 1681 1692 1702 iz

Figure 1. Freja data from orbit 5972 (January 1, 1994) where the satellite passed an ion heating
region near midnight (event 1). Panel 1 and 2 show the count rates of Ot and H*, while panel
3 displays the corresponding pitch angles. Panel 4 displays count rates of downgoing electrons.
Panel 5 shows the electric field spectral density up to about 10 kHz, while panel 6 displays a
time series of the perpendicular electric field. Panel 7 shows the magnetic field spectral density
up to 60 Hz, while panel 8 displays a time series of the magnetic field. Panel 9 shows an estimate
of the denmty Panel 10 displays magnetic perturbations in the geographic northward (sclid

and eastward (dashed) directions. Panel 11 contains the field-aligned current intensity calculat;

using the magnetic perturbations shown in Panel 10. A positive field-aligned intensity represents
an upward current. Transversely heated O% ions can be seen in panel 1 between 0433:30 and
0433:50 UT and also between 0435:20 and 0436:30 UT. There is a good correlation between waves

in panels 5 and 7 and ion energization in panel 1, as is further discussed in the text. See also
Figures 2 and 3.



Transversely Accelerated lon
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Outflow and Plasma wave

Akebono (EXOS-D)
Kasahara et al., 2000
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Amount of Outflow

North Summer 1997

at 300km altitude

~10%% jons/s per hemlsphere
20 GW energy flow rate

POLAR / Toroidal Imaging Mass-Angle Spectrograph
Lennartsson et al., 2004



Transversely Acceleration

e Acceleration by Cyclotron Resonance
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Heating Wall
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Correlation between Transversely Accelerated lon and
Broadband Extremely Low Frequency (BBELF) Turbulence.



Molecular lon Heating
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In the polar ionosphere, all ions are heated and

flow to the magnetosphere.



N,* lon Heating in Cusp

Optical observation of N,* by MSX satellite
(Romic et al. 1999)
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lon Outflow from Topside lonosphere
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Oxygen lon in Magnetosphere

Storm-Time Substorm
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Kistler et al., 2006



Oxygen lon in Magnetosphere
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Plate 2. The Geotail observation during a geomagnetic storm on October 2 and 3, 1994. The top panel shows
the energy-time (E-t}) diagram for ions flowing in the anti-sunward direction. The ordinate is particle energy (per
charge) and the color-codgd MG counts/sample with a logarithmic scale. By the right-hand two arrows
at higher and lower enerdies, O and H+ gmponents are indicated, respectively. The lower two panels display the
magnetic field as magnitud® s off Up from the X-Y plane, and azimuth ¢ from the X axis. From just below
the panels, the DATE, the universal time (UT), and the Geotail location in the modified GSM coordinates are denoted.
As suggested by negative Ygsyy, the spacecraft is located at dawnside in this case. The blue shades on the UT line
indicate the intervals when the IMF data are available, and the obtained concurrent IMF is southward (B, <(0) and
duskward (B, >0). At the bottom of the figure, simultaneous Kp index is shown. The intervals shaded by green color
on the panel of [B| correspond to the “lobe/mantle” regions determined with the criteria proposed in the text. With
color bars above the ion E-t diagram, the in situ plasma regime is indicated, i.e., the light-green color corresponds to
the south lobe/mantle, dark-green to the north lobe/mantle, rose to the plasma sheet or plasmoid, and light-yellow to
the magnetosheath. In this positive IMF B, case, thus, the spacecraft was initially located at the south-dawn quadrant
of the lobe/mantle (light green) and then moved into the north-dawn (dark green).

O+



O* Flow In Magnetosphere

SEKI ET AL.: STATISTICAL PROPERTY OF O BEAMS IN LOBE/MANTLE

Possible Supply Routes of Cold Ot Beams (COBs) in Tail Lobe/Mantle
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Figure 6. Three-dimensional schematic cutaways of the magnetosphere together with its north-south dawn-dusk
cross-section. The figure explains schematically the positive IMF B, case. In the cross-section (a’), the observed
spatial distribution of COBs is shown with the tail plasma asymmetry. The each cutaway panel illustrates the supply
scenario of COBs with (a) the dayside polar ionospheric outflow, (b) the energetic UFI beams, and (¢) the equatorially

trapped ions in dayside magnetosphere, respectively.



lon Outflow Model

How much ions are escaping from
lonosphere?

To investigate the ion escape flux, an empirical
model of topside polar ionosphere is made
from Akebono/SMS data
(>1 solar cycle from 1989 ~
>1,000,000 datasets )

The model provides Density, Velocity, Flux for
H+, He+, O+ with functions of MLT, LAT, ALT,
Season, F10.7 and Kp.



lon Outflow Model

Base Functions
B, (fi07s kp) =dy; + Ay fro7 + aZiprh + aBikth + a4ikp6h T aSikpgh

B,, (Z) =dg; T ay,Z

B, (d,h) = ay, +ay, SIN(d) + a,,, cOS(d) + a,, SIN(2d ) + a,,; C0S(2d)
+a,, Sin(h) +a,,, cos(h) + a,., Sin(2h) + a,,, c0S(2h)

B,.(I)=a,,, +a sIn(/) + a,g; COS(l) + a,,, SIN(2]) + a,,, cos(2])
+a,,. SIN(3/) + a,,; cos(3/)

Density, Velocity, Flux for H*, He*, O
logn,(f07.k, 2. d, 11)= By, (frgr k) By (2) By (d, 1) B, (1)
Vi(f07:k, 2.4, 11)= By (fi07,K, ) By (2) Bsyi(d, 1) By, (1)
f(fror K, zod, I0)=nfror K, 2z d, IV fron ik, 2,d 1)
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lon Flux from lon Outflow Model

Escape Flux at 6000 km altitude
In the northern hemisphere
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Mass Loss from Topside Polar lonosphere
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(1)lonospheric ion is flowing to magnetosphere as a polar
wind.

(2)In the cusp and aurora regions, all ionospheric ions are
accelerated by waves, as TAI (transversely accelerated
lon) and conics, and the ions are escaping to
magnetosphere.

(3)lon escape from topside ionosphere is one of the source
mechanisms of magnetospheric plasma.

(4)lon escape flux depends on solar activity, magnetic
activity, magnetic local time, latitude and season.

(5)Mass loss from ionosphere is >10tons/day depending on
lonosphere, thermosphere and solar wind conditions.

~0.26x108 el/cm?/s (Saxton and Smith, 1989)

~3%x108 el/cm?/s (Park, 1970)
~108 el/cm?/s (Akebono, 1993)

~108 el/cm?/s (Polar, 2004)
Refilling of plasmasphere requires several days.



Questions for Future Work

(1)lon energy is ~1eV in topside ionosphere, but ~10keV in
magnetosphere.

Where is the ion heated?
What is the heating mechanism?

(2)How Is the formation and dynamics of magnetosphere
affected by ion injection from ionosphere?

(3)How about ring current and radiation belt?
(4)Is it possible to visualize the magnetosphere with O*?

(5 How does ion escape affect the Earth’s atmospheric
evolution?

(6)How is ion escape during low geomagnetic field
Intensity?
(7)How about other planets?

http://www.ep.sci.hokudai.ac.jp/~shw/WinterSchool.pdf
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