JpGU2015 2015/5/25 A03, PCG32-08

Time variation of wave structure in Jupiter's south polar region observed with ground-based telescope

Department of Cosmosciences, Hokkaido University Yuya Gouda, Yukihiro Takahashi, Makoto Watanabe

The Cassini image of Jupiter's south polar (890 nm) [*Barrado-Izagirre at al.,* 2008]

Introduction

- In Jupiter's both polar regions in the stratosphere, there is stratospheric haze that formed by scattering aerosol particles.
- Observed by the Hubble Space Telescope (HST) from 1994 to 1999 and by the Cassini ISS in 2000.
 - Wave structure propagated in latitudinal range of 60° - 70° S
 - Wavenumber was 12 14
 - Westward velocity of the wave structure in System III was 0 - 10 m/s
 - \rightarrow It is considered to Rossby wave.

Purpose

- Final goal: Determine whether or not the wave observed at the edge of the stratospheric haze in polar regions is Rossby wave.
 - Previous observation is only year-scale observation and few observational wavelength.

 For preparation, we improve the accuracy of wave structure that was obtained by our observation.

1.6 m Pirka telescope

- We have observed Jupiter since 2011 by the 1.6 m Pirka telescope and Multi-Spectral Imager (MSI).
 - We can obtain images with short time exposure, which enables high special resolution.

The 1.6 m Pirka telescope

<Observation data at 889 nm>

	Angular diameter (arcsec)	Seeing size (arcsec)	Exposure time (ms) × Number
2011/10/19	49.5	2.0-2.6	500 ms × 200
2011/10/29-31	49.6	1.6-2.0	30 ms × 1000
2011/11/16	48.8	2.3-4.0	30 ms × 1000
2014/3/27	38.8	1.9-4.0	30 ms × 1000
2015/4/8, 9, 13	40.6	1.9-3.8	11 ms × 3000
			30 ms × 1000

Analysis

- 1. Position correction of a series of image.
- 2. Plotted the brightness of Jupiter image observed by MSI image at 67° S.
- 3. Composed image taken on different time by same longitude.

Jupiter image

Processing of no value pixel

In some image, which is included no value pixel and it makes quality of wave structure worse. \rightarrow Remove image which include no value pixel.

Correction by seeing

A resolution of wave structure changes with effect of atmospheric seeing (worse than 1.3").

 \rightarrow Reflect seeing in wave structure.

Result

Time variation of wave structure in 2011 and 2014.

2011-2014 @67S, 889 nm

Result

Time variation of wave structure in 2015.

2015 @67S, 889 nm

Wave structure is very similar

Discussion

- Observation data in 2015, we found that wave structure wasn't change in this period.
 - It is possible that the wave doesn't large change about 5 days.
- Comparing image in 2011 to 2015, wave peaks and troughs are at varying locations in a longitudinal direction.

Summary & Future work

-Summary

- Adding some step to analysis, we achieve a good wave structure.
 - We can make out time variation of wave structure.

-Future work

• Using analysis of this method, we will make wave structure of different latitude and wavelength.

 \rightarrow It leads to determine Rossby wave.

Reference

•Barrado-Izagirre, N., A. Sanchez-Lavega, S. Perez-Hoyos, R. Hueso.,2008. Jupiter's polar clouds and waves from Cassini and HST images: 1993-2006, Icarus, 194, 173-185.

•N. Barrado-Izagirre, J. F. Rojas, R. Hueso, A. Sanchez-Lavega, F. Colas, J. L. Dauvergne, D. Peach, and the IOPW Team., 2013. - Jupiter's zonal winds and their variability studied with small-size telescopes

•Li, L.,Ingersoll, A.P., Vasavada, A.R., Porco, C.C., West, R.A., Flasar, F.M., 2006b. Waves in Jupiter's atmosphere observed by the Cassini ISS and CIRS instrument. Icarus 185, 416-429.

•Sanchez-Lavega, A., and R. Hueso., 1998. A system of circumpolar waves in Jupiter's stratosphere,

Geophysical Research Letters, 25, 4043-4046.

•Watanabe, M., Y. Takahashi, M. Sato, S. Watanabe, T. Fukuhara, K. Hamamoto, A. Ozaki (2012), MSI: visible multi-spectral imager for 1.6-m telescope of Hokkaido University, SPIE, 8446, 844620-844620-10.

- ・尾崎彰士 (2012) 北大ピリカ望遠鏡による木星極域ヘイズの観測
- ·木村竜治 (2004) 地球流体力学入門
- ・濱本昂 (2013) スペクトル撮像観測による木星及び土星大気の研究