日本地球惑星科学連合 2023 年大会 PPS07-14

火星大気高解像度 ラージエディシミュレーションで得られた 強い地表面応力をもたらす流れ場の特徴 Characteristics of the relationship between wind fields and surface stress with high-resolution large eddy simulations for the Martian atmosphere

*村橋究理基¹, 和氣光一¹, 西澤誠也², 石渡正樹¹, 中島健介³, 竹広真一⁴, 杉山耕一朗⁵, 高橋芳幸⁶, 林祥介^{6,7}

> 1. 北大・理, 2. 理研 AICS, 3. 九大・理, 4. 京大 数理研, 5. 松江高専, 6. 神大・理, 7. CPS

2023/05/22 幕張メッセ

はじめに

ダスト巻き上げ量を決定するのは地表面付近の流れ 例えばダストデビルなどの小スケール現象

http://mars.nasa.gov/mer/gallery/press/spirit/20050819a.html

- 火星大気境界層を想定した高解像度ラージエディー シミュレーション (LES) 実験が行われている
 - LES: 数十 m 程度の小スケールの流れまで直接表現する数値計算法
- 本研究では高解像度 LES のデータを解析し、ダスト巻き 上げに関わる地表面応力をもたらす場の特徴を解析する

最も高解像度な火星境界層の LES 計算

- Nishizawa et al. (2016)
 - 広範囲を高解像度で計算し、対流セルと
 ダストデビルを同時に表現することを目指した
 - 計算領域 水平 19.2 km, 鉛直 21 km
 - 空間解像度 5, 10, 25, 50, 100 m
- 孤立渦に関する統計量と
 計算解像度依存性を調べた
 - LT = 14:30 の高度 62.5 m 付近における 孤立渦の半径分布など (LT:現地時刻)
 - 孤立渦の半径が計算解像度によらず 冪乗則に従うことを示した
- ダストを巻き上げに関わる流れ場に ついてよく調べられていない
- 地表面応力の強度や空間分布の様子は示されていない
- 強い地表面応力をもたらす流れ場は示されていない

Nishizawa et al. (2016)

本研究の目的

- ●ダスト巻き上げ量を決定する地表面応力はどのような流れ場構造によってもたらされるか調べる
 - これまでダスト巻き上げに重要な地表面応力が強い
 場所に渦構造を伴っているかどうか調べた (村橋 他, 2018 惑星科学会秋季講演会)
 - 今回は応力が強い場所における流れ場構造の特徴の 詳細と計算解像度依存性を調べた結果を報告する

- 使用モデル: SCALE-LES (Nishizawa et al., 2015; Sato et al., 2015)
- 方程式系:3次元完全圧縮流体方程式
- 地表面フラックス: Louis モデル (Louis, 1979)
- 計算領域
- 水平方向 19.2 km × 19.2 km, 鉛直方向 21 km
- 側面境界に周期境界条件,地形なし
- 空間解像度: 5 m, 10 m, 25 m, 50 m, 100 m
- 熱強制
- Odaka et al. (2001) の1次元計算から得られた地表面温度 及び大気加熱率分布を与える
- 初期条件及び積分時間 (計算解像度で異なる)
- 解像度 5 m 以外
 初期条件:安定成層した静止大気に微細な温度擾乱を加える
 積分時間:LT = 0:00 から 24 時間計算
- 解像度 5 m
 初期条件:解像度 10 m の LT = 14:00 の結果を内挿 積分時間:LT = 15:00 までの1時間計算
- 解析には Nishizawa et al. (2016) と同じ LT = 14:30 の データを用いる

孤立渦の抽出

- 理想的な渦構造に近い風速分布を持つ場所を抽出する - 渦度,中心位置,最大接線風速,最大接線風速半径を決定
- 抽出方法 (Nishizawa et al. (2016) と同じ方法)
- 渦度強度が上位で強度が極大となる計算格子点を選ぶ
 選んだ点ごとに理想的な渦の接線風速分布にフィッティング
 - 理想的な渦: Rankine 渦, Burgers-Rott 渦

解析結果

-3.1e+00

1,000 m

解析結果:孤立渦による応力強度分布

計算解像度依存性:地表面応力分布

解像度 5 m

0

解像度 10 m

解像度 25 m

応力が強くなるほど 応力強度分布比率 渦による比率が高ま る [%] 100 特に解像度 25 m 以 渦によってもたらされる点の存在比率 上では渦による比率 80 解像度 が 50% を大きく超 **0**m 25m **5**m え出し始めることが 60 わかった (log スケール) 10² 応力確率密度分布 40 100m 10¹ 50m 10⁰ 解像度 [e10⁻¹ [J]/[]¹⁰⁻² 5m 20 भ अर्थ अर्थ 10-4 .10m 25m 0 150m 100 0.00 0.01 0.02 0.04 0.05 0.03 10⁻⁵ 応力のランク [Pa] ^{0.01} 0.02 0.03 応力のランク [Pa] 0.05 0.00 0.04

計算解像度依存性:孤立渦による応力

まとめ

- 高解像度火星大気数値シミュレーションにおいて,地表面応力が強い場所について調査した
 - 強い地表面応力をもたらす流れ場の多くは渦によるものであ ることがわかった
- 地表面応力が強い場所の特徴について計算解像度による違いを調査した
 - 計算解像度によらず,強い応力は渦によってもたらされる
 - 特に解像度 25 m 以上ではその傾向が高まる
 - 強い応力のうち過半数が渦によってもたらされる