

Development of Nayoro Optical Camera and Spectrograph for 1.6-m Pirka telescope of Hokkaido University

Hikaru Nakao^a, Makoto Watanabe^a, Kazuo Sorai^a, Mahiro Yamada^b, Yoichi itoh^c, Shigeyuki^d Sako, Takashi Miyata

^aDepartment of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, 060-0810, Japan;

^bGraduate School of Science, Kobe university, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; ^cNishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313, Japan; Institute of Astronomy, School of Science, the University of Tokyo, 2-21-1 Osawa, Mitaka, 181-0015 Tokyo, Japan

ABSTRACT

We have developed a visible imager and spectrograph, Nayoro Optical Camera and Spectrograph (NaCS), installed at the Nasmyth focus of the 1.6-m Pirka telescope of the Hokkaido University in Hokkaido, Japan. The optical and mechanical design is similar to that of WFGS2 of the University of Hawaii 2.2-m telescope (UH88), however the camera is newly designed. The spectral coverage is 380-970 nm. The SDSS (g', r', i', z') filters, Johnson (B, V) filters and a replica grism (R -300 at 650 nm) are equipped. We selected a 2k×1k fully-depleted back-illuminated Hamamatsu CCD as a detector. The Kiso Array Controller (KAC) is used as a CCD controller. The first light observation was done on November 2011. We present the design, construction, and performance of this instrument.

INTRODUCTION

Long-term monitoring of active galactic nuclei (AGNs) is a way to investigate the spatially unresolved structure of AGNs. We built a visible imager and spectrograph for AGN monitoring. To resolve broad line profiles of AGN, requirement of spectroscopy is spectral resolution R≧300 (at 656 nm). To monitor the luminosity of AGN as compared with field star, requirement of a field of view is about 10 arcmin. Our main targets are the LINERs and the radio-loud AGNs with about r' ≤15 mag.

Table 1: M	ajor specification of NaCS	_
Spectral coverage	380 — 970 nm (Imaging), 435 — 820 nm (Spectroscopy)	
Field of view	8.4 × 4.7 arcmin	
CCD	Hamamatsu 2k × 1k (pixel scale : 0.247 arcsec pixel ⁻¹)	
Array format	2048 × 1104 pixel (pixel size : 15 μm)	
Broad-band filters	SDSS (g',r',i',z'), Johnson (B,V)	
Order-cut filter	GG435	Figure 1: Picture of NaCS
Replica grism	300 gr mm ⁻¹	1
Spectral Resolution	R ~ 300@656 nm (slit width = 3.0 arcsec)	1
Size	560 mm × 560 mm × 1130 mm	
Weight	75 kg	

Optics

We selected a similar optical design of WFGS2 because of

- Wide field of view (~10 arcmin)
- Wide spectral coverage (380 970 nm)
- · Imaging mode and Spectroscopy mode can be swiched quickly. 830 nm

2k×1k Hamamatsu CCD

·Same type of 2k×4k Hamamatsu CCDs used by HSC of Subaru telescope, but image area is a guarter of them.

·Fully-depleted back-illuminated CCD.

 High quantum efficiency (≧80%) over optical wavelength (440 - 920 nm). ·Four readout channels.

•1104 ×512 pixels (with 15 µm-square pixel) + 48×512 extra pixels (with smaller size) per channel

Kiso Array Controller (KAC)

Figure 6: (left) Picture of 2k×1k CCD, (right) overview of 2k×1k CCD

2048 (512×4)

 Designed for MIT CCDs and SITe CCDs with 16 readout channels originally

Compact and low-cost readout system

. The analog circuit of KAC newly is designed for Hamamatsu CCD.

Figure 7: Picture of KAC of NaCS. The outside dimension is 160 mm ×100 mm

Number of	Readout	Readout time (s)			
sampling	noise (e^{-1})	1×1	2×2	4×4	
1	5.2	5.3	3.7	2.9	
2	4.0	8.7	5.4	3.8	
4	3.8	12	7.1	4.7	

Multiply-sampling (readout reduces the readout oise by sampling each pixel multiply) 2×2 and 4×4 pixel binning

Performances and examples of observations

To observe several AGNs in a night, we confirmed that the total observation time per one AGN (r'=15 mag, S/N =100) is about 20 min (photometry) and about 90 min (spectroscopy).

Table 3: Limiting magnitude (S/N = 10) for broad-band imaging									
	в	V	g'	\mathbf{r}'	i'	z'			
Effective wavelength (nm)	438	545	483	626	767	910			
Effective bandwidth (nm)	94	87	138	138	154	137			
Sky bightness (mag arcsec ⁻²)	21.3	20.5	21.4	21.1	19.9	19.1			
Overall efficiency	0.094	0.306	0.237	0.385	0.250	0.195			
Limiting magnitude *									
$t=5\ s$	18.4	18.5	19.0	19.1	18.3	17.8			
$t=60\ s$	20.3	20.1	20.8	20.8	19.9	19.3			
$t = 300 \ s$	21.3	21.1	21.7	21.7	20.8	20.2			

4 arcsec diameter aperture and 2 arcsec seeing are assumed Magnitude of B and V are Vega magnitude and of g', r', i', and z are AB magnitude

Figure 9: The pseudo-collar image of M88(g': blue, r': green, i': red). The angular size of M88 is 7×4 arcsec. The whole galaxy is contained.

Conclusions

We have developed a visible imager and spectrograph, NaCS for longterm spectroscopic monitor of AGNs. We confirmed that NaCS has the performance required for AGN monitoring which observe several AGNs in a night. NaCS is also used for other astronomical observations such as pre-main-sequence stars, brown dwarfs, asteroids and galactic disks.

readout mode