北大惑星用AOの開発進捗

渡辺 誠, 合田周平(北海道大学), 大屋 真(国立天文台)

北大1.6m望遠鏡用惑星AOの構成

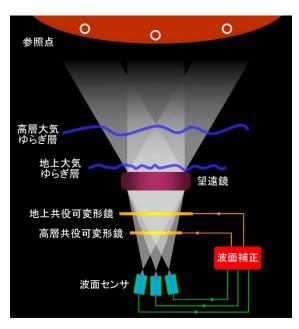
補償光学系の目標 (惑星大気の気象学的な研究のため)

可視光0.5 µmより長波長側で、木星視直径程度の視野(50 秒角)に渡り、

0.4 秒角程度の分解能でモニター観測可能なシステムの構築

波面測定(面光源用波面センサ)

- 惑星自身を、波面参照光源とする。
- 木星、土星などの**縞模様を使った** Correlation Trackingを行う。


波面補正(多層共役(MCAO)化)

- 惑星像面の複数点を参照に波面測定 (複数の波面センサ)。
- 共役高度の異なる**複数の可変形鏡**によって 補正することで補正視野を広げる。

観測装置

● 可視光マルチスペクトル撮像装置MSI

可変形鏡(DM)

Boston Micromachines Multi-3.5 (Thorlabs DM140A-35-UM01)

方式	MEMS
アクチュエータ アレイ	12 x 12 (有効素子数 140)
アクチュエータ ストローク	3.5 μm
アクチュエータ ピッチ	400 μm
有効面サイズ	4.4 mm x 4.4 mm
ミラーコーティング	アルミニウム
機械的反応速度	100 ms (~3.5 kHz)
表面精度	< 30 nm (RMS)
インターフェース	USB 2.0

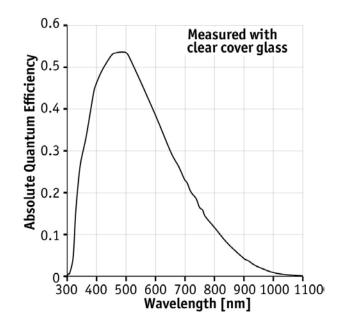
必要ストローク = $2.2 \mu m$ + $(0.6~0.9) \mu m$ = $2.8~3.1 \mu m$

大気ゆらぎ分 望遠鏡収差分

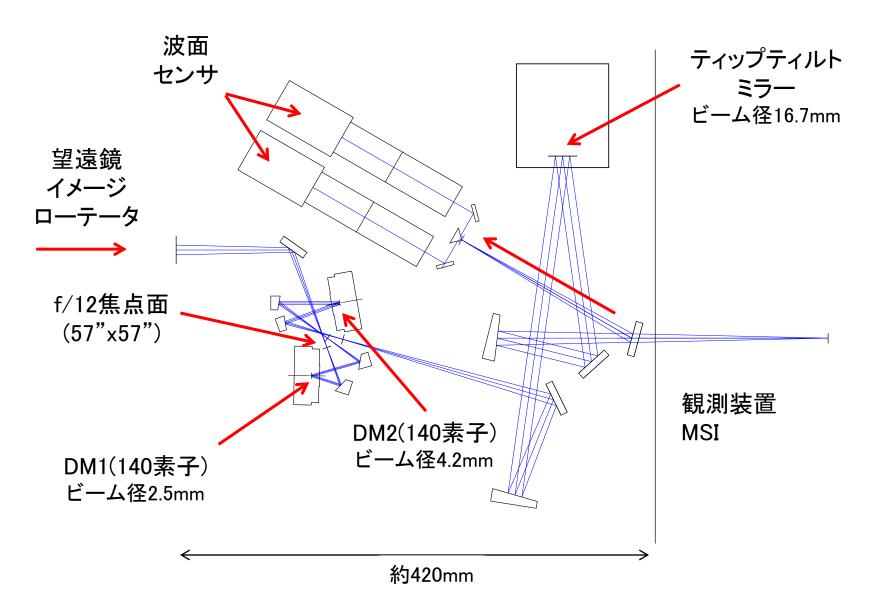
(シーイング3秒角、天頂角45度)

2台使用 地表層+高層(約2.6km)

波面センサ


11x11素子Shack-Hartmannセンサ

Allied Vision Tech GE680


センサータイプ	CCD
画素数	640 x 480
ピクセルサイズ	7.4 μm x 7.4 μm
受光面サイズ	4.74 mm x 3.55 mm
最大フレームレート	205 fps (@フルフレーム)
A/D分解能	12bit
読み出しノイズ	~18e- (RMS)
インターフェース	GigE Vision (1000BaseT)

価格~25万円 4台使用

光学系レイアウト

今後の予定

2016年4月-8月 システム全体と光学系・機械系の設計・製作

2016年9月-11月 光学系・機械系の製作 +システム組立

2016年12月 単一WFSと単一DMでのSCAO閉ループ試験

2017年3月 望遠鏡に搭載してのSCAO試験観測

2017年4-7月 複数WFSと複数DMでのMCAO閉ループ試験

2017年8月 望遠鏡に搭載してのMCAO試験観測