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Motions in the solid mantle of silicate planets are predominantly driven by internal
heat sources and occur in laminar regimes that have not been systematically
investigated. Using high-resolution numerical simulations conducted in three dimen-
sions for a large range of Rayleigh–Roberts numbers (5× 103 6 RaH 6 109), we have
determined the characteristics of flow in internally heated fluid layers with both rigid
and free slip boundaries. Superficial planforms evolve with increasing RaH from a
steady-state tessellation of hexagonal cells with axial downwellings to time-dependent
clusters of thin linear downwellings within large areas of nearly isothermal fluid. The
transition between the two types of planforms occurs as a remarkable flow polarity
reversal over a small RaH range, such that downwellings go from isolated cylindrical
structures encircled by upwellings to thin interconnected linear segments outlining
polygonal cells. In time-dependent regimes at large values of RaH , linear downwellings
dominate the flow field at shallow depth but split and merge at intermediate depths
into nearly cylindrical plume-like structures that go through the whole layer. With
increasing RaH , the number of plumes per unit area and their velocities increase
whilst the amplitude of thermal anomalies decreases. Scaling laws for the main
flow characteristics are derived for RaH values in a 106–109 range. For given RaH ,
plumes are significantly colder, narrower and wider apart beneath free boundaries
than beneath rigid ones. From the perspective of planetary studies, these results alert
to the dramatic changes of convective planform that can occur along secular cooling.

Key words: convection, pattern formation, plumes/thermals

1. Introduction

Geological activity is a consequence of the convective motions that develop in
the Earth’s mantle. In order to understand how it is generated, forward models of
convection of increasing complexity have multiplied over the years (e.g. McKenzie,

† Email address for correspondence: vilella@earth.sinica.edu.tw
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Convection due to internal heat sources 967

Roberts & Weiss 1973; Christensen & Hofmann 1994; Samuel & Farnetani 2003;
Nakagawa & Tackley 2014). These models are, however, inherently questionable
because of fundamental uncertainties on the sources and amount of energy involved.
According to recent studies (e.g. Jaupart et al. 2015), approximately half of the Earth’s
heat loss today is due to secular cooling at a rate of approximately 100 K per billion
years and the other half comes from the radioactive decay of uranium, thorium and
potassium in silicate rocks of the crust and mantle. Large uncertainties arise when
one attempts to focus on the mantle, since the amount of heat received from the
core, induced by its secular cooling, remains poorly constrained (Labrosse, Poirier &
Le Mouël 2001; Lay et al. 2006; Cottaar & Buffett 2012; Gomi et al. 2013). This
has led to models that can be described as semi-empirical because they rely heavily
on current observations such as the motions of surface plates and the distribution of
internal density anomalies deduced from gravity and seismological studies (Mitrovica
& Forte 2004; Deschamps & Tackley 2008, 2009). These models are focused on
the current convection regime and incorporate most of the available constraints,
implying that they are difficult to test and ill-suited for studies of planetary evolution
back in time (Bello et al. 2014). An alternative strategy has been to try to infer
the controls on convective motions from the observations themselves. For instance,
Deschamps, Rogister & Tackley (2018) have proposed to constrain the presence of
chemical heterogeneities at the base of the Earth’s mantle with the topography of
the core–mantle boundary, while Mitrovica & Forte (2004) have combined models of
Earth’s mantle convection with glacial isostatic adjustment data to infer the mantle
viscosity profile. On Earth, however, one runs the risk of being mistaken because of
the many complicating factors involved, which include the presence of continents or
multiple mantle phase changes (e.g. Gurnis 1988; Guillou & Jaupart 1995; Tackley
1998b; Stixrude & Lithgow-Bertelloni 2011; Rolf, Coltice & Tackley 2012). Thus,
whether all the available observations form a self-consistent set, such that they can all
be accounted for by the workings of a single convective system, is an important issue.
In silicate planets other than Earth, one has to work with fewer observations but, with
a sound understanding of the characteristics of convection, one can still make useful
inferences. For example, the main features of the gravity field and surface topography
on Venus have been explained by a small number of mantle plumes, nine to be
precise, over a uniform background (Smrekar & Sotin 2012). If this inference is
valid, it leads to powerful constraints on the energy budget and interior viscosity of
the planet.

In studies of silicate planets and planetary bodies, one cannot draw only from the
comprehensive body of knowledge that is available for Rayleigh–Bénard convection
because interior motions are largely driven by internal heat sources instead of heat
supplied to the base. Heat sources include long-period radionuclides as well as
contributions from secular cooling and tidal heating, although the latter is only
dominant in some planetary bodies such as the icy satellites of Saturn and Jupiter
(Hussmann et al. 2010; Schubert et al. 2010). In spite of their relevance to planetary
evolution, studies of internally heated convective systems have lagged behind those
for Rayleigh–Bénard set-ups (Goluskin 2015). Moreover, such systems are particularly
interesting from theoretical and physical perspectives because they involve a single
unstable thermal boundary layer that is not affected by motions generated at another
boundary (Goluskin & Spiegel 2012; Seis 2013; Goluskin 2015). For instance, this
may enable us to better capture the dynamics of the thermal boundary layer, especially
the mechanisms generating downwellings and upwellings.

For a fluid layer with internal heating rate H above an adiabatic base, dimensional
analysis of the mass, momentum and energy conservation equations in the Boussinesq
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968 K. Vilella and others

(1903) approximation leads to two dimensionless numbers, the Rayleigh–Roberts
number RaH and the Prandtl number Pr (Roberts 1967; Schubert, Turcotte & Olson
2001):

RaH =
ρgαHd5

ηκk
, (1.1)

Pr=
η

ρκ
, (1.2)

where ρ is the density, g the acceleration of gravity, α the thermal expansion
coefficient, d the thickness of the fluid layer, η viscosity, κ thermal diffusivity and
k thermal conductivity. Note that all fluid properties are taken in the reference state.
The influence of the Prandtl number has only been investigated in a cursory fashion,
despite the very large gap that exists between values for water (Pr ≈ 7), the most
common experimental fluid, and for the solid interior of silicate planets (Pr > 1021).
In the latter, convection is in a laminar regime even at very large values of RaH and
it is appropriate to work in the limit of infinite Pr (Schubert et al. 2001).

For values of RaH up to 105, steady-state motions are organized in periodic
planforms that become increasingly complex as the Rayleigh–Roberts number
is increased. For Pr ≈ 7, these planforms have been explored systematically in
laboratory experiments (Tritton & Zarraga 1967; Kulacki & Nagle 1975; Kulacki
& Emara 1977; Takahashi et al. 2010) and numerical simulations (Ichikawa et al.
2006; Glover & Generalis 2009). Ordered by RaH value, they take the form of
squares, hexagons, both with an axial downwelling, and finally spokes, i.e. hexagons
with an axial downwelling that is star-shaped instead of cylindrical. Their horizontal
wavelength increases with RaH in a phenomenon called ‘cell dilatation’. The same
planforms are observed at larger Pr values, as shown by both laboratory experiments
(3× 102 6 Pr 6 3× 104) and numerical simulations in the infinite Pr limit (Carrigan
1982, 1985; Houseman 1988; Parmentier & Sotin 2000; Limare et al. 2015), but it
seems that cell dilatation does not occur. Moreover, their stability domains appear
to be different from those for Pr ≈ 7, but have not been determined precisely yet
(Davaille & Limare 2015).

Very few studies have been made for intermediate values of RaH in the 105–106

range (Limare et al. 2015), despite the dramatic change of convection planform that
is observed. Most of studies focus on cases with RaH & 106 where convective motions
become time-dependent. In this regime, scaling laws for the thickness of the upper
thermal boundary layer and for the temperature difference across it have been derived
from simple dimensional considerations and have been compared successfully to
numerical and laboratory results (Cheung 1977; Kulacki & Emara 1977; Parmentier
& Sotin 2000; Limare et al. 2015; Vilella & Kaminski 2017). In addition, scaling
arguments and direct numerical simulations in the infinite Pr limit indicate that the
number of downwellings per unit area is proportional to Ra1/4

H (Parmentier & Sotin
2000).

Here, we aim at filling gaps in our understanding of laminar convection in internally
heated horizontal fluid layers above an adiabatic base. This work builds on two
previous studies (Limare et al. 2015; Vilella & Kaminski 2017). Limare et al. (2015)
have compared the characteristics of convective flows in the laboratory at large Pr
values (3 × 102 < Pr < 3 × 104) and in direct numerical simulations in the infinite
Pr limit with exactly the same tank dimensions and temperature-dependent fluid
properties. They have observed the same planforms in both types of studies and
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Convection due to internal heat sources 969

have shown that the thickness and temperature difference across the upper boundary
layer scale as Ra−1/4

H down to surprisingly small values of RaH (≈8 × 105). Vilella
& Kaminski (2017) have focused on the upper thermal boundary layer and have
shown that it hosts large lateral temperature variations even at high RaH values, with
important implications for magma generation in silicate planets. Using high-precision
three-dimensional (3-D) direct numerical simulations in the infinite Pr limit, they
have established scalings for both the horizontally averaged structure and the hottest
regions of the upper thermal boundary layer. In this paper, we use the same numerical
runs and add seven new ones to extract a comprehensive and consistent data set of
thermal and flow characteristics, focusing on cold downwellings for the latter, over a
very large range of Rayleigh–Roberts numbers (5× 103–109). We determine precisely
the various planforms that occur, their domains of existence, their geometrical shapes
and average dimensions. We document how the thermal structure of the fluid layer
evolves as the Rayleigh–Roberts number increases. We also derive scaling laws for
several variables of great geophysical interest, such as the average plume size and
vertical velocity and the amplitude of thermal anomalies in the fluid interior, and
compare them successfully to numerical results. We consider two sets of mechanical
boundary conditions (free slip or rigid) in order to investigate how the interior
convective motions depend on the dynamics of the unstable boundary layer at the
top.

The paper is organized as follows. We begin by describing the various planforms
of convection that are generated at the top of the layer and determine their respective
domains of existence as a function of RaH . We investigate how motions in the
fluid interior are related to the shallow planform. We then determine the main
characteristics of the cold downwellings that are generated at the upper boundary
and that go through the fluid layer and propose simple scaling laws for them. In a
final section, we discuss some implications of our results for studies of the Earth and
other planetary bodies.

2. Numerical simulations
We consider an incompressible fluid layer heated internally and cooled from above

in the Boussinesq (1903) approximation and in the infinite Pr limit. The top boundary
is kept at a constant temperature set to zero and the bottom one is adiabatic. We seek
scaling laws that encapsulate the main physical aspects of the flow in compact form,
which is best achieved for fluids with constant physical properties. Identical boundary
conditions, which are either free slip or rigid, are imposed at the top and bottom.
This is done to investigate the impact of boundary conditions on the dynamics of
the thermal boundary layer (TBL) at the top and on the convective motions in the
fluid interior. Using the following scales, d for spatial coordinates, d2/κ for time, κ/d
for velocity, ηκ/d2 for pressure and finally Hd2/k for temperature, the conservation
equations are written in dimensionless form as follows:

0=∇ · v, (2.1)
0=−∇P+∇2v + RaHTnz, (2.2)

DT
Dt
=
∂T
∂t
+ v · ∇T =∇2T + 1, (2.3)

where v, P and T are velocity, pressure and temperature, respectively, and where
t is time and nz the unit vector in the vertical direction. Calculations were
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970 K. Vilella and others

RaH Grid size Horizontal dimensions Nd2 Nd2

rigid free slip

5× 103 1024× 1024× 64 16 : 16 0.180 0.148
104 1024× 1024× 64 16 : 16 0.210 0.152
1.8× 104 1024× 1024× 64 16 : 16 0.223 –
2.2× 104 1024× 1024× 64 16 : 16 0.230 –
2.8× 104 1024× 1024× 64 16 : 16 0.219 0.137
3.2× 104 1024× 1024× 64 16 : 16 0.230 0.121
3.5× 104 1024× 1024× 64 16 : 16 0.215 0.121
4.5× 104 1024× 1024× 64 16 : 16 – 0.117
5× 104 1024× 1024× 64 16 : 16 0.221 0.117
105 1024× 1024× 64 16 : 16 NA NA
1.4× 105 1024× 1024× 64 16 : 16 NA NA
2.2× 105 512× 512× 64 6 : 6 NA NA
3.2× 105 512× 512× 64 6 : 6 NA NA
6.8× 105 512× 512× 64 6 : 6 1.14 1.12
106 512× 512× 64 6 : 6 1.61 1.19
1.6× 106 512× 512× 64 6 : 6 1.87 1.37
3.2× 106 512× 512× 64 6 : 6 2.38 1.61
5× 106 512× 512× 64 6 : 6 2.70 1.82
6.3× 106 512× 512× 64 6 : 6 2.84 1.85
7.9× 106 512× 512× 64 6 : 6 3.08 1.97
1.4× 107 512× 512× 64 6 : 6 3.46 2.25
108 384× 384× 128 6 : 6 6.49 3.71
3.2× 108 384× 384× 128 6 : 6 9.17 4.68
109 512× 512× 256 4 : 4 14.5 6.87

TABLE 1. Input parameters for the 45 numerical simulations analysed in this paper:
the Rayleigh–Roberts number (RaH), the number of grid elements used in X : Y : Z
directions, the horizontal dimensions X : Y (scaled to the fluid layer thickness). Nd2 is the
dimensionless number of downwellings per unit area at mid-depth (see text). ‘NA’ indicates
that it was not possible to obtain a reliable count of downwellings; ‘–’ indicates that no
calculation was carried out.

performed in 3-D Cartesian geometry using Stag3D (Tackley 1998a, 2008), a
robust code that has been tested thoroughly against several others. Time-stepping
is implemented for the heat equation using a finite volume formulation and the mass
and momentum conservation equations are solved using a finite difference multigrid
technique. The accuracy of this code was assessed by a detailed comparison with
laboratory experiments (Limare et al. 2015) and precision tests are described in the
supplementary material available at https://doi.org/10.1017/jfm.2018.316. We have run
a large number of numerical simulations in order to determine the characteristics
of convection over a wide RaH range (table 1). We made sure that the calculations
allow excellent resolution of the temperature and velocity fields by decreasing the
grid spacing as we increased the Rayleigh–Roberts number. At RaH = 109, the largest
value of the Rayleigh–Roberts number studied, there are nine grid points through the
thermal boundary layer. We also made sure that the horizontal resolution was optimal,
such that the intricacies of the convection planform were adequately accounted for.
We show in the supplementary material that results do not depend on grid size.
In order to minimize lateral edge effects, computational domains had high aspect
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Convection due to internal heat sources 971

ratios (width over thickness) and reflecting vertical boundaries. The smallest aspect
ratio was equal to 4 and was only used for calculations at the largest RaH value
(RaH = 109). In this case, convective motions develop over small horizontal spatial
scales, such that the calculations allowed a representative statistical sampling of the
complex flow field and such that the impact of the lateral boundaries was limited
to narrow peripheral regions. In all other cases, aspect ratios were set at 6 or more
(table 1). In a few cases, we checked that calculations for different aspect ratios
lead to essentially identical results (see the supplementary material for a detailed
comparison).

Calculations are time-dependent and are started from different initial conditions
depending on the RaH value. At low RaH associated with steady-state regimes, the
whole fluid layer is initially at a constant temperature with random, small amplitude,
perturbations. This ensures that the convective planform of the steady-state solution
does not depend on an arbitrary initial spatial pattern. At high RaH , truly steady-state
regimes cannot be achieved and time series of the local values of temperature and
velocity exhibit fluctuations at all times. We therefore consider ‘statistical steady-state’
conditions, such that temperature and heat flux values remain within the same ranges
over several ‘overturn times’. The overturn time is defined to be the time taken by
a fluid parcel to go full circle, from the upper boundary layer to the base of the
domain and then back up. For these calculations (high RaH), the initial condition is
the temperature field for a solution at a lower RaH value, a strategy that significantly
reduces the computation time. We checked that the final result does not depend on
this initial condition in a few cases.

3. Convective planforms
3.1. Preliminary note

Before we describe the convective planforms in more detail, it is useful to recall
how the characteristics of the upper thermal boundary layer depend on the model
parameters, especially on the Rayleigh–Roberts number and on the boundary
conditions. For 105 6 RaH 6 109, the temperature difference and thickness of the
boundary layer, noted 1TTBL and δ, respectively, are such that

1TTBL

Hd2/k
=C1TRa−1/4

H and
δ

d
=CδRa−1/4

H , (3.1a,b)

where C1T and Cδ are proportionality constants that depend on the boundary
conditions (Limare et al. 2015, and see table 2). These relationships can be derived
from local scaling arguments (Vilella & Kaminski 2017), indicating that the dynamics
of the upper boundary layer is locally controlled, independently of the total fluid layer
thickness. Note that thickness δ corresponds to the base of the boundary layer, which
is defined with the horizontally averaged temperature at the point where the convective
flux is maximum. An alternative definition relies on the heat flux through the upper
boundary, such that q = 1T∗TBL/δ

∗ in dimensionless variables. In steady state, heat
conservation requires that q = 1, implying that δ∗ = 1T∗TBL. Limare et al. (2015)
chose the former definition in order to verify that the vertical temperature profile
in the boundary layer conforms to local scalings. By contrast, for RaH 6 105 the
relationship (3.1) is no longer valid, indicating an interdependence between the upper
boundary layer and the fluid interior. Another key result is that regardless of the RaH
value, beneath a rigid top, the boundary layer is significantly thicker and hosts a
larger temperature difference than beneath a free slip surface. Variations of behaviour
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972 K. Vilella and others

Boundary conditions C1T Cδ

Free slip 2.49 5.90
Rigid 3.41 7.08

TABLE 2. Proportionality constants in the scaling laws for the temperature difference
and thickness of the upper thermal boundary layer (3.1) from Limare et al. (2015).

observed when changing the boundary conditions as well as the RaH value are likely
to affect the convective planforms. These differences will be identified and quantified
in the following sections.

3.2. Steady-state regimes
By definition, steady-state regimes are such that the geometrical pattern of convection
does not change over time. It is difficult, however, to prove that true steady state
has been achieved in numerical simulations, since it would require extremely long
computation times. We consider that the solution is steady-state when the pattern of
convection does not change significantly over several overturn times (which has been
defined above). This requires a dimensionless computational time 5–50 with a typical
value of ≈10.

The analysis is carried out in a horizontal plane located at dimensionless height
z= 0.9 above the base. The flow field can be split into a number of ‘convective cells’,
which are defined by one downwelling and its ‘capture’ area, i.e. the area in the upper
boundary layer where fluid flows laterally towards the downwelling. For visualization
purposes, we also use a Voronoi procedure in which each cell is built around one
downwelling and includes all the points that are closer to it than to any other one.

We first discuss results obtained for free slip boundaries. Near the threshold value
of RaH for the onset of convection (RaH,cr = 868), the theoretical analysis by Roberts
(1967) indicates that three planforms are possible, described as 2-D rolls and hexagons
with either an axial upwelling or an axial downwelling. By analogy with Rayleigh–
Bénard systems, we may expect that hexagons with an axial downwelling are preferred
over other ones due to the different thermal boundary conditions at the top and bottom
(Cross & Hohenberg 1993). Our calculations confirm this (figures 1a and 2). The
preferential pattern is made of hexagons with a cylindrical downwelling at their centre,
which have been called ‘down’ hexagons, but there are also a few pentagons and rare
squares and heptagons.

As RaH increases, the planform grades into a spoke pattern (figure 1b–d). This
pattern is still made of hexagons, but features an axial downwelling that is star-shaped
instead of cylindrical, with six spokes perpendicular to the six sides of the encasing
hexagon. The planform evolves progressively as RaH increases, such that spokes
extend to increasing distances from the hexagon centres. This makes it difficult
to determine a threshold value for the Rayleigh–Roberts number that marks the
appearance of this planform unambiguously. We have set the transition at the stage
when the downwellings outlines become noticeably spiky (RaH ≈ 2.8× 104, figure 1c).
This is obviously an approximate procedure, but the range of RaH values for the
transition is less than 0.2 log units, as may be seen from table 1 and figure 1(b,c).

Increasing RaH further, the spokes become increasingly prominent and their tips
eventually reach the sides of the encasing hexagons. This leads to a spectacular
change of flow pattern that marks the onset of time-dependent convection (RaH ≈ 105

figure 1e, f ).
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(a) (b)

(e)

(h) (i)

( f )

(c)

(d)

(g)

FIGURE 1. Convective planform as a function of the Rayleigh–Roberts number (RaH) for
free slip boundaries at the top (z= 1) and bottom (z= 0). The temperature field is shown
for a horizontal plane located at z = 0.9. Blue and red colours correspond to fluid that
is colder and hotter than the horizontal average at that depth, respectively. The colour
scale is not the same for all the panels in order to enhance visibility of the convective
structure. The resolution and the domain aspect ratio are changed for panels (g–i) (table 1)
due to the small dimensions of the convective cells. The black bar beneath each panel
corresponds to the thickness of the fluid layer, i.e. the height of the computation domain.

3.3. The ‘sheet’ regime

For RaH & 105, the flow adopts a new configuration that is observed over a range
of RaH spanning approximately 0.3 log units for free slip boundaries and about
0.7 log units for rigid ones. Instead of continuous upwelling regions encircling
individual downwellings, the flow gets organized in arrays of thin line downwellings
that encapsulate broad upwellings (figure 1f ). These downwellings are no longer
separated from one another by continuous upwelling areas and will be referred to as
‘sheets’. They converge to three-way junction nodes and outline a pattern suggestive
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(a) (b)

FIGURE 2. Convective planform defined from the temperature field in figure 1(a) for
RaH = 5× 103 (a) and in figure 1(e) for RaH = 5× 104 (b). Temperatures are shown as
deviations from the local horizontal average, with blue and red standing for temperature
that is colder and hotter than average, respectively. Black lines in both panels are the
Voronoi tessellation, which indicates a dominantly hexagonal pattern. Thick blue lines in
(b) illustrate how hexagons may form out of a spoke pattern, in that the case the centre
downwelling would no longer be present.

of hexagons, but with a polarity that is the opposite of that for smaller values of
the Rayleigh–Roberts number: they now occur along the sides of polygonal cells
instead of at their centre, which was described as a switch from ‘down’ hexagons to
‘up’ hexagons by Carrigan (1985). This polarity reversal is associated with a marked
increase of cell dimensions. This regime, which will be called the sheet regime, is
of particular interest for reasons that will be explained later. Sheets are similar to
‘line plumes’ emanating from elongated regions in an unstable boundary layer, which
are the predominant flow structure in turbulent Rayleigh–Bénard convection (Adrian,
Ferreira & Boberg 1986; Theerthan & Arakeri 1994; Shishkina & Wagner 2008;
Zhou & Xia 2010).

Two features make the sheet regime distinctive. One is that the length and spacing
of sheets exceed the depth of the fluid layer by large amounts. It is unfortunately
difficult to determine a representative length scale due to the irregular arrangement
of the sheets, their variable lengths and their small number even in a domain that
extends laterally over sixteen times the layer thickness. The other feature is that it is a
time-dependent pattern, albeit one that evolves very slowly, such that the sheets move
horizontally across the domain. The ‘drift’ velocity is smaller than the average vertical
velocity by at least one order of magnitude. The sheet regime is therefore neither
truly steady-state nor truly time-dependent. Nevertheless, for the sake of simplicity,
we consider in the following the sheet regime as a steady-state regime.

3.4. Time-dependent flow regimes
For free slip boundaries, the sheet regime eventually segues into a time-dependent
one with no obvious geometrical pattern when RaH ≈ 3.2 × 105 (figure 1h). The
planform is shown at a dimensionless depth of 0.1 below the top, in the upper part
of the boundary layer (δ= 0.25 in this particular case), corresponding to what would
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be seen by an external observer. It is ill-defined at that level but we shall see later
that it changes as one probes deeper in the fluid and one can determine a meaningful
spacing between adjacent downwellings. Individual sheet segments are unstable and
develop into a number of discrete focused downwellings (figure 1g). The lifetime
of an individual sheet is smaller than the time scale of its lateral drift motion by
approximately two orders of magnitude. Sheets are rarely isolated and belong to
clusters made of nodal points and branches. With three sheets per nodal point on
average, the pattern can be interpreted as a set of ‘truncated hexagons’ (figure 1i for
RaH = 108).

3.5. Rigid boundaries
We use the same procedure and descriptive terms to characterize convective planforms
between rigid boundaries. One notable difference is that downwellings are in larger
numbers than in cases with free slip boundaries (figures 1 and 3). They are also wider.
This second difference is, however, not apparent in figures 1 and 3, which illustrate
the geometrical planforms at shallow depth, and will be shown by measurements of
the cross-sectional area of downwellings in horizontal planes at mid-depth in the fluid
interior. Downwellings are fed by laterally converging flows that extend through the
upper boundary layer, and their size reflects the thickness of that boundary layer,
which is thicker beneath a rigid boundary (table 2).

The planforms are essentially identical to those for free slip boundaries but the
critical RaH values for transitions are not the same (figure 4). This is not surprising
as the critical value of RaH for the onset of convection is larger for rigid boundaries
(RaH,cr= 2772 following Roberts 1967) than for free slip ones (RaH,cr= 868 following
Kulacki & Goldstein 1975). The spoke and sheet regimes are observed over a wider
RaH range than with free slip boundaries. The sheet regime is heralded by a gradual
change of planform illustrated in figure 3(d,e), which is such that gaps between
neighbouring spokes get bridged progressively, leading to a polygonal array of line
downwellings. As in cases with free boundaries, downwellings go from isolated
plumes at cell centres to a continuous network of thin sheets encircling broad
upwellings (figures 3f,g). This can be described again as a switch from ‘down’ to
‘up’ hexagons with a marked increase of cell dimensions. This transition occurs at
RaH ≈ 40 RaH,cr ≈ 105, which is consistent with the careful laboratory observations of
Carrigan (1985).

For RaH > 106 (figure 3i), the planform can be described again as a set of truncated
hexagons, perhaps more convincing than in the free slip calculations. The vast majority
of the downwelling sheets belong to networks that can be traced over large horizontal
distances, with nodal points where three sheets converge. Such three-way junctions
are consistent with a hexagonal pattern, but there are also a very small number of
four-way junctions. Individual sheets typically undergo the following cycle. A new
downwelling forms in the upper boundary layer and gets stretched towards an already
existing sheet due to the horizontal flow that feeds it. Once several (generally three)
downwelling sheets are joined in this manner, downward flow is amplified in the nodal
area and draws fluid from the sheets, which coalesce and eventually disappear. This
can be described as a hexagon-building process that does not go to completion. An
important feature is that sheets are not stable structures as they go down in the fluid,
as illustrated in the following section.

3.6. Vertical structure of downwellings
We have so far chosen to document the convective planforms near the top of
the fluid layer because this is what an observer can see from ‘outside’ (i.e. with
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(a) (b)

(e)

(h) (i)

( f )

(c)

(d)

(g)

FIGURE 3. Convective planform as a function of the Rayleigh–Roberts number (RaH) for
rigid boundaries at the top (z = 1) and bottom (z = 0). The temperature field is shown
for a horizontal plane located at z= 0.9. Blue and red colours correspond to fluid that is
colder and hotter than the horizontal average at that depth, respectively. The colour scale
is not the same for all the panels in order to enhance visibility of the convective structure.
The resolution and the domain aspect ratio are changed for panels (g–i) (table 1) due to
the small size of convective cells. The black bar beneath each panel corresponds to the
thickness of the fluid layer, i.e. the box height. Note that the typical dimensions of the
convective cells that are shown in ( f ) and (g) are very close to one another when scaled
to layer thickness.

observations of the planet surface), but this may not be sufficient for studies of deep
planetary motions. In steady-state regimes, one expects that the same basic planform
is maintained through the layer interior, save for the intricate small-scale fabric of the
spoke pattern. In time-dependent regimes at high values of RaH , we may expect that
the local arrays of thin downgoing sheets that prevail at shallow depth are not stable
over a large vertical extent. To address these issues, we have studied the convective
planforms at several depths in the fluid layer.
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2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

S
h
ee

ts

CR Hexagons Spokes Truncated hexagons

Truncated hexagonsCR Hexagons Spokes Sheets 

FIGURE 4. Diagram showing the change of convective planform as a function of
the Rayleigh–Roberts number (RaH) for both rigid (black bar) and free slip (red bar)
boundaries. Threshold values of RaH for the onset of convection come from stability
analysis (Roberts 1967; Kulacki & Goldstein 1975) and CR stands for conductive regime,
whereas the other transitions are based on the present numerical simulations (figures 1
and 3).

Figure 5 shows how downwellings evolve with increasing depth for cases spanning
the whole range of Rayleigh–Roberts number investigated. The same changes are
observed for both types of boundaries and are illustrated only for free slip ones. In
the steady-state hexagon (figure 5a) and sheet regimes (figure 5c), downwellings keep
the same spacing and shape at all depths, save for the very base of the fluid layer
where they spread laterally. In the spoke regime (figure 5b), however, the star-shaped
structures that prevail at shallow depths gradually coarsen into nearly cylindrical
ones. In time-dependent regimes at high values of RaH (figure 5d,e), sheets split and
merge into a few individual downwellings with nearly equidimensional horizontal
cross-sections.

In steady-state regimes, the planform is essentially the same at all depths, indicating
that the flow structure is stable over the whole thickness of fluid. This contrasts with
the downward change that is observed in time-dependent regimes at high RaH values.
In these cases, the boundary layer characteristics can be derived from local arguments
(Parmentier & Sotin 2000; Limare et al. 2015; Vilella & Kaminski 2017), suggesting
that the shallow convective planform is determined locally, rather than by dynamics
at the scale of the whole layer. The transition from a global to a local control of the
shallow convective planform is correlated with a change in the behaviour of sheets,
which extend to the base of the fluid layer in the regime of the same name (figure 5c)
but become unstable when the Rayleigh–Roberts number exceeds a threshold value.
As sheets get destabilized, they feed nearly equidimensional and isolated descending
plumes that go through the whole fluid layer (figure 5d,e).

4. Thermal structure of convection in the fluid interior

In the following, it will be useful to break down temperature as the sum of a
horizontal average, Tavg, and a fluctuation, θ , also called an ‘anomaly’ to follow
common geophysical terminology. For clarity purposes, temperatures will be made
dimensionless using either the bulk temperature scale 1TH = Hd2/k or the local
horizontal average Tavg.

4.1. Temperature distribution
The different regimes that have been observed are associated with different temperature
distributions that reflect changes in the balance between downwellings and upwellings.
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(a) (b) (c)
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FIGURE 5. Temperature field (T) within and around downwellings at different heights
above base (z = 1 is at the top) for different values of the Rayleigh–Roberts number
(RaH) in a fluid layer with free slip boundaries. All the panels extend over three times the
fluid layer thickness in both horizontal directions. For a given Rayleigh–Roberts number,
all panels are centred at the same horizontal coordinates in order to track the downward
change of downwelling structure.

Figure 6 illustrates how the horizontal temperature distribution varies with depth for
four representative cases. In all cases, independently of the RaH value, the spread of
temperatures increases from zero at the top to a maximum at the base of the upper
boundary layer, and then decreases towards the bottom of the fluid layer. This is due
to internal heating, as shown by the steady increase of the minimum temperature with
increasing depth (the cold profile in figure 6). In the steady-state hexagon regime at
RaH = 5× 103, temperatures are spread across the range due to the nearly equal areas
occupied by upwellings and downwellings. In contrast, the temperature distribution
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FIGURE 6. Horizontal distribution of temperature as a function of depth for different
values of the Rayleigh–Roberts number (RaH) in a layer with free slip boundaries.
Temperatures have been made dimensionless with the bulk scale 1TH = Hd2/k. Solid
black lines correspond to the minimum and maximum temperatures recorded at each depth
(‘cold’ and ‘hot’ temperature profiles), while solid light grey lines correspond to vertical
profiles of the horizontally averaged temperature. Temperature values at each depth are
shown on a white to black colour scale depending on their probability of occurrence. At
RaH = 109, due to the overwhelming areal dominance of upwellings, the vertical profile of
the most probable temperature is essentially identical to that of the horizontally averaged
temperature.
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FIGURE 7. Horizontally averaged temperature profile obtained for two different values of
the Rayleigh–Roberts number (RaH) with either free slip (solid red lines) or rigid (solid
black lines) boundary conditions.

in the spoke regime at RaH = 5 × 104 is markedly peaked due to the large areas of
upward return flow where lateral gradients are small (figure 5b). ‘Peaked’ distributions
are also a feature of time-dependent regimes, with a temperature range that decreases
with increasing RaH . In these cases, the flow can be described as a set of narrow
downwellings going through nearly isothermal fluid. The gradual change from spread
out to increasingly peaked distributions is interrupted in the sheet regime, as shown
for RaH = 1.4× 105 in figure 6, which is yet another peculiarity of this regime.

4.2. Vertical distribution of the horizontally averaged temperature
One significant feature of convection in internally heated fluid layers is that the
horizontally averaged temperature Tavg decreases significantly with increasing depth
below the upper boundary layer (figures 6 and 7). This is in marked contrast to
Rayleigh–Bénard convection where the decrease of Tavg only occurs for a narrow
vertical extent at the base of the boundary layer. We find that the magnitude of the
vertical gradient of Tavg in the fluid interior decreases with increasing RaH , as already
noted by Parmentier & Sotin (2000) and Moore (2008).

Vertical profiles of the horizontally averaged temperature are shown in figure 7
for two values of RaH (106 and 108) and for both types of boundary conditions.
In all cases, the temperature at the bottom of the fluid is significantly smaller than
at the base of the upper boundary layer, implying that the fluid interior is stably
stratified. As RaH increases, the vertical gradient of Tavg at mid-depth decreases in
parallel with the temperature contrast across the upper boundary layer. One notes
again the important influence of the mechanical boundary conditions, which affect
the magnitudes of both the temperature difference across the layer and the interior
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RaH Tvolk/Hd2 Tbotk/Hd2 Ai/d2 1Tik/Hd2 Wid/κ
Rigid Free slip Rigid Free slip Rigid Free slip Rigid Free slip Rigid Free slip

5× 103 0.269 0.188 0.368 0.209 2.33 1.89 0.558 0.372 4.26 10.6
104 0.221 0.163 0.275 0.163 1.80 1.36 0.461 0.324 8.31 19.4
1.8× 104 0.198 – 0.228 – 1.48 – 0.422 – 12.4 –
2.2× 104 0.191 – 0.215 – 1.36 – 0.410 – 14.9 –
2.8× 104 0.185 0.143 0.203 0.126 1.37 0.773 0.399 0.284 17.4 50.7
3.2× 104 0.181 0.142 0.199 0.124 1.25 0.790 0.392 0.286 19.5 54.6
3.5× 104 0.180 0.141 0.193 0.121 1.28 0.709 0.392 0.281 20.4 62.8
4.5× 104 – 0.138 – 0.116 – 0.615 – 0.275 – 78.5
5× 104 0.172 0.137 0.181 0.114 1.07 0.570 0.377 0.272 27.9 87.0
105 0.157 0.118 0.161 0.106 NA NA NA NA NA NA
1.4× 105 0.146 0.107 0.152 0.0984 NA NA NA NA NA NA
2.2× 105 0.132 0.0977 0.140 0.0876 NA NA NA NA NA NA
3.2× 105 0.124 0.0867 0.131 0.0759 NA NA NA NA NA NA
6.8× 105 0.103 0.0722 0.107 0.0628 0.133 0.0730 0.209 0.134 127 191
106 0.0944 0.0657 0.0966 0.0565 0.0913 0.0647 0.189 0.121 148 221
1.6× 106 0.0854 0.0588 0.0869 0.0503 0.0804 0.0550 0.169 0.108 170 260
3.2× 106 0.0734 0.0488 0.0742 0.0412 0.0621 0.0446 0.145 0.0890 213 343
5× 106 0.0661 0.0446 0.0666 0.0373 0.0557 0.0379 0.130 0.0808 250 394
6.3× 106 0.0628 0.0422 0.0632 0.0352 0.0526 0.0359 0.124 0.0765 271 432
7.9× 106 0.0597 0.0398 0.0599 0.0331 0.0484 0.0327 0.117 0.0721 291 469
1.4× 107 0.0527 0.0349 0.0527 0.0287 0.0428 0.0283 0.103 0.0630 349 575
108 0.0336 0.0218 0.0333 0.0176 0.0231 0.0143 0.0660 0.0393 656 1184
3.2× 108 0.0252 0.0165 0.0248 0.0132 0.0154 0.00958 0.0495 0.0297 981 1860
109 0.0195 0.0126 0.0191 0.00990 0.00856 0.00560 0.0383 0.0229 1480 2856

TABLE 3. Some characteristics of convection for the 45 numerical simulations carried out
for this study. Tvolk/Hd2 is the volume-averaged temperature and Tbotk/Hd2 is the basal
temperature. The other variables correspond to the average properties of downwellings
at mid-depth: Ai/d2 is the average horizontal cross-section, 1Tik/Hd2 is the average
temperature contrast and Wid/κ is the average vertical velocity. ‘NA’ indicates that it was
not possible to obtain a reliable count of downwellings; ‘–’ indicates that no calculation
was carried out.

thermal gradient. They also imply different vertical temperature profiles in the lower
parts of the fluid layer, where a sub-layer connects the stably stratified interior to
the adiabatic lower boundary. There, rigid behaviour impedes the lateral spreading
of cold fluid coming from downwellings, leading to a thicker sub-layer than in the
free slip case. In order to characterize how the bulk thermal structure varies with
the Rayleigh–Roberts number, we have determined the volume-averaged and basal
temperatures, noted Tvol and Tbot, respectively, in all our numerical simulations. These
results are reported in table 3 together with others that will be discussed in another
section below.

Values of both Tvol and Tbot are shown as functions of the Rayleigh–Roberts
number in figure 8 for all simulations. Overall, both temperatures decrease steadily
with increasing RaH with a marked change of trend for RaH≈ 105, in conjunction with
the occurrence of the sheet regime. For RaH > 6.8× 105, the data appear to conform
to power-law relationships with RaH and best-fit parameter values are reported in
table 4. The power-law exponents take values that are very close to −1/4, which
is the same value as that for the temperature contrast across the upper boundary
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FIGURE 8. Dependence of (a) the volume-averaged temperature (Tvolk/Hd2) and (b) the
horizontally averaged basal temperature (Tbotk/Hd2) as a function of the Rayleigh–Roberts
number (RaH). Results are shown for both free slip (red) and rigid (black) boundaries.
Symbols indicate the convection planform that is achieved: a hexagonal pattern (square), a
spoke pattern (star), a sheet regime (diamond) and the truncated hexagonal pattern (circle).
Error bars, often smaller than the symbol size, indicate variations that are observed in
time-dependent regimes. Solid lines are best fits to the data with power-law exponents set
equal to −1/4. Values for the various constants in the power-law relationships are listed in
tables 4 and 5. Data with open symbols have not been included in the best-fit procedure.

layer. We thus surmise that Tvol and Tbot also scale as Ra−1/4
H and have implemented

another best-fit procedure with the value of the power-law exponent set to −1/4. As
shown in table 4, this allows excellent fits to the data over a RaH range spanning
more than three orders of magnitude, with deviations that are typically less than
±1 %. Results for the volume-averaged temperature are slightly less satisfactory for
rigid boundaries but remain within ±4 % of the simple −1/4 scaling law. For the
sake of completeness, we have also determined best-fit power-law exponents for the
steady-state regimes (table 5) but they do not account for the data very well as can
be seen from the large errors.

4.3. Temperature fluctuations

Temperature fluctuations at mid-depth in the layer are calculated as departures from
the horizontal average at the same depth scaled to that average. Their distributions are
strongly asymmetric, as shown in figure 9, in marked contrast to those of Rayleigh–
Bénard convection, which are very close to being symmetrical (and Gaussian in the
‘soft turbulence’ regime, e.g. Castaing et al. 1989). Their spread of values decreases
as RaH increases. In time-dependent regimes at large RaH values (figure 9b), they are
markedly peaked with a slightly positive peak value that is due to the broad and rather
homogeneous passive return flows that surround downgoing plumes. The distribution
for the sheet regime stands out of all the others with its two peaks, corresponding to
two well-separated populations for upwellings and downwellings (figure 9a).
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RaH > 6.8× 105

Variable Boundary Exponent Exponent
conditions left to vary fixed

Tvolk/Hd2 free slip 1.796(±0.016)Ra−0.240(±0.001)
H 2.127(±0.035)Ra−1/4

H

rigid 2.267(±0.125)Ra−0.229(±0.003)
H 3.191(±0.111)Ra−1/4

H

Tbotk/Hd2 free slip 1.839(±0.053)Ra−0.252(±0.002)
H 1.770(±0.009)Ra−1/4

H

rigid 2.503(±0.108)Ra−0.235(±0.003)
H 3.201(±0.080)Ra−1/4

H

TABLE 4. Parameters of best-fit power laws for the volume-averaged (Tvolk/Hd2)
and basal (Tbotk/Hd2) temperatures for time-dependent regimes at large values of the
Rayleigh–Roberts number (RaH). Results in the right-hand column have been obtained by
setting the power-law exponents to −1/4.

RaH 6 5× 104

Variable Boundary
conditions

Tvolk/Hd2 free slip 0.5785(±0.290)Ra−0.135(±0.025)
H

rigid 1.329(±0.438)Ra−0.192(±0.033)
H

Tbotk/Hd2 free slip 1.848(±0.704)Ra−0.260(±0.037)
H

rigid 4.891(±2.262)Ra−0.309(±0.090)
H

TABLE 5. Parameters of empirical best-fit power laws for the volume-averaged (Tvolk/Hd2)
and basal (Tbotk/Hd2) temperatures in steady-state regimes at low values of the Rayleigh–
Roberts number (RaH).

5. The characteristics of downwellings

In an internally heated fluid layer, downwellings occur as discrete entities associated
with large deviations from the horizontally averaged temperature. We therefore focus
on them to describe convection and determine some of their characteristics, such as
the average number per unit area, the horizontal cross-section, the average temperature
and the vertical velocity. As discussed above, convective planforms may change with
increasing depth below the boundary layer and we shall restrict our analysis to
structures at mid-depth in the fluid interior, away from the upper thermal boundary
layer. Results for the two types of boundary conditions are qualitatively similar and
we restrict the discussion to free slip cases for the sake of simplicity.

5.1. Detection method
In order to deal with the very large number of results, we have sought for an
automatic procedure to detect downwellings and to determine their lateral dimensions.
The number of downwellings and their average characteristics vary slightly with time
in time-dependent regimes, suggesting that our finite computational domains do not
allow a comprehensive statistical sampling of all the possible flow configurations.
Steady average properties could be obtained by enlarging the computational domain,
which would thus host a larger number of downwellings. An alternative strategy
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FIGURE 9. Distribution of the dimensionless time-averaged temperature fluctuation
θ/Tavg = (T − Tavg)/Tavg in the fluid layer at mid-depth (z= 0.5) for (a) moderate values
and (b) large values of the Rayleigh–Roberts number (RaH) with free slip boundaries at
the top and bottom. Distributions for time-dependent regimes are obtained by stacking a
large number of instantaneous ones.

is to average results obtained at different times. Because our calculations are
time-dependent, the latter is easier to implement and was therefore adopted.

Several methods have been used to detect downwellings and upwellings in
convective systems. Most of these have relied on the temperature field, including the
definition of a threshold value that separates an individual plume from the background
(Labrosse 2002; Zhong 2005; Galsa & Lenkey 2007; Zhou & Xia 2010). Others have
used the convective heat flux, the local dissipation rate or the conditional average of
the velocity on the temperature (Ching et al. 2004; Shishkina & Wagner 2008). The
latter, more elaborate, methods were devised to identify coherent structures in the
complex temperature fields of turbulent Rayleigh–Bénard convection. In our study,
flow is in a laminar regime and downwellings clearly stand out of the background
temperature field so that the former, and simpler, method was sufficient.

We expect that downwellings, which are driven by a downward buoyancy force,
are associated with negative temperature anomalies. In time-dependent regimes,
however, one observes tiny areas with very small negative anomalies that are not
part of coherent structures and that are highly transient. In order to exclude these
small anomalies, we introduce a threshold temperature Tref , related to a ‘detection
parameter’ pc,

Tref − Tavg

Tavg
=−pc (5.1)

so that fluctuations at any depth are properly scaled to the local temperature field.
Obviously, the temperature threshold decreases with increasing pc. As described
above, at some distance of the unstable boundary layer, downwellings take the shapes
of laminar plumes with nearly cylindrical outlines, where temperature decreases to
a minimum value at the downwelling centre. Viewed in a horizontal cross-section,
a plume thus appears as an area where temperature varies radially in a systematic
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FIGURE 10. Number of structures with negative thermal anomalies (N) detected as a
function of detection parameter pc for a horizontal plane located at mid-depth (z=0.5) in a
layer with free slip boundaries. Downwellings are identified using the algorithm described
in the text. In this figure, N is not scaled to the horizontal area in order to show the
total number of hits and its variation as a function of pc. Results are shown for different
values of the Rayleigh–Roberts number RaH . Note the difference between the steady-state
regime at RaH = 5× 103 and the two time-dependent ones at larger values of RaH .

manner. For each threshold temperature value, we have determined contour lines that
close upon themselves. With increasing pc, the procedure selects parts of the plumes
that are increasingly colder, such that it hits the same plume over increasingly smaller
areas. Eventually, of course, the temperature threshold decreases below the smallest
downwelling temperature and the procedure returns a count of zero. This method is
not efficient for the sheet regime due to the contorted structures and their complex
temperature fields, and hence was not used in this regime.

Figure 10 shows the number of structures that are hit as a function of the detection
parameter. In the steady-state regime at RaH = 5 × 103, temperature varies smoothly
in the horizontal plane in a well-defined periodic pattern and negative temperature
fluctuations are always found in coherent structures. In this case, the number of ‘hits’
is constant for 0 6 pc 6 0.6 and drops down sharply for pc & 0.7, which corresponds
to the coldest temperature. Results are more complicated for time-dependent regimes
(figure 10). The number of hits decreases rapidly for small values of the detection
parameter and stabilizes to an almost constant value over a large range of pc values,
typically from close to 0 to 0.4–0.5. The initial decrease is due to the tiny areas with
small negative anomalies that have been mentioned above, because a large proportion
of these small anomalies are detected for very small values of the detection parameter.
In contrast, the pc ‘plateau’ is due to coherent structures that, as explained above, are
expected to be detected over a finite pc interval. The number of hits starts to decrease
above a certain pc value more gradually than in steady-state regimes, due to the more
heterogeneous temperature fields.

The performance of the detection procedure is illustrated in figure 11, which
shows the temperature field at mid-depth for two time-dependent regimes and for
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FIGURE 11. Temperature field for rigid (a,b) and free slip (c,d) boundaries in a plane
located at mid-depth for RaH = 106 (a,c) and 109 (b,d). Results for RaH = 109 are only
shown in part of the horizontal plane, over a dimensionless 2 : 2 square, in order to
facilitate visualization. Note that the dimension of the horizontal plane is different for
RaH = 106 (6 : 6) and 109 (2 : 2). Blue and red colours correspond to material that is
colder and hotter than the local horizontal average, respectively. The colour scale is not
the same in all panels and was chosen to enhance convective structures. Yellow contours
illustrate the downwelling outlines that have been determined using the detection procedure
described in the text. Values of the detection parameter pc were 0.12 and 0.03 for cases
with free slip and rigid boundaries, respectively (see text). The numerical resolution and
domain aspect ratio are not the same for all these calculations (see table 1) and were
changed to deal with the decreasing size of convective cells.

both free slip and rigid boundaries. Downwellings appear as coherent structures
with well-defined radial distributions of negative temperature values. They have
predominantly circular outlines at RaH = 106 and more complex and contorted ones at
RaH = 109. One notes that, away from the downwellings, the background temperature
field is smooth for RaH = 106 and rugged for RaH = 109. In the latter case, the
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temperature field is heterogeneous and includes downwellings of different strengths,
i.e. characterized by different temperature anomalies. A few downwellings have
detached from the upper boundary layer and leave faint ‘ghost’ thermal traces that
are picked up by the detection procedure at small pc values (figure 10). These must
not be included in the tally of downwellings, which is easily achieved by raising
the detection threshold. A snapshot at a randomly chosen time may not capture a
fully representative temperature field and we have repeated the tally several times.
Deviations about the mean are small and will be shown.

Our goal is to obtain robust results for all numerical simulations such that they
can be compared to one another. We therefore need to follow the same procedure
for each calculation in order to avoid potential artefacts due to changing criteria. In
other words, we have to consider the same detection parameter pc for each set of
numerical simulations, and to do so we proceed as follows. Steady-state regimes
are straightforward with stable counts even for very small values of the detection
parameter. For time-dependent regimes, close inspection of the number of hits shows
that there is a local minimum at the lower end of the pc plateau (figure 10). This can
be understood from figure 11, where it may be seen that the temperature has more
than a single local minimum in a few downwellings with contorted outlines. Such
structures would be counted as one at very low pc values and as two, and sometimes
three, at slightly higher pc values. We conclude that the most appropriate choice is
the first local minimum in the number of hits. The uncertainty is very small because
the number of counts in the intermediate pc range does not change by more than
two or three units out of a few tens. A constant value of pc = 0.12 is appropriate
for free slip boundaries at all RaH values. Detection levels are different for cases
with rigid boundaries owing to the different downwelling pattern and an appropriate
choice is pc = 0.03. Figure 11 shows the downwellings that have been identified by
this procedure as well as their outlines (which appear as yellow contours).

5.2. Data
With the method that has just been described, we were able to analyse a large number
of calculations with minimum effort. We have determined the values of four different
variables at mid-depth in the layer: the number of downwellings per unit area, which
allows calculation of the average area of a convection cell made of a downwelling and
its associated return flow, the average areal extent of the negative thermal anomalies
Ai, the average thermal anomaly, 1Ti, and the average vertical velocity, Wi. Values
are made dimensionless using d2 as a scale for area, Hd2/k as temperature scale and
κ/d as velocity scale.

Figure 12 shows results for all calculations save those for the sheet regime
in the intermediate RaH range. Data for steady-state regimes at RaH 6 5 × 104

and time-dependent ones at RaH > 6.8 × 105 clearly define two different sets of
relationships as a function of RaH . The most significant difference lies in the number
of downwellings per unit area, which remains approximately constant in steady-state
cases in contrast to time-dependent ones. Thus, the characteristic spacing between
downwellings scales with the total layer thickness for the former and not for the latter.
This fundamental change of convection characteristics does not occur as a bifurcation
at some threshold RaH value but is achieved in the transitional sheet regime over a
range of Rayleigh–Roberts numbers. All other variables vary monotonically as RaH

increases in both steady-state and time-dependent cases. The size of downwellings,
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FIGURE 12. Dependence of (a) the number of downwellings per unit area (Nd2),
(b) their average horizontal cross-section (Ai/d2), (c) their average temperature contrast
(1Tik/Hd2), (d) their average vertical velocity (Wid/κ) at mid-depth in the fluid layer
as a function of the Rayleigh–Roberts number (RaH). Results are shown for both free
slip (red) and rigid (black) boundaries. Downwellings are identified and contoured using
an automatic procedure described in the text. Different symbols indicate the convection
pattern stable at a given RaH: a hexagonal pattern (square), a spoke pattern (star) and
the truncated hexagonal pattern (circle). Error bars, often smaller than the symbol size,
indicate variations that are observed in time-dependent regimes. Solid lines are best fits
to the data with power laws predicted by the scaling analysis of § 5.3. Values for the
various constants in the power-law relationships are listed in tables 6 and 7. Data with
open symbols have not been included in the best-fit procedure.

as measured by the areal extent of the thermal anomaly, decreases markedly as
RaH increases whilst velocity values increase. Data for the two types of boundary
conditions exhibit parallel trends but differ by significant factors. For example, the
magnitude of thermal anomalies is 35 % larger for rigid boundaries than for free slip
ones. The greatest difference is in the number of downwellings in time-dependent
cases, which is larger by 60 % in rigid cases.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

un
 Y

at
-S

en
 In

st
 S

oc
 S

ci
 P

hi
, o

n 
16

 M
ay

 2
01

8 
at

 0
2:

12
:4

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.316
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
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RaH 6 5× 104

Property Boundary
conditions

Nd2 free slip 0.433(±0.300)Ra−0.120(±0.064)
H

rigid 0.0933(±0.0650)Ra0.084(±0.065)
H

Ai/d2 free slip 152.4(±63.73)Ra−0.514(±0.040)
H

rigid 34.75(±15.43)Ra−0.320(±0.043)
H

1Tik/Hd2 free slip 1.117(±0.252)Ra−0.132(±0.022)
H

rigid 2.218(±0.814)Ra−0.167(±0.036)
H

Wid/κ
free slip 0.00428(±0.00095)Ra0.916(±0.022)

H

rigid 0.00521(±0.00263)Ra0.793(±0.049)
H

TABLE 6. Parameters of empirical best-fit power laws for the characteristics of
downwellings in a planform located at mid-depth for steady-state regimes at low values
of the Rayleigh–Roberts number (RaH).

In order to facilitate comparisons and to evaluate the sensitivity of the variables
to RaH , we have determined power-law relationships using a best-fit procedure, such
that:

N =CN(1/d2)RaβN
H , (5.2)

Ai =CAd2RaβA
H , (5.3)

1Ti =CT(Hd2/k)RaβT
H , (5.4)

Wi =CW(κ/d)RaβW
H , (5.5)

where CN , CA, CT and CW are dimensionless proportionality constants and where βN ,
βA, βT and βW are power-law exponents. Since variables do not follow the same trends
for RaH 6 5× 104 and for RaH > 6.8× 105 (figure 12), we have determined two sets of
parameters which are listed in tables 6 and 7. Overall, power-law relationships allow
very good fits to the numerical results for steady-state regimes and an excellent
fit for time-dependent regimes. The contrasting exponents for steady-state and
time-dependent cases confirm the fundamental difference of convection characteristics
between the two. Limitations of a best-fit procedure where both the proportionality
constant and the exponent are left to vary are well known. Variations of the exponent
can be balanced by changes of the proportionality coefficient, which is likely to
induce large uncertainties on both parameters. In the next section, we use simple
scaling arguments to derive values for the various exponents and compare them to
the numerical results.

5.3. Scaling analysis
We restrict the analysis to time-dependent regimes which are such that the dynamics
of the upper boundary layer is independent of the total fluid thickness (Vilella &
Kaminski 2017). In this case, the boundary layer thickness and the temperature
contrast across it can be derived from local scaling arguments (table 2). We argue
that the interior temperature anomaly 1Ti scales with 1TTBL the temperature contrast
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990 K. Vilella and others

RaH > 6.8× 105

Property Boundary Exponent Exponent
conditions left to vary fixed

Nd2 free slip 0.0410(±0.0060)Ra0.244(±0.009)
H 0.0375(±0.0008)Ra1/4

H

rigid 0.0226(±0.0047)Ra0.309(±0.012)
H 0.0598(±0.0060)Ra1/4

H

Ai/d2 free slip 7.594(±1.864)Ra−0.343(±0.015)
H 12.73(±0.763)Ra−3/8

H

rigid 8.772(±3.719)Ra−0.328(±0.025)
H 19.19(±1.770)Ra−3/8

H

1Tik/Hd2 free slip 3.407(±0.137)Ra−0.242(±0.002)
H 3.875(±0.053)Ra−1/4

H

rigid 4.604(±0.154)Ra−0.231(±0.002)
H 6.294(±0.199)Ra−1/4

H

Wid/κ
free slip 1.319(±0.073)Ra0.370(±0.003)

H 1.216(±0.013)Ra3/8
H

rigid 1.504(±0.116)Ra0.331(±0.005)
H 0.732(±0.053)Ra3/8

H

TABLE 7. Parameters of best-fit power laws for the characteristics of downwellings in a
planform located at mid-depth for time-dependent regimes at large values of the Rayleigh–
Roberts number (RaH). Results in the right-hand column have been obtained by setting
exponents to values derived from scaling arguments (see text).

across the upper boundary layer, which is such that 1TTBL∼ (Hd2/k)Ra−1/4
H (3.1). This

implies that βT = −1/4, which is close to the empirically derived values (table 7,
figure 12c). Setting βT =−1/4, we find that the numerical data for both free slip and
rigid boundaries are within a few per cent of the best-fit relationships. Interestingly,
the proportionality coefficients in the scaling relationships for 1Ti and 1TTBL increase
by almost the same factor when one moves from free slip boundaries to rigid ones,
which confirms that it is indeed the temperature contrast across the boundary layer
that sets the amplitude of thermal anomalies in the fluid interior.

In order to derive values for the other power-law exponents, we take into account
the structure of the flow field. For 106 6 RaH . 108, the flow field may be described
as a set of downwellings that go through the whole fluid layer and show up as
isolated negative thermal anomalies in an almost uniform background. Such a simple
description may not capture all the complex structures that are observed at the largest
values of RaH and we shall evaluate its relevance a posteriori. We thus consider that
each downwelling draws fluid from the upper boundary layer over an area 1S and,
on average, transports heat at a rate which is equal to

Q= q1S=Hd1S, (5.6)

where q=Hd is the heat flux through the top surface. 1S is inversely proportional to
the number of downwellings per unit area, therefore

Q∼
Hd
N
. (5.7)

Downwellings are defined by their average thermal contrast with respect to the average
background temperature, 1Ti. They develop circular cross-sections Ai below the upper
boundary layer, with radius R, such that R2

∼ Ai. The associated velocity scale is

Wi ∼
ρgα1TiR2

η
. (5.8)
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Conservation of the energy flux implies that

Q∼ ρCpWi1TiR2, (5.9)

where Cp is heat capacity. Combining (5.8) and (5.9), one obtains

Wi ∼

(
κρgαQ
ηk

)1/2

, (5.10)

the Stokes velocity scale for a laminar plume (Batchelor 1954), which is an
appropriate scale for the transient plumes generated in time-dependent regimes
(Kaminski & Jaupart 2003). We note that this scale depends explicitly on neither
the temperature anomaly nor the plume cross-section. Substituting (5.7) in the
velocity scale (5.10) together with the Rayleigh–Roberts number (1.1) and power-law
expressions for N (5.2) and Wi (5.5), we obtain

2βW = 1− βN . (5.11)

Within uncertainty, the empirical exponents of table 7 are fully consistent with this
relationship. For free slip cases, for example, βW ≈ 0.370 and βN ≈ 0.244. Similarly,
substituting for (5.7) in (5.9), we obtain

0= βN + βA + βT + βW, (5.12)

which is also consistent with the empirically derived exponents and their uncertainties
(table 7).

In a laminar regime, the radius of the downwelling is set by a balance between
vertical heat advection and horizontal diffusion, such that

R∼
(
κz
Wi

)1/2

, (5.13)

where z is the distance from source, taken here as the distance to the upper boundary.
We determine the velocity at mid-depth, i.e. at a fixed distance equal to d/2, implying
that R∼ (κd/Wi)

1/2 and hence that Ai ∼ R2
∼ κd/Wi. This implies in turn that

βA =−βW . (5.14)

This is again consistent with the data in table 7 and their uncertainties. Using (5.12),
one deduces further that βT =−βN . This is also verified, albeit less satisfactorily for
rigid boundaries than for free slip ones. We shall come back to this point at the end
of this section.

The above relationships between the four power-law exponents are all consistent
with the empirical best-fit values, which supports the validity of the physical
arguments. Substituting for the value of βT (−1/4), we find that βW = 3/8, βA=−3/8
and βN = 1/4. These exponents allow excellent fits to the numerical data with few
exceptions (figure 12). All the data are typically within less than ±2 % of the best-fit
power laws for free slip boundaries (except for Ai where the maximum deviation
rises to ±6 %), but results are slightly less satisfactory for rigid boundaries (table 7).
Departures from the proposed scalings may be attributed to two factors. One is due to
the assumption that the downwellings issue from point sources, whereas they emanate
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992 K. Vilella and others

from a boundary layer of finite thickness. This problem is more severe for rigid
boundary cases due to their thicker boundary layers. Another factor is that the shapes
of the downwellings are not as regular in cross-section as we have assumed, as shown
by figure 5. This is most pronounced for flows between rigid boundaries at large RaH

values (figure 11) but, even in these cases, this only degrades significantly the quality
of the fits to velocity values and to the number of plumes (table 7). Nevertheless, the
power laws for these two variables remain accurate to within ±10 % over the whole
range of Rayleigh–Roberts number investigated.

5.4. Comparison with previous studies
The above results and scaling laws have few equivalents in previous studies. The
number of downwellings was determined by Parmentier & Sotin (2000) for free
slip boundaries. Their values are consistent with the same Ra1/4

H scaling law but
are somewhat larger than ours (by approximately 30 %). This difference may be
attributed to the smaller aspect ratio of their computation domain, which was equal
to either 2 or 1. We have found indeed that the number of downwellings increases
slightly but systematically as the aspect ratio is decreased and argue that this is
due to the preferential generation of downwellings at the walls and corners of the
domain (supplementary material). In fact, there can be little doubt that the results of
Parmentier & Sotin (2000) bear the influence of the vertical bounding walls: for the
same Rayleigh–Roberts number (RaH = 108), the value of Nd2 changes when lateral
boundary conditions are switched from reflecting to periodic.

At large values of RaH , the downwellings are generated in a thin upper boundary
layer, much as those of Rayleigh–Bénard (RB) convection, and it is worthwhile to
compare the two cases. The latter type of convection is controlled by the Rayleigh
number, which is defined as

Ra=
ρgα1T∗d3

ηκ
, (5.15)

where 1T∗ is the temperature difference across the layer and where all the other
variables are identical to those of this paper. In high-resolution numerical simulations
of RB convection, Zhong (2005) found that the number of downwellings increases
approximately with Ra1/3 over a limited range of Rayleigh numbers and seems to
level off for Rayleigh numbers larger than approximately 108. The former behaviour
is reminiscent of that of this paper but the latter is not: as shown by figure 12, the
number of downwellings increases steadily over the whole RaH range investigated.
We note that the same behaviour was observed by Parmentier & Sotin (2000) over
the same RaH range with a completely different numerical method. One might expect
that the number of downwellings cannot increase indefinitely due to a ‘crowding’
effect, but, in this aspect, there is a major difference between basal heated and
internally heated convection. The former has both active upwellings and downwellings
competing for space in contrast to the latter, which only involves active downwellings.
Thus, it may well be that crowding limitations in internally heated convective fluids
become important at values of the Rayleigh–Roberts number that are larger than those
of this paper. One might remark, however, that the fractional area of downwellings
scales as NAi ∼ Ra−1/8

H (table 7), which decreases with increasing RaH .
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6. Discussion and implications for convection in planetary bodies
6.1. General features of internally heated convection

Our numerical simulations illustrate the important effect of boundary conditions on the
downwelling characteristics: for a given regime and hence a given Rayleigh–Roberts
number, downwellings are significantly colder, narrower and wider apart beneath free
slip boundaries than beneath rigid ones. With the four scaling laws that have been
derived here and adding those for the thickness and temperature difference across
the upper thermal boundary layer (3.1) as well as those for the volume-averaged and
bottom temperatures, one can determine all the key characteristics of time-dependent
convection from knowledge of the RaH value. For geophysical/planetological
applications, however, this may not be manageable, partly because calculation of
the Rayleigh–Roberts number is fraught with many uncertainties and partly because
other factors come into play, such as large variations of physical properties as a
function of temperature and pressure and the presence of continents and oceans at
the Earth’s surface. It may be more useful, therefore, to adopt a different perspective;
all the variables of interest here form a self-consistent set, such that knowledge of
any one of them leads to estimates for all the others.

In rocky planets with a solid mantle, it is easier to obtain information on the upper
boundary layer structure than on the deeper flow characteristics. With respect to a
Rayleigh–Bénard set-up, internal heat sources imply a different relationship between
downwellings in the fluid interior and the unstable boundary layer at the top. In
Rayleigh–Bénard convection, a fixed temperature difference is maintained across the
fluid layer, which leads to the formation of boundary layers at both the top and
bottom and to upwellings and downwellings of similar strength. We have briefly
commented on the different temperature distributions that are generated by the two
types of convection. In laminar Rayleigh–Bénard convection at high values of Ra
(&105), the average downwelling velocity WRB and the boundary layer thickness δRB
scale as (κ/d)Ra2/3 and dRa−1/3, respectively (Turcotte & Oxburgh 1967; Galsa &
Lenkey 2007). Note that these relationships may not be valid for Ra values that are
larger than about 107 (e.g. Zhong 2005). One deduces that

WRB ∼
κ

d

(
δRB

d

)−2

. (6.1)

In an internally heated convecting layer, combining the scaling laws derived above
with (3.1) for the boundary layer thickness, we obtain

Wi ∼
κ

d

(
δ

d

)−3/2

. (6.2)

Alternatively, one could derive relationships between velocity and the temperature
difference across the boundary layer because it may be easier to obtain constraints
on temperature than on thickness in some cases. The key point, however, is the same:
the relationship between downwellings and boundary layer structure is fundamentally
different for Rayleigh–Bénard and internally heated systems.

6.2. Subduction zones on Earth
The Earth’s mantle is clearly more complex than the internally heated fluid layer
studied here. Nevertheless, it is worth evaluating our results in this context because
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they illustrate the peculiarities of internally heated systems and the range of dynamical
regimes that can be achieved. Our point is not to claim that our calculations provide
realistic representations of the Earth’s mantle but to argue that one should be careful
when attributing Earth’s characteristic features to a particular mechanism.

The Earth’s present-day convective regime is characterized by a small number of
‘plates’ created at mid-ocean ridges and subducted along trenches that stretch over
large horizontal distances. Surprising features are the large range of plate dimensions
and velocities, which typically span approximately one order of magnitude, and
the complex network of subduction zones which do not conform to any simple
geometrical pattern (Mora et al. 2013). Seismic images of the mantle interior show
that mid-ocean ridges, which are the surface expressions of local upwellings, are
not underlain by deep-seated thermal anomalies, in marked contrast to subduction
zones (e.g. Ritsema et al. 2011). Such characteristics are hallmarks of an internally
heated convective system. Seismological data also indicate that subducting plates
remain whole as they go through the upper mantle. In this regard, the sheet regime
is of special interest because of its large-scale irregular network of narrow linear
downwellings that extend to the base of the layer. The most challenging fact is
probably that Earth seems to be the only rocky planet of the solar system hosting
plate tectonics. Planet Venus, which is comparable in size and composition, has a
convective mantle, as shown by the many volcanoes that dot its surface, but no plates
and no subduction zones (Schubert et al. 2010). Another conundrum deals with when
plate tectonics started on Earth, which remains hotly debated today. Some authors
have proposed that plate tectonics is essentially as old as the planet and others have
argued that its onset coincided with a major compositional change that occurred
3 Gyr ago in the subcontinental lithospheric mantle (Shirey & Richardson 2011).
Answers to both questions may be sought in transient evolutionary models, such that
plate tectonics is only active for a finite length of time. As a planet cools down
and its heat sources get depleted, the Rayleigh–Roberts decreases and the convection
regime and planform are bound to change. The sheet regime serves to emphasize the
dramatic planform transformations that can occur.

Subducting slabs can be linked to the downgoing sheets that have been documented
here. Subduction zones occasionally form triple junctions, such as in the Boso
subduction margin, central Japan (Yujiro et al. 1989), which are strongly reminiscent
of the planforms of this study. Our calculations show that sheets are not the only form
of convection that can occur and that they require values of the Rayleigh–Roberts
number above a certain threshold. Planets with small RaH values, due either to their
small sizes or to their small rates of internal heat production, are not expected to be
in the same regime and would likely involve hexagons with an axial upwelling. By
the same token, the fact that the downgoing sheets of Earth remain whole over the
total vertical extent of the upper mantle provides another constraint: sheets break up
into nearly cylindrical downgoing plumes if the Rayleigh–Roberts number exceeds a
critical value. Thus, plate tectonics, which is the current convection regime on Earth,
may not be the standard regime for all silicate planets and, furthermore, may not
have prevailed early in Earth’s history, as suggested by Jellinek & Jackson (2015)
amongst others. One should also note that the sheet regime exists over a much larger
range of RaH values for rigid boundaries than for free ones, which illustrates the
sensitivity of the superficial convection planform and the bulk flow characteristics to
the mechanical boundary condition at the top.
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7. Conclusion
Three-dimensional numerical simulations of laminar convection in an internally

heated fluid layer cooled from above, illustrate the different superficial planforms
that may be generated. As the Rayleigh–Roberts number increases, we have found
four different planforms described as hexagons with an axial cylindrical downwelling,
hexagons with a spoke-like axial downwelling, networks of linear downwellings
or sheets and finally truncated hexagons. Rigid and free slip boundaries allow the
same planforms but are associated with marked differences in the spacing and
other characteristics of convective motions. In time-dependent regimes at large RaH
values (>106), complex superficial planforms morph into arrays of nearly equally
spaced cylindrical plume-like downwellings with characteristics that depend on the
RaH value in systematic ways. Temperature distributions in both the horizontal and
vertical directions are markedly different from those of Rayleigh–Bénard convection.
Scaling laws for the main variables of interest, including the thermal anomalies,
velocities, dimensions and spacing of descending plumes, have been developed and
are fully consistent with numerical results over a RaH range spanning three orders
of magnitude. They illustrate important differences of boundary layer dynamics with
respect to Rayleigh–Bénard convection.

The sheet regime deserves more attention because of its peculiar characteristics
and also because it illustrates that dramatic reorganizations of flow structure in
rocky planets can be caused by small changes of internal heat release and physical
properties. Much is likely to be gained by investigating how such reorganizations
proceed and how sensitive they are to temperature-dependent fluid properties.
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