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The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere
through partial melting and volcanism. This question has been mainly addressed in the framework of
plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected
for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general the-
oretical approach of convection to build a regime diagram giving the conditions for partial melting to
occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size
and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL)
in a convective system heated from within, that focuses on the temperature and thickness of the TBL at
the top of the hottest temperature profiles, along which partial melting shall first occur. This ‘‘Hottest
Thermal Boundary Layer” (HotTBL) is first characterized using fully theoretical scaling laws based on
the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that
do not rely on empirical determinations of dimensionless constants and that apply to both low
Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully
applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon.
We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of inter-
nal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in
planets younger than the Earth.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

In recent years the number of detected exoplanets skyrocketed
(Mullally et al., 2015), thanks to the satellite Kepler (Basri et al.,
2005), and of several ground based space observatories (Bakos
et al., 2004; Pollacco et al., 2006). One objective of these instru-
ments is to detect habitable planets. This requires to assess habit-
ability based on the outputs of the detection methods, e.g., the
mass and radius of a planet, and distance from its star. A key ingre-
dient for habitability is the long-term presence of an atmosphere
maintained by a continuous degassing of the planetary interior
(e.g., Cockell et al., 2016; Jellinek and Jackson, 2015). Only planets
where partial melting occurs can maintain an atmosphere by vol-
canism, which introduces a link between the internal dynamics
of a planet, i.e., thermal convection, and habitability. Plate tecton-
ics, one surface manifestation of convection within the Earth man-
tle, has long been recognized as a key ingredient for the evolution
of life on our planet. But plate-tectonics is a specific regime and the
expected variability of exoplanets internal dynamics calls for a
more general approach of convection in planetary bodies.

The diagnostic of the presence of partial melting of a convective
planetary mantle is based on the modeling of its thermal state
which stands as a long scientific challenge, due both to the com-
plexity of the physical problem and to the scarcity of data. For
Earth, which is the best known example of convective planetary
body, several questions still remain objects of debates, such as
the concentration of heat producing elements in the deep mantle
(McDonough and Sun, 1995; Javoy and Kaminski, 2014), the ther-
mal state of the early Earth (Badro et al., 2015; Rubie et al., 2015)
and the related existence of a primitive basal magma ocean
(Labrosse et al., 2007; Andrault et al., 2011). Part of the complexity
of the thermal modeling of the early Earth and subsequent thermal
evolution over geological time scales, rises from the coupling
between two systems with very different typical timescale that
coexist in the planet, i.e., a solid mantle with a typical overturn
time of �100 Myr (McKenzie andWeiss, 1975) and a magma ocean
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and/or a core with a very fast dynamics (Solomatov and Stevenson,
1993; Amit et al., 2008). When considering an exoplanet the pic-
ture is even bleaker, since only its mass and radius are usually
known (Spiegel et al., 2014).

One way to cope with the difficulty of handling a large number
of model parameters or the coupling of systems with very different
dynamics is to use analytical or semi-empirical methods such as
scaling laws. As a matter of fact, scaling laws provide an interpre-
tation of the dynamics of a whole convective system in terms of the
structure and evolution of conductive boundary layers only, and as
a function of a small number of dimensionless numbers that com-
bine the different model parameters, hence making the model
space much smaller. This approach was followed for example by
Labrosse et al. (2001) to obtain the age of the Earth’s inner core,
by Ke and Solomatov (2009) to model the coupled evolution of
the Martian mantle and core, and by van Hunen and Zhong
(2003) to constrain the geodynamical parameters of the Hawaiian
plume.

The problem of the thermal evolution of planetary mantles has
been often tackled using scaling laws based on the theoretical
framework of Rayleigh-Bénard convection. This formalism is
indeed well suited for planets in which temperatures are kept con-
stant at the surface and at the core mantle boundary. However, the
thermal evolution of coreless rocky planets, or of differentiated
planets with a small temperature difference between the core
and the deep mantle, is better modeled with internal volumetri-
cally heating only. In planetary mantles, internal heating originates
from the heat released by the radioactive decay of long-lived
radioactive isotopes (238U, 235U, 232Th and 40K), as well as from
the secular cooling of the planet, which can be formally treated
as an additional source of volumetric heating (Krishnamurti,
1968; Weinstein and Olson, 1990). Tidal heating can be a third
important source of internal heating (Behounkova et al., 2011;
Van Laerhoven et al., 2014) and numerical studies have shown that
basal heating may also be treated as a source of internal heating
(Choblet and Parmentier, 2009). Hence a purely volumetrically
heated convective system provides a suitable framework to study
the dynamics of planetary thermal evolution, including that of
the Earth (Pollacco et al., 1993).

Scaling laws have been established for volumetrically internally
heated systems by Parmentier and Sotin (2000) using numerical
experiments, and by Limare et al. (2015) using lab scale experi-
ments. However, these authors did not end with the same expres-
sion for the scaling laws, nor were able to apply them in the weak
convection regime (i.e, when the system is close to the transition
from conduction to convection). Furthermore, these scaling laws
give a description of the Thermal Boundary Layer (TBL) that relies
on an ‘‘average” thickness and an ‘‘average” temperature at its
base. If such a description is useful to describe the ‘‘average” ther-
mal state of the TBL it may not be accurate enough to determine
when the system enters a regime of partial melting, because melt-
ing will occur within the hot upwellings, i.e., along the hottest ver-
tical thermal profiles.

In this article, our aim is to propose a new set of scaling laws
that characterize the thermal boundary later (temperature and
thickness) above the hottest vertical thermal profiles in the fluid,
that we will refer as the ‘‘Hottest Thermal Boundary Layer” or
HotTBL. We will first show how the thickness and temperature of
the HotTBL can be related to the convective parameters through
a theoretical scaling law based on a description of the TBL at a crit-
ical stage, just before it becomes unstable and produce a cold insta-
bility. Contrary to previously published scaling laws, our
expressions do not introduce any best-fitting empirical constants
and are valid for any internal heating rate. We then validate the
model by comparison with numerical experiments and we show
how the scaling laws can be applied to planetary bodies, using
the example of the Moon. Last we use the scaling laws to build a
regime diagram giving the conditions for the occurrence of partial
melting in planetary bodies.

2. Scaling laws for the thermal boundary layer of an internally
heated fluid at infinite Prandtl number

2.1. Dimensional analysis

As a reference framework for purely internally heated convec-
tive system, we shall consider a horizontal layer of fluid with a con-
stant temperature imposed at the top boundary and with an
adiabatic condition at the base. The dynamics of the system, when
it furthermore involves isoviscous and incompressible fluids, is
characterized by two dimensionless numbers only, the Rayleigh
number and the Prandtl number. The Rayleigh number, Ra, is
defined as the ratio of the driving thermal buoyancy forces over
thermal and viscous dissipation, or, equivalently, as the ratio of
the rates of heat transfer by convection and heat transfer by
conduction,

Ra ¼ qgaDTd3

jg
; ð1Þ

where q is the density, g the acceleration of gravity, a the thermal
expansion coefficient, DT the temperature jump across the fluid
layer, d the layer thickness, g the dynamic viscosity and
j ¼ k=qCp the thermal diffusivity, with k the thermal conductivity
and Cp the heat capacity. For internally heated systems, DT is not
externally imposed but is rather related to the internal heat
production,

DTH ¼ Hd2
=k; ð2Þ

where H is the rate of heat generation per unit volume in the fluid.
Using this temperature scale in the definition of the Rayleigh num-
ber one obtains the Rayleigh-Roberts number (Roberts, 1967),

RaH ¼ qgaHd5

kjg
: ð3Þ

RaH provides a criterion for the occurrence of convection and
quantifies its vigor in internally heated fluids. Above a threshold
value, called the critical Rayleigh-Roberts number (RaH;cr), convec-
tion appears and develops in the heated fluid. For a given RaH lar-
ger than RaH;cr , the convective interior of the fluid then consists of
‘‘active” downwellings and a rather ‘‘passive” upwelling return
flow. Convection reaches a steady state spatial organization when
RaH is slightly above RaH;cr , whereas the spatial organization is time
dependent for larger RaH . The second dimensionless number, the
Prandtl number (Pr), is defined as the ratio of momentum diffusiv-
ity over heat diffusivity,

Pr ¼ g=q
j

: ð4Þ

The Prandtl number quantifies the importance of inertia rela-
tive to viscous forces, inertia being negligible for Pr � 1. In this lat-
ter case of infinite Prandtl number, convection depends only on the
Rayleigh-Roberts number (Grossmann and Lohse, 2000;
Grossmann and Lohse, 2001). This is the case in planetary bodies
where g > 1021 Pa.s and Pr > 1023, hence in the following we will
focus on the influence on RaH only.

As seen for example in Fig. 1 the interior of the convecting fluid
consists of ‘‘active” downwellings at various stages of development
(the red arrow corresponds to a fully developed downwelling and
the blue arrow to the initiation of a downwelling) and a more pas-
sive return flow. The hottest thermal profile (black arrow) is found
between the downwellings. One may note that the vertical change



Fig. 1. A vertical slice of the dimensionless temperature field of a convective system (T� ¼ T=DTH , with DTH the temperature scale defined in the text). The calculation
corresponds to RaH ¼ 3:2� 104 and free slip top and bottom boundary conditions. The growth of an instability is seen at the left side (blue arrow) and a fully developed
instability is seen close to the center (red arrow). The hottest temperature profile is located between the two instabilities (black arrow). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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of temperature along that profile mainly occurs at the top of the
system, within a layer called the ‘‘Thermal Boundary Layer”
(TBL). In the volumetrically heated convective system, heat is pro-
vided homogeneously in the whole layer of fluid and escapes from
its surface by conduction through the TBL. The change of temper-
ature across the TBL as well as its thickness then set the rate of heat
loss of the system.

Even if the heat is transferred by conduction within the TBL, the
TBL of a convective system is a dynamic structure that evolves as a
function of time. Howard (1966) suggested that a TBL grows by
conduction until it reaches a critical thickness at which it becomes
unstable and breaks off to produce a cold instability. The spatio-
temporal organization of instabilities governs in turn the dynamics
of the convective system. One way to study this dynamics is then
to express the temperature difference across the TBL (DTTBL) and
the thickness of the TBL (dTBL) as a function of RaH using dimension-
less scaling laws,

DTTBL=DTH ¼ f DTðRaHÞ; ð5Þ
dTBL=d ¼ f dðRaHÞ; ð6Þ
where f DT and f d are unknown functions. To determine f DT and f d we
follow the same line of reasoning as Jaupart and Mareschal (2011).

First we note that in the TBL heat is transferred by conduction,
hence the surface heat flux / scales as

/ � k
DTTBL

dTBL
: ð7Þ

At steady state, the surface heat flux equates the heat produced
in the layer of fluid, i.e., / ¼ Hd, which yields

DTTBL

DTH
� dTBL

d
; ð8Þ

hence, f DT � f d.
To determine f DT (or equivalently f d) we then consider, follow-

ing Howard (1966), the dynamics of the TBL just before it becomes
unstable. At that stage, the thickness of the TBL is such that there is
a balance between the buoyancy force, which drives the convective
flow, and the viscous drag that prevents the destabilization of the
layer, i.e.,

qagDTTBL � g
w

d2TBL
; ð9Þ

where w is a vertical velocity scale that remains to be determined.
To obtain w, we use the equation of conservation of energy in the
convective system,

qCP
DT
Dt

¼ kr2T þ H; ð10Þ

where DT=Dt is the material derivative of the temperature. In the
convective fluid just underneath the base of the TBL, i.e., where
Tðz ¼ d� dTBLÞ ¼ DTTBL, conduction is negligible and there is a bal-
ance between vertical advection of heat and heat production, hence
qCP
wDTTBL

d
� H; ð11Þ

which gives w as a function of DTTBL. Combining Eqs. (8), (9) and
(11), we finally obtain

DTTBL=DTH ¼ CT Ra
bT
H ; ð12Þ

dTBL=d ¼ Cd Ra
bd
H ; ð13Þ

where bT ¼ bd ¼ �1=4, whereas CT and Cd are (still) unknown
dimensionless constants that cannot be constrained by a dimen-
sional analysis.

2.2. A refined theory: the ‘‘critical” thermal boundary layer

The determination of the dimensionless constants CT and Cd has
been so far empirical only. To provide theoretical constraints on CT

and Cd, here we propose to characterize the TBL (DTTBL and dTBL) at
the onset of convection, because the TBL can be fully analytically
described at that stage. Convection takes over conduction when
RaH reaches a value called the critical Rayleigh number, RaH;cr . An
analytic stability analysis yields RaH;cr ¼ 868 for free slip mechani-
cal boundary conditions at top and bottom (Chandrasekhar, 1961)
and RaH;cr ¼ 2772 for rigid boundary conditions (Roberts, 1967).
Just at the onset of convection the temperature profile is still the
conductive profile and the temperature reaches a maximum of
0:5DTH at the bottom of the system (Fig. 2). Furthermore, at this
stage the TBL is simply the whole layer of fluid and verifies

DTTBL ¼ 0:5DTH; ð14Þ
dTBL ¼ d: ð15Þ

Because convection occurs as soon as the critical Rayleigh-
Roberts number is reached, the TBL at the onset of convection shall
already follow the theoretical law obtained from the dimensional
analysis of convection taking RaH ¼ RaH;cr , even if at that stage
the TBL is as thick as the whole layer of fluid. Combining the results
of Eqs. (14) and (15) with the scaling laws given in Eqs. (5) and (6),
we then obtain an analytical expression for CT and Cd,

CT ¼ 0:5Ra1=4H;cr; ð16Þ
Cd ¼ Ra1=4H;cr : ð17Þ

Using these theoretical expressions, the scaling laws for the TBL
can then be written as

DTTBL=DTH ¼ 0:5 ðRaH;cr=RaHÞ1=4; ð18Þ
dTBL=d ¼ ðRaH;cr=RaHÞ1=4: ð19Þ

These expressions, that do not rely on empirical parameters
anymore, furthermore provide a physical interpretation for CT

and Cd. Since they are functions of RaH;cr only, their dependence
on the boundary conditions found in previous studies



Fig. 2. Temperature profiles obtained at RaH ¼ 104 and for free slip top and bottom boundary conditions. The thermal structure has reached a steady state, because the value
of the Rayleigh number is close to the critical Rayleigh number. (a), The black line gives the horizontally averaged temperature profile, and the blue and red lines correspond
to the coldest and hottest temperature at a given depth (‘‘cold” and ‘‘hot” temperature profiles), respectively. The mean and hot temperature profiles show that large
temperature variations only occur in the top thermal boundary layer. The black dashed line represents the conductive temperature profile which is also the temperature
profile at the onset of convection. (b), Evolution of the dimensionless second derivative of the average temperature (black) and the hot temperature (red) as a function of the
dimensionless height. The two squares mark the base of the thermal boundary layer defined as the first point from the top boundary where the second derivative becomes
zero. The hot temperature profile yields a significantly thinner and slightly hotter thermal boundary layer than the averaged temperature profile. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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(e.g, Choblet and Parmentier, 2009), and never explained until now
to our knowledge, simply reflects the dependence of RaH;cr on the
boundary conditions.

The approach developed above considers the TBL at a ‘‘critical”
stage, i.e., just before it becomes unstable and produce a cold insta-
bility. Previous studies (Parmentier and Sotin, 2000; Deschamps
et al., 2012; Limare et al., 2015) rather consider the characteristics
of an ‘‘average” TBL defined from the average thermal state of the
fluid. For example, the base of the TBL can be taken as the depth at
which the vertical conductive profile of the horizontally averaged
temperature reaches the average internal temperature of the con-
vective fluid (e.g., Parmentier and Sotin, 2000, hereafter referred as
PS2000). In the next session we discuss the difference between our
scaling laws and the ones corresponding to an ‘‘average” descrip-
tion of the TBL, based on their respective ability to reproduce the
results of numerical simulations.

3. A numerical investigation of the ‘‘critical thermal boundary
layer theory

3.1. Numerical model

We performed original numerical experiments using the code
Stag3D developed by Paul Tackley, and described in detail in
Tackley et al. (1994). Its application to volumetrically heated fluid
is presented in Limare et al. (2015) and we provide here only a
brief description of the code. Stag3D uses a finite difference multi-
grid technique to solve the equations of conservation of mass,
momentum and energy. We consider a fluid under the Boussinesq
approximation, with an infinite Prandtl number and constant prop-
erties (except density that depends on temperature). For this study,
the chosen setting is a fluid purely internally heated, in a 3D Carte-
sian box with constant temperature at the surface and an adiabatic
condition at the base. The side boundaries are reflecting, whereas
the top and bottom boundary conditions can be either rigid or free
slip. The input parameter is RaH , that ranges between 5� 103 and
109. The selected aspect ratio and the space resolution of the grid
(Table 1) guarantee both the development of a large number of
convective currents (with a size that does not depend on the aspect
ratio), and a good resolution in the TBL (more than 6 points). For
computations performed at RaH < 3:2� 105, convection is steady,
and we use a constant temperature in the whole box with random
perturbations as the initial condition. For larger RaH , convection is
time dependent, and a statistical steady state is reached when both
the volumetric average temperature and the surface heat flux are
constant (their fluctuations are zero) when averaged over several
overturn times. In such cases, we use as initial condition a temper-
ature field obtained for a previous - and smaller - RaH in order to
reduce the computational time. We carefully checked that the final
result did not depend on the choice of the initial condition.
3.2. Comparison between theory and numerical simulations

We first consider the classical description of the TBL based on
the horizontally averaged temperature profile, and we compare
our calculations with the results of PS2000. To determine the TBL
in the numerical simulations, we consider the point where the hor-
izontally averaged temperature is maximum along a vertical pro-
file. We then obtain both the thickness of the TBL, dTBL, and the
temperature change across the TBL, DTTBL ¼ Tðz ¼ d� dTBLÞ. The
final result is given in Table 2 as the best fit of the numerical results
taking bT ¼ �1=4 or leaving it as a free fitting parameter, and it
illustrates the agreement between, our numerical calculations
(CT ¼ 2:426) and those of PS2000 (CT ¼ 2:414). The decrease of
DTTBL with RaH shown in Fig. 3(a) is well explained by Eq. (12),
down to RaH � 105. The numerical results and the predictions of
the scaling law however diverge for RaH < 105, a conclusion



Table 1
Input parameters and outputs of the numerical simulations.

log10ðRaH) Resolution Aspect ratio log10
DTTBL
DTH

� �
(rigid) log10

DTTBL
DTH

� �
(free slip) log10

dTBL
d

� �
(rigid) log10

dTBL
d

� �
(free slip)

3.7 1024 � 1024 � 64 16/16 �0.338 �0.490 �0.010 �0.223
4 1024 � 1024 � 64 16/16 �0.435 �0.572 �0.199 �0.308
4.5 1024 � 1024 � 64 16/16 �0.546 �0.684 �0.308 �0.402
4.7 1024 � 1024 � 64 16/16 �0.585 �0.719 �0.367 �0.435
5 1024 � 1024 � 64 16/16 �0.639 �0.788 �0.412 �0.538
5.15 1024 � 1024 � 64 16/16 �0.679 �0.814 �0.474 �0.557
5.34 512 � 512 � 64 6/6 �0.741 �0.882 �0.516 �0.637
5.5 512 � 512 � 64 6/6 �0.779 �0.947 �0.541 �0.632
5.83 512 � 512 � 64 6/6 �0.897 �1.030 �0.656 �0.682
6 512 � 512 � 64 6/6 �0.944 �1.074 �0.670 �0.709
6.2 512 � 512 � 64 6/6 �0.991 �1.125 �0.734 �0.787
6.5 512 � 512 � 64 6/6 �1.062 �1.209 �0.767 �0.846
6.7 512 � 512 � 64 6/6 �1.110 �1.251 �0.803 �0.873
6.8 512 � 512 � 64 6/6 �1.135 �1.275 �0.837 �0.924
6.9 512 � 512 � 64 6/6 �1.158 �1.300 �0.849 �0.951
7.15 512 � 512 � 64 6/6 �1.217 �1.363 �0.931 �1.044
8 384 � 384 � 128 6/6 �1.415 �1.578 �1.162 �1.311
8.5 384 � 384 � 128 6/6 �1.533 �1.691 �1.325 �1.320
9 512 � 512 � 256 4/4 �1.663 �1.831 �1.451 �1.591

Parameters are listed for symmetrical rigid and free slip boundary conditions. The temperature difference across the thermal boundary layer (DTTBL) and its thickness (dTBL)
are made dimensionless using DTH and d (see text).

Table 2
Parameters of the scaling laws of the Thermal Boundary Layer (TBL).

CT bT Cd bd

Free slip, free exponent 2.467 �0.251 2.299 �0.168
Free slip, fixed exponent 2.426 �0.25 NA⁄ NA⁄
Rigid, free exponent 3.094 �0.244 2.129 �0.151
Rigid, fixed exponent 3.388 �0.25 NA⁄ NA⁄

To determine the parameters, the base of the TBL is set as the point where the horizontally averaged temperature profile reaches a maximum.
⁄ The best fit exponent is too far from the theoretical �1/4 value to provide relevant results.
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reached also by Deschamps et al. (2012) for calculations performed
in a spherical geometry. The disagreement is larger when one con-
siders the evolution of the thickness of the TBL as a function of RaH
(Fig. 3(b)). First, for RaH � 104, the scaling law grossly fails to pre-
dict dTBL. Second, for 105 < RaH < 108, the fitting of the data with
b ¼ �1=4 is quite poor, and a much better fit is obtained with
bd ¼ �0:168 and bd ¼ �0:151 for free slip and rigid boundary con-
ditions, respectively. Third, we note a change in the trend of the
data at RaH > 108 for rigid boundary conditions. These disagree-
ments confirm that the classical view of the TBL is not able to
account for the full dynamics of the convective system.

To be more consistent with our framework, in which the base of
the TBL is set at its limit of stability, we use the maximum instan-
taneous temperature at a given depth rather than an average tem-
perature to define the TBL. From this maximum temperature we
construct a ‘‘hot temperature” profile, ThotðzÞ, as illustrated in
Fig. 1. We then note that the temperature in the TBL increases with
depth (i.e., @Thot=@z > 0) and becomes constant (or even slightly
decreases) in the convective interior of the fluid underneath the
TBL (Fig. 2). We thus use the second spatial derivative of the tem-
perature that marks the change of sign of @Thot=@z to define the
limit between these two zones. We set the base of this Hottest
Thermal Boundary Layer (HotTBL) as the first point from the top
boundary where the second derivative of the temperature equals
zero (in practice where the second derivative is smaller than 1%
of its minimum value along the profile).

Fig. 4(a) plots together the temperature difference across the
HotTBL, DTTBL ¼ Thotðz ¼ d� dTBLÞ, determined with the method
presented above, and the theoretical law of Eq. (18). The agreement
between the numerical results and the theoretical law is excellent.
This can be taken as a cross validation of both the theoretical scal-
ing laws and our method of determination of the (Hot)TBL based
on the hot temperature profile. We further find that, contrary to
previous methods of determination of the TBL, our analytical scal-
ing laws remain valid for the whole range of RaH considered. Fig. 4
(b) compares dTBL obtained in the numerical experiments with the
theoretical scaling law of Eq. (19). Here again the agreement is very
good, although less impressive because the error bars are higher
for dTBL than for DTTBL. This reflects the higher sensitivity of the
result to the numerical criterion used to set the HotTBL, an inher-
ent drawback of any method of determination of the TBL thickness.

3.3. The Rayleigh number of the Hottest Thermal Boundary Layer

Our view of the TBL, and the resulting scaling laws, bear impor-
tant implications for the understanding of the physics of convec-
tion through a better description of the internal dynamics of the
TBL. In particular, our results may help to solve the long-standing
controversy about the value of the local Rayleigh number (RaTBL)
at which the TBL becomes unstable. Early studies (Sharpe and
Peltier, 1978; Schubert et al., 1979) considered that RaTBL was sim-
ply RaH;cr , the threshold Rayleigh-Roberts number for the onset of
convection. But few years later, RaTBL was treated as an empirical
parameter with no relation with RaH;cr (Stevenson et al., 1983).
More recently numerical experiments by Sotin and Labrosse
(1999) showed that RaTBL was indeed a function of RaH , which
implied in turn that RaTBL could not be equal to (constant) RaH;cr .
Using our formalism, the definition of the Rayleigh-Roberts num-
ber and Eqs. (18) and (19), we predict that the Rayleigh-Roberts
number of the HotTBL is

RaTBL ¼ ðgaDTTBLd
3
TBLÞ=ðjmÞ ¼ 0:5RaH;cr: ð20Þ



Fig. 3. Evolution of (a) the dimensionless temperature change and (b) the thickness
of the thermal boundary layer as a function of the Rayleigh-Roberts number for free
slip (red squares) and rigid (black open squares) boundary conditions. The base of
the thermal boundary layer is set at the point where the horizontally averaged
temperature profile reaches a maximum value. Error bars correspond to temporal
variation; they are smaller than the symbol size for DTTBL . The solid lines give the
best fit of data at Rayleigh-Roberts numbers greater than 105. The grey shaded areas
correspond to the range of Rayleigh-Roberts numbers where the numerical results
do not agree with the scaling laws. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Evolution of (a) the dimensionless temperature change and (b) the thickness
of the thermal boundary layer as a function of the Rayleigh-Roberts number for free
slip (red squares) and rigid (black open squares) boundary conditions. The base of
the thermal boundary layer is set using the hot temperature profile and the method
explained in text. Error bars correspond to temporal variation; they are smaller than
the symbol size for DTTBL . The solid lines are the theoretical scaling laws defined in
text. The two stars correspond to two test cases calculated with non symmetrical
mechanical boundary conditions at log10ðRaHÞ ¼ 5:83. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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This result demonstrates that the Rayleigh number within the
HotTBL is indeed constant hence not a function of RaH , and keeps
the value reached at the onset of convection (i.e., when dTBL ¼ d).
This is consistent with our view that the TBL is always at the limit
of stability, i.e., in a critical state. It is thus likely that the finding of
a variable RaTBL by Sotin and Labrosse (1999) was an artifact due to
a non fully consistent definition of the TBL.

As already mentioned, the limit between conduction and con-
vection, hence RaH;cr , depends on the mechanical boundary condi-
tions at the top and at the base of the fluid layer. But the stability of
the TBL itself, and the corresponding RaTBL, are likely to be also
affected by the mechanical boundary condition at the base of the
HotTBL, i.e., the mechanical interface with the convective interior,
which is not known a priori. One could expect a mixed condition at
this interface, intermediate between a rigid (solid) boundary and a
free slip (convective fluid) boundary. In such an intermediate case,
the critical Rayleigh number for the HotTBL should then be brack-
eted by the theoretical values of RaH;cr for free slip and rigid condi-
tions. We have seen however that this is not the case as RaTBL keeps
the same value as the one calculated at the onset of convection
(whatever the RaH of the system) for a given fixed boundary condi-
tion (either rigid or free slip). In order better to understand this
rather counter intuitive result, we carried out additional numerical
simulations at high RaH with asymmetrical mechanical boundary
conditions at the top and at the bottom of the system (Fig. 4).
We find that the HotTBL properties (both temperature and thick-
ness) for asymmetric boundary conditions are the same as the ones
obtained for symmetrical boundary conditions. This implies that
RaTBL in the asymmetrical cases has the same value as in a symmet-
rical system with the same top boundary condition. Hence that the
effective mechanical condition ‘‘seen” at the base of the HotTBL is
the same as the one imposed at the upper boundary. This result
implies in turn that the dynamics of a volumetrically heated con-
vective system depends only on RaH and on the top mechanical
boundary condition.
4. Application to the onset of partial melting in exoplanets

The scaling laws established in the previous section provide a
robust description of the thermal structure of a purely internally
heated convective system based on the characteristics of the ther-
mal boundary layer. We will now show how such scaling laws can
be used to assess the occurrence of partial melting in exoplanets.
As a first step we will compare the predictions of the scaling laws
with the results of a 3D spherical numerical model of convection in
the mantle of the Moon (Laneuville et al., 2013).



Table 3
Parameters of the Moon’s model.

Symbol Description Value

Rp Planet radius 1740 km
Rc Core radius 390 km
dm Mantle depth 1350 km
af Geometric factor 0.425
Tsurf Surface temperature 250 K
gm Acceleration of gravity 1.62 m s�2

gm Viscosity 5 1022 Pa s
km Thermal conductivity 3.0 Wm�1 K�1

jm Thermal diffusivity 10�6 m2 s�1

am Thermal expansion coefficient 2 10�5 K�1

qm Density 3400 kg m�3

Hm Radioactive Heating rate of the mantle 7 10�9 Wm�3

Hf Bulk heating rate for the farside 1.66 10�8 Wm�3

Hn Bulk heating rate for the nearside 4.15 10�8 Wm�3
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4.1. Thermal state of the Moon’s mantle

The traces of past volcanic activity at the surface of the Moon
are strongly asymmetric. Most of the lunar maria are located on
the nearside and the age of volcanism is different on the two sides:
dating based on lunar samples and crater counting techniques
gives ages between 1 and 4 Ga for the nearside (Hiesinger et al.,
2003) and 2.5–3 Ga for the farside (Haruyama et al., 2009). This
dichotomy is related to an enrichment in radioactive isotopes in
the nearside relative to the farside (Lawrence et al., 1998), which
yields larger interior temperatures and favors volcanism. The
degree of enrichment is constrained from the samples of Apollo
15 mission (Korotev, 2000), and observations of lunar maria and
surface measurements of thorium concentrations (Lawrence
et al., 2003), which indicate a more or less circular shallow
enriched zone with a diameter of �80� (Jolliff et al., 2000).

Laneuville et al. (2013) conducted simulations of thermochem-
ical convection in 3D spherical geometry in a stagnant-lid regime
to quantify the impact of the enriched zone on the thermal evolu-
tion of the Moon. They systematically studied the effect of the
model parameters, including the location, size and degree of
enrichment of the zone. They then selected the model parameters
that best fit the observations.

An important by-product of Laneuville et al. (2013)’s results in
the framework of the present study, is to show that the heat flux at
the base of the lunar mantle can be neglected compared to radioac-
tive internal heating. This allows us to compare their results to the
predictions of our scaling laws for a rigid surface and using their
choice of best-fitting parameters (Table 3). However, important
differences between our scaling laws and the model of Laneuville
et al. (2013) have to be taken into account before comparing the
results of the two approaches.

First, we have to take into account the sphericity of the Moon’s
mantle. To that aim we follow Deschamps et al. (2012) and correct
the Rayleigh-Roberts number using a geometric factor af ,

RaVH ¼ af RaH ð21Þ
where af is calculated from

af ¼ 1
3

1þ Rc

Rc þ dm
þ Rc

Rc þ dm

� �2
" #

; ð22Þ

with Rc the core radius and dm the depth of the mantle. As in
Deschamps et al. (2012) we also introduce a modified temperature
scale,

DTVH ¼ afDTH: ð23Þ
Using the corrected Rayleigh-Roberts number and temperature

scale, our scaling laws (18) and (19) are then written for a spherical
geometry as

DTTBL=DTH ¼ 0:5a3=4f ðRaH;cr=RaHÞ1=4; ð24Þ
dTBL=d ¼ a�1=4

f ðRaH;cr=RaHÞ1=4: ð25Þ
Second, we need to consider the potential implications of

heterogeneous heating. In the Moon’s mantle, the volumetric heat-
ing may come from both the decay of radioactive isotopes and sec-
ular cooling. We used the surface heat flux / obtained in the model
of Laneuville et al. (2013), 25 mWm�2 in the nearside and
10 mWm�2 in the farside, to derive the corresponding amount of
internal heating in each hemisphere using H ¼ /=dm. Furthermore,
Laneuville et al. (2013) consider a vertically heterogeneous distri-
bution of internal heating, with, in the two hemispheres, a 40 km
crust 	 20 times enriched in heat producing elements compared
to the mantle, and, in the nearside only, an additional 10 km thick
enriched layer located at the base of the crust. Here we thus con-
sider a 50 km thick layer 	 60 times enriched in heat producing
elements relative to the mantle (which satisfies the surface heat
flux constraint) for the nearside, whereas we consider only the
40 km thick crust for the farside. To remain fully consistent with
our approach, we further calculate the new conductive profile for
the two considered vertical distributions of heat production (see
Supplementary Material). We then compute the new value of the
critical Rayleigh-Roberts number, that we found to be identical
to the homogeneous heating case. The resulting new expressions
for the dimensionless coefficients of the scaling laws are

C�
T ¼ 0:540Ra1=4H;cr and C�

T ¼ 0:508Ra1=4H;cr for the nearside and farside,

respectively, and C�
d ¼ Ra1=4

H;cr in the two cases.
We used the laws given in Eqs. (24) and (25) with the coeffi-

cients C�
T and C�

d corresponding to the heterogeneous distribution
of internal heating to estimate the internal temperature of the
Moon (Tint ¼ Tsurf þ DTTBL) as well as the thickness of the TBL
(dTBL) in the two hemispheres. We consider the two hemispheres
as independent, as Laneuville et al. (2013) has shown that the
two convective systems hardly interfere with each other, and we
decrease the nearside mantle viscosity by one order of magnitude
to account for the effect of the higher temperature induced by the
enriched zone. For the nearside we obtain,

Tint ¼ 1767 K; ð26Þ
dTBL ¼ 354 km; ð27Þ
and for the farside,

Tint ¼ 1529 K; ð28Þ
dTBL ¼ 793 km: ð29Þ

The predictions of the scaling laws are compared in Fig. 5 with
the temperature profiles found by Laneuville et al. (2013). The
good agreement between the two results shows that our theoreti-
cal scaling laws can be applied to convective mantle of spherical
planetary bodies. We will show now how this approach can be
applied to the less well constrained and more challenging case of
exoplanets.

4.2. Thermal boundary layers of exoplanets

Our scaling laws give the temperature at the base of the HotTBL
for internally heated convective systems. By comparing this tem-
perature to the solidus of the planetary material it is then possible
to assess the occurrence of partial melting. Here we propose to
illustrate this approach when applied to a silicate sphere that can
represent either a coreless terrestrial planet, a mantle of a planet
with a small heat flux coming from the core, or the rocky core of
an ice giant.



Fig. 5. Temperature profiles of the nearside (green line) and farside (blue line) of
the Moon obtained by Laneuville et al. (2013) (Fig. 5). The two crosses are the base
of the TBL predicted by our scaling laws (Eqs. (24) and (25)) for the nearside (green)
and farside (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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To compute the effective temperature at the base of the TBL in
the context of exoplanet habitability, we will take Tsurf = 300 K, in
order to ensure the presence of liquid water as usually done in
the definition of the ‘‘conventional” habitable zone (Seager,
2013). The top temperature of the rocky core of an ice giant is dif-
ficult to constrain and may be lower. However, the presence of a
subsurface ocean, observed in several icy satellites, suggests a tem-
perature at the interface between the core and the icy mantle of
about 250 K (Khurana et al., 1998; Kivelson et al., 2002; Lorenz
et al., 2008; Rubie et al., 2015).

For a given surface temperature, our scaling laws can be used to
estimate directly the temperature at the base of the HotTBL in an
isoviscous fluid. However, in the case of large variation of viscosity
with temperature such as expected in planetary mantles, the pres-
ence of a viscous lid above the HotTBL has to be taken into account.
We thus consider that in a planetary mantle the temperature Tint at
the base of the HotTBL is equal to the surface temperature, plus the
temperature increase across the viscous lid, DTlid, plus the temper-
ature increase across the HotTBL, DTTBL. The depth of the base of
the HotTBL is the sum of the thickness of the viscous lid, dlid, and
of the HotTBL, dTBL. To assess the occurrence of partial melting at
the base of the HotTBL it is thus necessary to infer DTlid and dlid.
Previous studies (Solomatov and Moresi, 2000; Deschamps and
Lin, 2014) have shown that the viscous lid can be taken as a con-
ductive layer, which introduces the following relationship between
DTlid and dlid:

DTlid ¼ af Hd
2
lid

2k
; ð30Þ

and which leaves dlid as the last unknown parameter. But the thick-
ness of the viscous lid depends both on the rheological law and on
the internal temperature of the system, and there is no direct
method to obtain it.

To characterize the viscous lid, we use the ‘‘viscous” tempera-
ture scale, DTg, first defined by Davaille and Jaupart (1993) as

DTg ¼ gðTintÞ
dg=dTðTintÞ ; ð31Þ
which explicitly introduces the law giving the variation of viscosity
with temperature. Grasset and Parmentier (1998) further showed
that the viscous temperature scale is proportional to the tempera-
ture jump across the TBL,

DTg ¼ 1
2:23

DTTBL; ð32Þ

which, once combined with Eq. (31), introduces an additional (non
linear) relationship between Tint and DTTBL that closes the system.

To solve the system, we start from a (large) estimate of the
internal temperature, say T�

int=2500 K. From T�
int (and knowing the

rheological law, see below) we estimate DTg from Eq. (31), then
DTTBL from Eq. (32), and finally DTlid ¼ T�int � Tsurf � DTTBL. From
DTlid we obtain dlid (Eq. (30)) which in turn is used to calculate
the effective Rayleigh-Roberts number for the convecting fluid
below the viscous lid:

Ra�H ¼ af
qagH d� dlidð Þ5

kjgðT�
intÞ

: ð33Þ

Using Ra�H in our scaling law gives a new estimate of DTTBL which
is the same as the one given by Eq. (32) only if T�

int is the correct
internal temperature. We thus iteratively change the values of
T�
int until the two estimates of DTTBL differ by less than 0.1 K.

4.3. Partial melting in exoplanets

In planetary bodies, partial melting occurs when the tempera-
ture of the material reaches its solidus. Because the slope of the
variation of the solidus temperature with depth is smaller than
that of the temperature in a convective system, partial melting
preferentially occurs at the base of the TBL. We therefore consider
that partial melting starts when the temperature at the base of the
HotTBL (Tint) reaches the solidus, i.e.,

Tint P Tsolidusðr ¼ d� dTBLÞ; ð34Þ
where Tsolidus is the temperature of the solidus at the pressure (or
radius) corresponding to the base of the HotTBL. In the following
we will use a solidus profile compiled from different experimental
studies of terrestrial peridotites at pressures ranging up to
140 GPa (Hirschmann, 2000; Zhang and Herzberg, 1994; Andrault
et al., 2011).

For a given set of physical properties (see below), threshold
conditions for partial melting to occur can be expressed as a func-
tion of the planet radius R and the heating rate H. For a given H, the
radius of the planet is key in determining the Rayleigh-Roberts
number. First, the radius can be used to set the acceleration of
gravity, g ¼ GM=R2, with G the gravitational constant and M the
mass of the planet. To express the results of the model as a function
of the radius of the planet only we further use the mass-radius
relationship obtained by Valencia et al. (2006) for Earth-like
planets,

R
RT

¼ M
MT

� �0:27

; ð35Þ

where RT and MT are the radius and mass of the Earth, respectively.
This relationship has been shown to remain applicable for different
planet compositions (Sotin et al., 2007) as well as for coreless plan-
ets (Elkins-Tanton and Seager, 2008). Last, we estimate the depth of
the mantle of differentiated planets from the size of their core, Rc ,
estimated from Valencia et al. (2006),

d ¼ R� Rc ¼ R� 3:5103 R
RT

� �0:926

; ð36Þ

where d;R and Rc are in kilometers.
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If the radius of an exoplanet can be deduced from observations,
estimates of the rate of internal heating rely on indirect arguments.
In a terrestrial planet, volumetric heating is mainly due to the
decay of radioactive isotopes, which itself decreases as a function
of time and depends on the half-life of the considered isotopes.
For example, 26Al, which has a half-life smaller than 1 Myr, plays
a role only on the early (6x10 Myr) thermal evolution of a plane-
tary body, whereas long life isotopes such as 235U are important
in old and cold planets. As already mentioned, the progressive loss
of the primordial heat is equivalent to an additional source of inter-
nal heat. Lebrun et al. (2013) studied the early thermal evolution of
Earth taking into account the release of the primordial heat and
short-lived radioactive isotopes. They found that the surface heat
flux few millions years after the Earth formation was 102 times
higher than today. Combined with the estimates of internal heat-
ing in the present-day Earth (10�8–10�7 Wm�3; McDonough and
Sun, 1995; Javoy and Kaminski, 2014; Jellinek and Jackson, 2015)
this suggests an upper bound for internal heating in young planets
of 10�5 Wm�3. Unterborn et al. (2015) studied Th abundances in
14 solar twins and analogs, and found values ranging between
0.59 and 2.51 times the Th concentration of the Sun. All things
being equal we used these same proportions to estimate possible
Th content of exoplanets relative to the Earth. We then calculate
their total heat production using terrestrial U/Th and K/U ratios.
We obtain a total range of 10�9 to 10�4 Wm�3 which includes
the case of young planets discussed above.

We now consider the possible range of physical properties for
the silicate mantle of terrestrial exoplanets. As explained above,
the evolution of viscosity with temperature is key in determining
the internal temperature of the system. Here we take the same
law as Ricard and Zhong (2006),

gðTÞ ¼ g0 exp
E

Rm T
� E
Rm T0

� �
; ð37Þ

with E ¼ 3105 J mol�1 the activation energy, Rm ¼ 8:314 J mol�1 K�1

the universal gas constant and T0 ¼ 1600 K the reference tempera-
ture at which g ¼ g0 ¼ 1021 Pa s�1 (Karato and Wu, 1993). Once Tint

has been estimated, this law gives the viscosity of the convective
system below the viscous lid, gðTint). Values of the other model
parameters are given in Table 4 based on Tackley et al. (2013) esti-
mations of material properties at depth.

The final step for the construction of the regime diagram is the
comparison of Tint with the solidus temperature at the base of the
TBL, which itself depends on the pressure at that depth. To obtain
the solidus temperature, we relied on the simple analytical expres-
sion for the pressure profile PðrÞ in planetary mantles proposed by
Zeng and Jacobsen (2016),

PðrÞ ¼ PCMB
ln R=rð Þ
ln R=Rcð Þ ; ð38Þ

with PCMB the pressure at the planet core mantle boundary. We used
Eq. (36) to estimate Rc and the results of Sotin et al. (2007) to esti-
mate PCMB (in GPa) as

PCMB ¼ 136 M=MTð Þ: ð39Þ
Table 4
Parameters used for the application of the scaling laws to exoplanets.

Symbol Unit Description

q kg m�3 Density
a K�1 Thermal expansion coefficient
k Wm�1 K�1 Thermal conductivity
j m2 s�1 Thermal diffusivity

The minimum and maximum values of the parameters represent their range of variatio
For coreless planets, we use the approximate solution devel-
oped by Seager et al. (2007),

PðrÞ ¼ 3G
8p

M2

R6 R2 � r2
� �

: ð40Þ

Fig. 6(a) shows the regime diagram for the occurrence of partial
melting as a function of R and H in a coreless planet. We observe
two trends in the evolution of the heating rate (Hmelt) at which par-
tial melting occurs. For R smaller than 	2 103 km, Hmelt decreases
with increasing radius, whereas Hmelt increases with R for radii lar-
ger than 	 2 103 km. The decrease of Hmelt with increasing radius in
‘‘small planets” (R < 2 103 km) is actually not to be interpreted
based on our scaling laws for convection: in these planets the soli-
dus is crossed by the stable conductive temperature profile.
Because the conductive temperature DTH scales as HR2, while the
increase of the solidus temperature is relatively small over the
pressure range relevant for small planets, Hmelt is expected to
decrease as R�2, as observed in the regime diagram. In ‘‘Earth-
like” planets (R > 2 103 km), the increase of Hmelt with the planet
radius can be interpreted based on the scaling laws. First our scal-

ing laws predicts that the TBL temperature scales as DTH Ra
�1=4
H , i.e.,

as H3=4R3=4. Second, the solidus temperature will scale as the litho-
static pressure at the base of the TBL, given at first order by the
product qgdTBL which itself scales as H�1=4R1:45 according to our
scaling law and the variation of g with R deduced from Eq. (36).
Combining the two temperature scales we predict that Hmelt

increases as R0:7, in good agreement with the regime diagram.
The evolution of Hmelt in differentiated planets, showed in Fig. 6

(b), is almost the same as in coreless planets, and the interpreta-
tions given above remain valid. The main difference between the
two diagrams is the systematically higher value of Hmelt in the dif-
ferentiated planet in the conductive regime (i.e., R < 2 103 km).
This can be readily interpreted as the difference between a coreless
planet where the convective fluid has the total thickness R, and a
planet with a core where the convective fluid has the thickness
of the mantle only, d ¼ R� Rc. Because the temperature scales as
the square of the thickness of the convective fluid, a smaller thick-
ness implies a higher heating rate to reach the solidus. For R > 2
103 km, Hmelt is first larger in differentiated planets than in coreless
planets and then becomes smaller. This is due to the faster evolu-
tion of Hmelt in coreless planets where it scales as R0:7 than in differ-

entiated planets where it scales as d0:7 (with d < R).
We also show in Fig. 6 the typical estimates of present day heat-

ing rate in the Earth (with 10�8 Wm�3 as a lower bound) as well as
the higher estimate for Earth-like planets deduced from Unterborn
et al. (2015) (5 10�8 Wm�3). Taking into account reasonable esti-
mates of the likely contribution of secular cooling (	 equivalent
to radioactive heating based on the example of the Earth), and
the evolution of radioactive heating in planets after the formation
of their galaxy (Frank et al., 2014), we can conclude that partial
melting is expected in exoplanets younger than the Earth. In old
planets on the other hand, the decrease of both secular cooling
and heating rate will make partial melting less likely, which will
decrease the probability of a long-term atmosphere.
Minimum value Maximum value Assumed value

3300 11,000 4000
2 10�6 3 10�5 3 10�5

3 30 3
7 10�7 2 10�6 7 10�7

n from the surface value to their value at depth taken from (Tackley et al., 2013).



Fig. 6. Regime diagram giving the conditions for partial melting to occur within (a) coreless planets and (b) differentiated planets, as a function of their radius (R) and heating
rate (H). The blue lines give the threshold heating rate Hmelt at which the base of the TBL reaches the solidus. The grey shaded areas give the present day estimates for
radioactive heating in the Earth and in Earth-like exoplanets (Unterborn et al., 2015). In addition, we report at the top of each panels some typical heating rates for planets at
different ages (McDonough and Sun, 1995; Lebrun et al., 2013; Laneuville et al., 2013; Frank et al., 2014). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Water is not the only liquid environment that may allow for the
apparition and development of life. Considering other candidates
than water will change the definition of the habitable zone and
the range of surface temperature considered (Seager, 2013). To test
the influence of surface temperature on the occurrence of partial
melting, we performed additional calculations with Tsurf ranging
from 0 K to 800 K. We found a rather small impact when varying
this parameter. For example, for R ¼ 104 km, Hmelt is 4
10�7 Wm�3 at 0 K and 1.1 10�7 Wm�3 at 800 K, whereas for
R ¼ 102 km, Hmelt is 2.3 10�6 Wm�3 and 8 10�7 Wm�3 for
Tsurf = 0 K and 800 K, respectively. The interpretation of the result
is rather straightforward: an increase of surface temperature
increases the internal temperature and moves the hot profile closer
to the solidus thus making partial melting easier.
5. Conclusion

In the present study, we have established purely theoretical
scaling laws giving the thermal structure of a volumetrically
heated system as a function of the Rayleigh-Roberts and of the sur-
face mechanical condition (free slip or no-slip) only. Because they
do not introduce any empirical fitting parameters, these laws pro-
vide a robust framework that can be applied to a large diversity of
natural systems. We have shown for example that they success-
fully predict the thermal structure of the Moon’s mantle. Combin-
ing the scaling laws with experimental solidus profiles in
terrestrial planets, as well as reasonable estimates of their mantle
material properties, we have built a regime diagram predicting the
occurrence of partial melting as a function of the radius of the pla-
net, and of the heating rate. We conclude that Earth-like planets
located in the habitable zone and younger than the Earth are able
to generate and maintain an atmosphere through partial melting
and volcanism. Both the reduction of secular cooling and the
decrease of radioative heating as a function of time in old planets
make them less likely to be in the partial melting regime. The pre-
sent results could be enlarged to the case of the mantle of icy plan-
etary bodies heated by tidal dissipation. The estimates of tidal
heating is however a complex and non linear problem that requires
important numerical resources. The approach based on scaling
laws can provide a rather efficient and robust way to tackle this
problem.
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