多波長分光撮像・偏光観測による 木星極域雲・ヘイズの特徴

横田 駿太郎 北海道大学 大学院 理学院 宇宙理学専攻 惑星宇宙グループ 学生番号 20193088

2020年1月29日

木星極域に存在する成層圏ヘイズはメタン吸収波長で明るく輝いており、どの波長帯において も粒子の多重散乱により高い偏光度を示す. ボイジャー探査機・ハッブル宇宙望遠鏡の観測からこ のヘイズキャップは南半球において波構造を形成し, 緯度 67°まで拡大していることが知られて いる [Sanchez-Lavega et al, 1998]. 木星ヘイズのドリフト観測からヘイズの波構造が 0-10 m/s 程度の速度を持つ,惑星ロスビー波であることが示唆されている. [Barrado-Izagirre et al 2003]. 2011 年から 2015 年にかけて行われた地上望遠鏡での観測ではこの波構造が定常的に存在するこ とが改めて確認されたほか、2週間程度での変化が観測されておりヘイズ構造に影響を与える対 流構造の存在が示唆された [合田 2016]. Juno 探査機は 57 日周期の木星極軌道からこれまで十 分に観測されていなかった木星の両極域を観測し, 探査機の周期をまたぐ寿命を持つ定常的なサ イクロンが緯度 80°の領域に存在することを明らかにした [Tabataba-Vakili, 2020]. JunoCam が提供する画像は RGB カラーであるためメタン吸収波長で明るく輝くヘイズを直接確認するこ とはできないが、地上観測との連携によって新しく観測されたサイクロンがヘイズの構造の形成・ 維持に与える影響を明らかにすることが期待できる. 偏光観測は惑星表層や大気の粒子特性の決 定に有効な手法であり、木星の大気ダイナミクスと粒子種の特定を目的とした偏光観測が 1920 年代より多く行われてきた. 地上からの観測では, 木星の偏光度は極域で 10%程度の高い値を示 す一方で, 赤道に近づくにしたがってコンマ数%まで低下する.この極域の高い偏光度は波長に よらないことから高高度に存在するヘイズ粒子の多重散乱によるものであると考えられている. 波長毎の特性として, これまでの分光偏光観測の結果から木星の偏光度はメタン吸収波長で高い 値を示すことが判明している [Schmid et al, 2011]. 地上観測では位相角が 12° 程度に制限され るため観測される偏光度は低くなるが、Pioneer 探査機による位相角 90° からの観測では B, R バンドにおいて極で最大 50%, 赤道域で 10%の高い偏光度が観測された [Smith et al, 1984]. 観 測された偏光度からは散乱光強度の情報を得ることができ、モデル計算と合わせることで粒子特 性に制約を与えることができる. 近年では新しく発見されたホットジュピターなど木星クラスの サイズ・質量をもつ系外惑星の大気組成を解明するための観測が盛んにおこなわれており、同じ くガス惑星である木星の偏光観測はその比較先として注目されている. メタン吸収波長における 分光撮像によるヘイズ波構造の追跡と合わせて偏光撮像観測を行うことで対流圏からの粒子の巻 き上げの有無を明らかにすることが期待できる. これまでの木星偏光観測はスリット分光による 広域の偏光分光観測, R,V,B バンドの広帯域波長フィルターを用いた偏光撮像観測が主であり, 極域ヘイズの空間分布に注目した偏光観測は十分に行われていない. また, これまでの木星偏光 観測は年に数回程度の頻度であり短期間の時間変動を議論するための偏光撮像データは不足して いる. 北海道大学の所有する 1.6 m ピリカ望遠鏡と MSI(可視マルチスペクトル撮像装置) は豊 富なマシンタイムを有し, 観測時間の確保の問題から探査機や大型の地上望遠鏡では難しい数日, 数週間程度の短期間に連続した観測に強みを持つ.

本研究では MSI に備わっている液晶可変フィルターを直線偏光子として活用することで半値 幅 10 nm 程度の分光撮像観測と撮像偏光観測を同時に行う.極域ヘイズの時間変化と偏光度分 布の時間変化を比較し,特定高度に注目した偏光度の時間変化を明らかにすることで,輝度的に 安定している領域の粒子特性の変化の有無を明らかにし,ヘイズ層の形成と維持のメカニズムに 迫る.今回,2020 年 7 月から 10 月までピリカ望遠鏡を使用した木星分光撮像観測と偏光撮像観測 を行い,21 夜の観測で数日間の連続したデータと 1 週間以上間の空いたデータを取得した.典型 的なシーイングサイズは 2-3 秒角であった.

分光撮像観測の結果からは 7/15,7/29-7/30,8/2 において南極域に存在するヘイズの波構造 が数日程度維持されていることが確認された.889 nm で観測される最も上層のヘイズ構造は 727 nm,619 nm においても共通した波形が見られることもある.より深い層の波形になるほど共通性 が失われる傾向があることから木星大気上層における対流構造は 1 bar より上層でのみ影響を及 ぼしていることが示唆された.測定された装置光学系の器械消偏光の値は 800 nm 以長の波長で 著しい現象を起こしており,889 nm の偏光撮像観測結果は信頼性に乏しく参考程度にとどめる必 要がある.高緯度域の偏光度の値は先行研究の値と比べて低く出ており経度方向の変動も 0.1%程 度にとどまっていた.先行研究で見られた雲頂高度に対応すると考えられる緯度方向の偏光度変 動が全ての観測波長で経度方向にも認められた.より高い領域で散乱された光がメタンの吸収の 影響をより受けにくくなると考えるとこの傾向の説明がつくため偏光度を用いて周辺領域と比較 した粒子特性の変化の有無を議論する際にはフラックスの強度を考慮に入れる必要があると考え られる.

目 次

1	Intro	duction	3
	1.1 オ	<星の概要	3
	1.2 オ	、星極域ヘイズ	6
	1.3 粒	立子による偏光	7
	1.4 オ	、星の偏光観測	8
	1.5 矽	F究目的	10
2	Obser	rvation&Method	11
	2.1 Ł	2リカ望遠鏡	11
	2.2 N	ISI(Multi-Spectrum Imager)	13
	2.3 オ	≍星観測	14
	2.4 偏	記光効率測定	17
	2.5 偏	記 光標準星観測	18
3	Analy	zsis	19
	3.1 ir	af による一次処理	19
	3.2 N	IATLAB による処理	20
	3	2.1 模擬画像作成	20
	3	2.2 位置合わせ	22
	3	2.3 木星経度輝度プロファイルの作成	23
	3	2.4 装置偏光パラメータ取得	28
	3	.2.5 木星経度偏光度プロファイルの作成	34
4	Resul	ts	35
	4.1 オ	、星分光撮像観測	35
	4.2 オ	、星偏光撮像観測	39
5	Discu	ssion	41
	5.1 オ	、星分光撮像観測によるヘイズ波構造	41
	5.2 分	↑光撮像観測と偏光撮像観測の比較...............................	42
6	Sum	nary	42
7	Akno	wledgements	43
8	Refer	ences	43

1 Introduction

1.1 木星の概要

木星は太陽系最大のガス惑星の1つであり,地球の外を公転する外惑星である.木星は固体の地 表面を持たない.木星は地球の地球のおよそ 318 倍の質量を持つ一方で密度は地球の 24%程度と小 さく,水素,ヘリウムを主とする厚い大気が体積の大部分を占める.そのため可視光・近赤外で見え る表層は地球型惑星の大気と大きく異なる.木星における大気現象は地球サイズの数倍の直径をも つ高気圧である大赤斑を始めとして非常に大きなスケールを持つものが存在する.このため木星大 気の研究は太陽系の天体の特性を統一的に理解することを試みる比較惑星学の観点から重要である だけでなく,近年観測が大きく進んでいる系外惑星,特に観測難易度の問題から比較的多い割合で 発見されている木星サイズのガス惑星,ホットジュピターの大気を理解する上でも重要な手掛かり となる.表(1)に木星の概要を示す.本研究では木星の経緯度を表示する際,磁場の自転を基準とし た座標系を使用する.

	木星	地球		
赤道半径 (km)	71492	6378		
質量 (g)	1.90×10^{30}	5.97×10^{27}		
赤道半径 (g/cm ³)	1.33	5.51		
公転周期 (yr)	11.86	1		
自転周期(h)(SystemⅢ)	9.9247	23.928		
軌道長半径 (AU)	5.2026	1		
軌道離心率 (°)	0.0485	0.0167		
軌道傾斜角 (°)	1.3029	0.0026		
赤道傾斜角 (°)	3.1	23.44		
大気組成	$H_2(86.4\%), He(13.6\%)$	N_2 (78.08%), O_2 (20.95%)		
	$CH_4 (0.2\%), NH_3 (0.007\%)$	Ar (0.93%), CO_2 (0.04%)		

表 1: 木星の諸元 [15]

木星大気は表 (??) に示される温度の鉛直分布を持つ.0.1 bar 付近を境に温度勾配の符号が切り替わり,下層では温度変化は断熱変化に近くなる [16].1 bar より深い層では大気中に含まれるアンモニア化合物,メタン,水分子が凝結することで雲を生成し,可視光で見える色を形成する.

図 1: 木星大気温度の鉛直分布 [N. Barrado-Izagirre et al, 1998][7]

木星を可視光で観測すると白色の Zone(帯) と褐色の Belt(縞) からなるバンド構造が卓越している. それぞれ高気圧帯と低気圧帯であり, その境目が図 (2) に示す東西風速度分布に対応する. これは図 (3) に示すように低気圧帯の上昇流から駆動されると考えられている.

図 2: 木星大気温度の東西風分布 [A. Seiff et al, 1998][?]

図 3: 木星大気の概観

1.2 木星極域ヘイズ

木星の対流圏上部から成層圏下部にかけては芳香族炭化水素やメタンからなるサブミクロンサ イズの粒子であるヘイズが層を形成している.このヘイズ層は極域で特に顕著に見られ,メタン吸 収波長で見ると明るく輝く領域として捉えることができる.メタン吸収波長を用いることで反射光 の光路差から対流圏上部から成層圏までの特定高度に感度を得ることができる [Karkoschka et al., 1994].最も吸収の強い 889 nm は 0.3 bar より浅い成層圏上部,弱い吸収の 727 nm,619 nm は 1 bar 程度の対流圏上部,連続波長である 756 nm は 10 bar 程度の深さに感度を持つ.図(4),図(5) にハッ ブル宇宙望遠鏡で観測された木星南極域のヘイズ構造とその時間変化を示す.これまでのヘイズ構 造の時間変化から背景の速度が計算されたことによりヘイズ構造が惑星ロスビー波であることが示 唆されている. 2011 年から 2015 年にかけて行われた地上望遠鏡での観測ではこの波構造が定常的 に存在することが改めて確認されたほか,2週間程度での変化が観測されておりヘイズ構造に影響 を与える対流構造の存在が示唆された [合田 2016].

図 4: 木星極域ヘイズ波構造 (889 nm). [A. Sanchez-Lavega et al, 1998]

図 5: 木星極域ヘイズ波構造の経度ピーク時間変化 [A. Sanchez-Lavega et al, 1998]

1.3 粒子による偏光

光を表す電磁波の振動方向は,光の進行方向に垂直である.この振動方向が特定の方向に偏って いる状態を偏光という.太陽光など,黒体放射で表されるような光は,様々な振動方向を持つ光が均 等に集まっているため,絶えず振動方向がランダムに変化している.このような自然光の状態を,無 偏光という.一方,太陽光を反射している惑星の光は,惑星表面,あるいは大気中の粒子によって散 乱された太陽光を含むため,偏光している.偏光の強度,すなわち散乱強度は方向と波長への依存性 を持つ.地球大気で見られるレイリー散乱は粒子サイズが波長と同程度の際に発生する,等方的な 散乱である.もう一つの代表的な散乱であるミー散乱では,波長の十倍程度大きい粒子が前方散乱 を起こす.このように散乱の度合いは粒子の形状,サイズ,組成に大きく関係している.

直線偏光とは電場の振動方向を基準面に沿って2つに分解したとき,位相差無しで振動している 状態を指す.そのため直線偏光している電磁波の振動方向いつも同じ面にある.2つに分解した振動 の位相差が合わない場合,電磁波の振動方向は時間的に変化する.この状態を楕円偏光といい,特に 位相差が π/2 の状態を円偏光という.光の偏光を表すパラメータとしては,ストークスパラメータ がよく用いられる.ストークスパラメータは全フラックス *I*,直線偏光成分 *Q*,*U*,円偏光成分,*V* か ら成る.*Q* は垂直成分に対する水平成分の優位性を,*U* は 45° 傾いた基準面における垂直成分に対す る水平成分の優位性を示す.ストークスパラメータの意味を視覚的に表したものが以下の図(6)で ある.

図 6: ストークスパラメータと電場の振動方向

1.4 木星の偏光観測

偏光観測によって得られる偏光度は天体表面の粒子特性を反映しており,観測波長と天体・太陽・ 地球がなす角度(位相角)の関数となる.このため偏光観測は天体の大気組成を解明する手法の一つ として地上観測・探査機によって行われてきた.近年ではホットジュピターなど木星クラスのサイ ズ・質量をもつ系外惑星の大気組成を解明するための観測が盛んにおこなわれており,同じくガス 惑星である木星の偏光観測はその比較先として注目されている.2014年から2015年にかけて行わ れた McLean らの木星偏光観測では初めて詳細な面分解を可能とした偏光撮像観測が行われた.図 (7)に見られるように特に短波長のBバンドではレイリー散乱を由来すると考えられる偏光度変化 をバンドにわたって確認することができる.

図 7: 広帯域フィルターによる木星偏光撮像観測 [W. McLean et al, 2017]. 右から B,V,R バンド. 下はそれぞれの中央子午線の偏光度プロットを示す.

木星の分光偏光観測は McLean らの他に Schmid らがスリット観測を行っている. これらの先行 研究ではメタン吸収波長における偏光度の増加を示しており, 上層のヘイズ粒子の散乱が偏光度に 寄与していることが示唆されている. いずれの偏光観測でも経度方向の変動にはあまり注目してい ない. また, これらの偏光観測は年に数回程度の頻度でしか行われておらず, 先行研究見られた偏光 度分布が時間変動を明らかにするためには短期間に連続した面分解ができる詳細な観測が求めら れる.

図 8: 木星偏光分光観測結果 [W. McLean et al, 2017].

図 9: 木星偏光分光観測結果 [H. M. Schmid et al, 2011]. 上からフラックス強度, 偏光度 (ストークスパラメータ Q),Q 成分のフラックス強度を示す. 色づいている部分はメタン吸収波長の場所を示す.

1.5 研究目的

本研究では分光撮像・偏光撮像の2つの手法によって極域ヘイズの波構造を追跡し,極域ヘイズ の波構造の寿命や構造を生成する対流構造の有無を明らかにすることを目的とする.これまでの観 測では極域ヘイズの波構造は定常的に存在していることが確認されているが,2週間程度での構造 変化も観測されており,その生成・維持のプロセスは明らかになっていない.ヘイズの波構造に影 響を与える要因として対流雲の発生,小天体の衝突,磁気圏の活動が考えられるがこれらの要因と さらなる観測が必要である.北海道大学の所有する1.6 m ピリカ望遠鏡と MSI(可視マルチスペク トル撮像装置)は観測時間の確保の問題から探査機や大型の地上望遠鏡では難しい数日,数週間程 度の短期間に連続した分光撮像観測を行うことが可能である.木星の偏光度は極域で10%程度の高 い値を示す一方で,赤道に近づくにしたがってコンマ数%まで低下する.この極域の高い偏光度は 波長によらないことから高高度に存在するヘイズ粒子の多重散乱によるものであると考えられてい る. 波長毎の特性として,これまでの分光偏光観測の結果から木星の偏光度はメタン吸収波長で高 い値を示すことが判明している [Schmid et al, 2011]. McLean (2017) らの分光撮像観測によって 初めて面分解が可能な詳細な偏光度分布が示され, 編構造に対応した緯度方向の偏光度変化と短波 長側における偏光度の特徴から偏光度の変化が大気中の水素分子のレイリー散乱に多く起因するこ とが確認された. しかし観測波長の幅が 100 nm 以上と広く,対流圏上部から成層圏下部における 特定高度に感度をもつメタン吸収波長における偏光度特性を議論することは難しい. また,McLean らが行った詳細な偏光撮像観測は年に数回程度の観測にとどまっており数日, 数週間程度の変動を 議論するためのデータは十分に得られていない. 本研究の観測では MSI に備わっている液晶可変 フィルターを直線偏光子として活用することで半値幅 10 nm 程度の狭帯域偏光観測を複数の波長 を用いて数日間隔の高頻度で行う. この撮像偏光観測によって,先行研究の観測波長、頻度では観 測が難しい極域のヘイズの偏光度変化を追跡することが可能である. 本研究では分光撮像観測と同 時に行う撮像偏光観測により極域ヘイズの時間変化と偏光度分布の時間変化を比較し,特定高度に 注目した偏光度の時間変化を明らかにすることで輝度的に安定している領域の粒子特性の変化の有 無を明らかにし, ヘイズ層の形成と維持のメカニズムに迫る.

2 Observation&Method

2.1 ピリカ望遠鏡

ピリカ望遠鏡は北海道大学が有する光学赤外線天体望遠鏡である.主鏡直径は1.6 m で,惑星観測 を目的として設置された望遠鏡としては最大級の大きさを持つ.望遠鏡は北海道名寄市に設置され ており,東経145°北緯44°,標高151 m に位置する.表2に望遠鏡の仕様を示す.

光学系	リッチー・クレチアン
焦点	カセグレン × 1, ナスミス × 2
主鏡有効径	1600 mm
合成焦点距離	$19238{ m mm}({ m F}/12.0)$
視野 (カセグレン)	直径 20 arcmin

表 2: ピリカ望遠鏡仕様

図 10: 天文台外観

図 11: ピリカ望遠鏡

2.2 MSI(Multi-Spectrum Imager)

本観測では MSI(Multi-Spectrum Imager)を使用して木星観測を行った.MSI は, ピリカ望遠鏡カ セグレン焦点に設置された観測装置で,EMCCD カメラと LCTF(Liquid Crystal Tunable Filters) の組み合わせによって素早くマルチスペクトル撮像を行うことができる特徴を持つ.LCTF は 2 つ の偏光素子に挟まれた液晶に電圧をかけることで特定の波長に感度をもつ透過特性を得ることがで きる. この透過波長の切り替えは数秒程度で完了することができ,フィルターホイールと比べて高 速で観測波長を切り替えることができる.MSI は可視 (400-720 nm) と近赤外 (650-1100 nm) の観 測が可能な 2 つの LCTF を備える. 表 3 に装置の仕様を示す.

表 3: MSI 仕様				
波長域	360-1050 nm			
視野	$3.3 \times 3.3 \operatorname{arcmin}(0.389 \operatorname{arcsec}/\operatorname{pixel})$			
フィルター				
·液晶可変フィルター (VIS)	$400-720\mathrm{nm}(\Delta\lambda=10\mathrm{nm})$			
・液晶可変フィルター (SNIR)	$650\text{-}1100\mathrm{nm}(\Delta\lambda=10\mathrm{nm})$			
· 狭帯域フィルター	$365,\!656,\!777,\!889,\!1010\&1100\mathrm{nm}$			
 広帯域フィルター 	U,B,V,Rc,Ic			
検出素子	512×512 pixel EMCCD			
最大フレームレート	0.031s(EMCCD mode)			
	0.122 s(NormalCCD mode)			

図 12: 装置外観

2.3 木星観測

本研究では木星の分光撮像観測と偏光撮像観測の2種類の観測を行った. どちらの観測も LCTF を使用した狭帯域の撮像観測である.LCTF は2つの偏光素子で液晶を挟む構造を持つため LCTF それ自体を直線偏光子としてみなすことができる. 偏光観測を行うためには常光線, 異常光線の強度 を比較する必要がある. そのため光路上に一方の電磁場の位相を半波長分遅らせる特性をもつ半波 長板を挿入し, 半波長板の回転角度を0°,45°,22.5°,67.5° に設定してそれぞれ5枚1セットの画 像を取得した. これにより入射光をそれぞれ0°,45°,22.5°,67.5° 回転させた時と同じ光が LCTF に進入するため, 偏光度の測定に必要な常光線, 異常光線を取得することができる. この常光線と異 常光線の差分をとることで入射光の偏光状態を示すストークスパラメータを計算することができ る. 詳細な計算方法は Analysis の章に示す. 本研究では偏光撮像観測で取得した常光線の画像デー タと半波長板を用いずに撮像した画像データ双方を分光撮像データとしてヘイズ波構造の解析に使 用する. 観測を行った際には各観測の設定に合わせてバイアスフレームとフラットフレームを取得 した. バイアスフレームはアパーチャーを閉じて CCD に光がまったく当たらない状態にした上で 最小露光で 10 枚撮像して取得する. フラットフレームはドーム内に取り付けられたフラット板とフ ラットランプを利用し,CCD のリニアリティを最大に活用できるカウントを得ることができる露光 時間に設定して各設定で 5 枚ずつ画像を取得した.

表4に観測の概要を示す.

		12 4. 街	如例如女		
観測日	観測波長	視直径 (")	Seeing $Size('')$	位相角 (°)	$\mathrm{Exp} \mathrm{time} (\mathrm{s})$
2020/7/15	889, 727, 619, 756	47.6	2.95	0.3	8, 2, 1, 0.488
2020/7/17	889, 727, 619, 756	47.6	2.97	0.7	8, 2, 1, 0.488
2020/7/20	889,727,619,756	47.6	4.35	1.3	8, 2, 1, 0.488
2020/7/29	889,727,619,756	47.3	3.32	3.2	8, 2, 1, 0.488
2020/7/30	889,727,619,756	47.2	2.55	3.4	8, 2, 1, 0.488
2020/8/02	889,727,619,756	47.0	2.02	4.0	8, 2, 1, 0.488
2020/8/09	889,727,619,756	46.6	2.68	5.3	8, 2, 1, 0.488
2020/8/17	889,727,619,756	45.9	3.35	6.7	8, 2, 1, 0.488
2020/8/20	889,727,619,756	45.6	3.02	7.2	8, 2, 1, 0.488
2020/8/22	889,727,619,756	45.4	3.88	7.5	8, 2, 1, 0.488
2020/9/01	889,727,619,756	44.3	2.81	8.9	8, 2, 1, 0.488
2020/9/02	889,727,619,756	44.1	2.02	9.0	8, 2, 1, 0.488
2020/9/03	889,727,619,756	44.0	2.10	9.1	8, 2, 1, 0.488
2020/9/09	889, 727, 619, 756	43.3	3.55	9.8	$8, \overline{2, 1, 0.488}$
2020/9/28	889, 727, 619, 756	40.9	3.15	11.0	$8, \overline{2, 1, 0.488}$

表 4· 観測概要

図 13: ピリカ望遠鏡で撮影した木星画像 (889 nm). 木星中央やや右上の光点は大赤斑, 木星外の光 点はガリレオ衛星.

図 14: ピリカ望遠鏡で撮影した木星画像 (左から 889 nm,727 nm,756 nm, 619 nm). 画像は中心部 160 ピクセル四方の範囲をトリミングしている.

2.4 偏光効率測定

望遠鏡と観測装置中に存在する光学素子によって直線偏光成分の一部が円偏光に変換されること により観測される偏光度が減少する器械消偏光の影響をドーム内に備えられたフラットランプを使 用して測定する.半波長板より主鏡側に直線偏光子を挿入することによって入射光を完全に偏光さ せた状態で偏光観測の手順を行うことにより測定される偏光度が器械消偏光の値となる.

2.5 偏光標準星観測

ピリカ望遠鏡は経緯台式の追尾を行うため,望遠鏡の移動に伴って視野が回転する.この回転を キャンセルするためにカセグレン焦点に設置されているインスツルメントローテーター全体が回 転する. 偏光観測を行う際,鏡の汚れに由来する装置偏光の偏光方向がインスツルメントローテー ターの回転とともに回転するため観測された偏光度からこの装置偏光を除く必要がある.装置偏光 の値は偏光度が非常に小さい無偏光標準星を観測することによって観測される偏光度はインスツル メントローテーター角度によって周期的に変化する.こちらも木星観測と同様にバイアスフレーム, フラットフレームを取得した.

表8に観測した無偏光標準星を示す.

表 5: 無偏光標準星

標準星	赤経	赤緯	V mag	P (%)	$\theta\left(^{\circ} ight)$
Beta Cas	$00h \ 09m \ 10.7s$	$+59^{\circ}08'59''$	2.3	0.04	72.5
Zeta Peg	$22h \ 41m \ 27.7s$	$+10^{\circ} 49' 53''$	3.4	0.05	40.0

無偏光標準星の観測から求められたパラメータを用いることにより装置偏光を補正するが,この ままでは装置系の偏光方向がどちらを向いているかわからない.そこで偏光方向が既知の強偏光標 準星を観測し,観測された偏光度をカタログの値と比較することで装置座標系の偏光方向から天体 座標系の偏光方向へ変換する.天体の直線偏光角 θ_p と観測された直線偏光角 θ_{obs} には以下の式 1 または 2 のいずれかの関係がある. $\theta offset$ は装置系の偏光方向である.

$$\theta_p = \theta_{obs} + \theta_{offset} \tag{1}$$

$$\theta_p = -\theta_{obs} - \theta_{offset} \tag{2}$$

表9に観測した強偏光標準星を示す.

標準星	赤経	赤緯	V mag	P (%)	$\theta\left(^{\circ} ight)$
HD 7927	$01h\ 20m\ 04.9s$	$+58^{\circ} 13' 54''$	5.0	3.32	92.1
HD 19820	$03h \ 14m \ 05.4s$	$+59^{\circ} 33' 48''$	9.1	4.82	115.4

表 6: 強偏光標準星

図 15: ピリカ望遠鏡で撮影した無偏光標準星 Beta Cas の常光線画像.

3 Analysis

本研究の解析では,取得した画像データの一次処理に iraf を,それ以降の処理に MATLAB を利用した.この章では解析の流れを記述する.

3.1 iraf による一次処理

iraf による一次処理では観測装置由来のムラを補正する. 観測で取得された画像データには,bias と呼ばれるカウント値が観測対象からくる光による信号に足されているほか, 各ピクセル間の感度 のムラが残っている.bias を除くために,bias 補正を, ピクセル間の感度ムラを補正するためにフラッ ト補正を行う. バイアス補正では,CCD に光を阻止に当てない状態で最短露出時間で取得した bias フレームと呼ばれる画像 10 枚のカウント, 中央値でスタックしたフレームを作成し, 取得した火星 画像から引き算を行うことで bias を除く. フラット補正では CCD が飽和しない程度に露出時間を 調整した上で, フラットランプの光を当てたドーム内に設置された拡散版に望遠鏡を向けて取得し たフラットフレームを使用する. 観測時と光学系の設定を同じにした上で,5 枚ずつ取得したフラッ トフレームを bias を引いた後に中央値でスタックし, 規格化を行う. 規格化後のフラットフレーム で bias 補正後の画像に割ることで感度ムラが補正される. 以上の操作をピクセル毎のカウントの式 で表すと以下のようになる.

 $reductedImage = \frac{rawImage - biasimage}{flatImage - biasimage}$

3.2 MATLAB による処理

3.2.1 模擬画像作成

一次処理を施した画像に対し,木星の緯度,経度情報を取得するため,観測時のパラメータから木 星の模擬画像を作成した.パラメータの取得には太陽系天体の運行を表示する NASA の Web サイ ト, HORIZONS(https://ssd.jpl.nasa.gov/horizons.cgi) を利用した.取得したパラメータは,木星-地球間の距離,太陽直下点の経緯度,観測直下点の経緯度,視直径,位相角,見かけの地軸の傾きであ る.緯度,経度で表される木星中心を原点とする極座標系から,CCD の受光面と受光面に垂直な軸 からなる xyz 座標系への変換を行う.各ピクセル毎の緯度,経度を計算し,原点からピクセルに対応 する経緯度へ向かうベクトル Pと,原点から太陽へ向かうベクトル L_sの内積と,地球へ向かうベク トル L_o との内積がどちらも正になるピクセルの値を 1,それ以外を 0 にすることで,CCD 上で木星 にあたる部分のみ 1 の値を持つ模擬画像を作成した.模擬画像の例を図 (16) に,ピクセル毎の緯度 経度を図示した画像を (17) に示す.

図 16: 位置合わせのための模擬画像

図 17: 左:木星緯度画像右:木星経度画像

3.2.2 位置合わせ

作成した模擬画像を用いて,一次処理済みの画像の位置合わせを行った.作成した模擬画像を水 平,垂直にそれぞれ1ピクセルずつシフトさせながらカウント値の合計を求め,合計が最も高くなっ たシフト量を適用して画像の中心を合わせた.シフト量とカウント値の関係を以下の図 (18) に示 す.観測データは同じ撮影条件で5枚連続取得したため全て同様に位置合わせの操作を行った上で 重ね合わせた.

図 18: シフト量とカウント値の関係

図 19: 位置合わせ後の木星画像

3.2.3 木星経度輝度プロファイルの作成

分光撮像のデータからヘイズの外縁の経度である南緯 68°のピクセルを抽出し,木星の経度輝度 プロファイルを作成した.このとき,ヘイズの存在に由来する変化量に比べて木星外縁部の周辺減 光が非常に大きいため周辺減光プロファイルを使用して補正を行った.周辺減光プロファイルは観 測期間中の木星画像を観測時の等級,視直径を補正した上で全て加算平均を施した画像から同様に 南緯 67°のピクセルを抽出して作成した.図 (20) に 2020/07/30 における 1 枚画像から取得した周 辺減光補正前の経度輝度プロファイルを,図 (21) に周辺減光プロファイルを示す.

図 20: 経度輝度プロファイル (2020/07/30 727 nm)

図 21: 周辺減光プロファイル

周辺減光を補正した輝度プロファイルは図 (22) のようになる. この輝度プロファイルを時間方向 に平均して最終的な輝度プロファイルを作成した.

図 22: 周辺減光補正後の経度輝度プロファイル (2020/07/30 727 nm)

図 23: 時間毎に並べた経度輝度プロファイル (2020/07/30 727 nm)

図 24: 経度輝度プロファイルの時間平均 (2020/07/30 727 nm)

3.2.4 装置偏光パラメータ取得

LCTF とは別の直線偏光子を光路上に挿入してドームフラットを偏光観測することにより器械 消偏光の値を求めた. 偏光観測のデータではI(x)を半波長板の回転角 x° での異カウントの値とす ると, 以下の計算式 (??),(??),(3),(4) から規格化されたストークスパラメータ Q/I, U/Iを計算でき る. 以下,q = Q/I, u = U/Iとする.

$$\frac{Q}{I} = \frac{I(0) - I(45)}{I(0) + I(45)} \tag{3}$$

$$\frac{U}{I} = \frac{I(23) - I(68)}{I(23) + I(68)} \tag{4}$$

器械消偏光の偏光効率 p_eff は式 (??),(??) の $\frac{Q}{I}, \frac{U}{T}$ から計算される直線偏光度 $P = \sqrt{q^2 + u^2}$ に等しい. 図 (25) に LCTF(SNIR ユニット) の器械消偏光値のプロットを,表 (7) に木星観測に使用 した波長の器械消偏光の値を示す.

図 25: 装置系の偏光効率測定結果 (SNIR ユニット)

観測波長[nm]	p_{eff} [%]
619	99.77
727	99.51
756	99.63
889	17.63

表 7: 装置系偏光効率

測定結果から 800 nm 以降で偏光効率が急減してしまうことが判明した. このため, 本研究の偏光 観測結果では 889 nm の値は参考程度にとどめる.

偏光度が既知の無偏光標準星・強偏光標準星の観測データから LCTF 使用時の MSI の装置偏光 パラメータを取得した. 無偏光標準星の画像から計算されたストークスパラメータ q,u はカセグ レンローテーターの角度 φ の値に応じてサインカーブの形を成す. 装置偏光のストークスパラメー タを $q_{instrument}, u_{instrument}$ として無偏光標準星を偏光観測した場合に観測されるストークスパラ メータ q_{0}, u_{0} は以下の式 (5),(6) で表される. このストークスパラメータは装置の器械消偏光の影響 を受けている. これを補正するために q_{0}, u_{0} 装置の偏光効率 p_{eff} で割る.

$$q_0 = q_{instrument} \cdot \cos\left(2\varphi\right) - u_{instrument} \cdot \sin\left(2\varphi\right) \tag{5}$$

 $u_0 = u_{instrument} \cdot \sin\left(2\varphi\right) + u_{instrument} \cdot \sin\left(2\varphi\right) \tag{6}$

$$q_0' = \frac{q_0}{p_{eff}} \tag{7}$$

$$u_0' = \frac{u_0}{p_{eff}} \tag{8}$$

無偏光標準星の観測はカセグレンローテータをおおよそ 10° ステップで 180° 回転させてデータを 取得しているため観測データに式 (5),(6) の式をフィッティングを行い *qinstrument*,*uinstrument* を導 出した. 図 26-??に無偏光標準星の観測データとフィッティングの結果を示す.

図 26: 無偏光標準星 Beta Cas による装置偏光パラメータのフィッティング結果 (619 nm)

図 27: 無偏光標準星 Beta Cas による装置偏光パラメータのフィッティング結果 (727 nm)

図 28: 無偏光標準星 Beta Cas による装置偏光パラメータのフィッティング結果 (756 nm)

図 29: 無偏光標準星 Beta Cas による装置偏光パラメータのフィッティング結果 889 nm)

表 8: 装置偏光パラメータ				
観測波長	$\mathrm{Q}\left[\% ight]$	U [%]		
619	-0.52	-0.40		
727	0.62	0.07		
756	0.47	0.10		
889	0.54	0.15		

導出された q_{instrument},u_{instrument} の値は装置系の偏光方向を基準とした値である. これを天体 系, すなわち天の北を基準とした偏光方向に補正するために偏光方向が既知の強偏光標準星の偏光 観測データからストークスパラメータ q_{st}, u_{st} を計算した. このストークスパラメータも器械消偏 光の影響を除くために偏光効率 p_{eff} で割る.

$$q'_{str} = \frac{q_0}{p_{eff}} \tag{9}$$

$$u_{str}' = \frac{u_0}{p_{eff}} \tag{10}$$

器械消偏光を補正した q'_{st}, u'_{st} は前述の装置偏光 $q_{instrument}, u_{instrument}$ の値が乗っているためこ の装置偏光を以下の式 (11),(12) に従って補正を行う.

$$q_{st}^{\prime\prime} = q_{st}^{\prime} - \{q_{instrument} \cdot \cos\left(2\varphi\right) - u_{instrument} \cdot \sin\left(2\varphi\right)\}$$
(11)

$$u_{st}'' = q_{st}' - \{u_{instrument} \cdot \sin(2\varphi) + u_{instrument} \cdot \sin(2\varphi)\}$$
(12)

直線偏光の偏光方向 θ は以下の式 (13) で表される.

$$\theta = \frac{1}{2} \arctan\left(\frac{u_{st}''}{q_{st}''}\right) \tag{13}$$

この偏光方向 θ と強偏光標準星の偏光方向 θ_{star} には以下の式(14)または式(15)の関係がある. θ_{offset} は装置偏光の偏光方向のオフセットである.

$$\theta_{star} = \theta + \theta_{offset} \tag{14}$$

$$\theta_{star} = -\theta + \theta_{offset} \tag{15}$$

式中の θ の符号を決定するために異なる 2 つの強偏光標準星のデータを用いた. 表 (9) に得られた 装置の偏光方向オフセットを示す.

観測波長	$\theta_{off} \left[^{\circ}\right]$
619	44.60
727	149.29
756	146.26
889	148.65

表 9: 装置の偏光方向オフセット

3.2.5 木星経度偏光度プロファイルの作成

偏光観測の画像解析では画像の各ピクセルに対して,ストークスパラメータを計算した.計算方法と装置偏光の補正は式 (5)-式 (12) と同様である. その後 θ_{off} の値を用いて装置座標系のストークスパラメータを式 (16)-式 (18) に従って, 天球座標系への変換する.φ はカセグレンローテータの 位置角である.

$$\theta = \theta_{offset} - \varphi \tag{16}$$

$$q''' = q'' \cdot \cos\left(2\theta\right) + u'' \cdot \sin\left(2\theta\right) \tag{17}$$

$$u''' = u'' \cdot \cos\left(2\theta\right) + u'' \cdot \sin\left(2\theta\right) \tag{18}$$

座標変換後のストークスパラメータ q^{'''}, u^{'''} から偏光度 P を計算した.

$$P = \sqrt{q'''^2 + {u'''}^2} \tag{19}$$

4 Results

本章では1節で木星分光撮像観測によるヘイズ波構造について,2節で木星偏光撮像観測による 結果を示す.

4.1 木星分光撮像観測

図 31: 2020/07/29 輝度プロファイル

図 32: 2020/07/30 輝度プロファイル

7/30 の輝度プロファイルは時間が大きく異なるデータを平均している. そのため図 (33) に見られるように経度 150° 付近と 210° 付近の変動は実際の変動でない可能性に留意する必要がある.

図 33: 2020/07/30 輝度プロファイル

図 34: 2020/08/09 輝度プロファイル

図 35: 2020/08/09 輝度プロファイル

4.2 木星偏光撮像観測

図 36: 2020/07/29 偏光度プロファイル

図 39: 2020/08/09 偏光度プロファイル

5 Discussion

5.1 木星分光撮像観測によるヘイズ波構造

分光撮像観測の結果のうち 20° 程度の周期をもつ変動はヘイズの波構造の一部を示していると 考えられる. 観測時のシーイングサイズは 2-3 秒程度であり,これは南緯 67°の中心経度付近で 10 – 15° 程度に相当する.このため観測された波形のうち 10° 未満の周期の経度方向の変動は地 球大気の影響を考慮すると信頼できる構造ではないと考えられる.変動の振幅はどの観測日でも 0.98-1.02 の範囲に収まっており 2014-2015 年の観測結果と矛盾しない.7/30 の波形からは 150° 付近の負のピークが突出しているが,この経度付近では時間の異なるデータの切れ目にあたるため 実際の変動幅よりも大きく減光しているように見えると考えられる.230° 前後に見られる谷間は 8/02 にも存在しているように見える.8/02 の経度 220°, 240° の明るいピークは 8/09 でも同様に 確認ができる.

異なる高度に感度を持つ波長毎の比較では 7/15, 7/30, 8/02, 8/09 の結果において 889 nm と 727 nm に共通した波構造が認められる. これらの構造と 619 nm の構造は 8/02 の 240° 付近に見 られるような共通したピークも認められるものの 889 nm と 727 nm ほど似ているわけではない. このためより深い層の波形になるほど共通性が失われる傾向があることから木星大気上層における 対流構造は 1 bar より上層でのみ影響を及ぼしていることが示唆される.

5.2 分光撮像観測と偏光撮像観測の比較

これまでの木星偏光度分布の先行研究では緯度方向の変動と極域の高緯度が議論されてきた一方 で, 経度方向の偏光度変化にはあまり注目されていなかった. 7/29, 7/30, 8/2 の結果から経度方向 にも1%未満の変動が確認できる.7/30における100°付近と120°付近の輝度プロファイルと偏光 度プロファイルは共通した変化が見られるように輝度プロファイルと偏光度プロファイルの経度分 布は比較的共通した傾向がみられる. McLean らの R, V, B バンドを使用した偏光撮像観測では観 測波長が長いほど緯度方向の変動. すなわち帯構造に対応した雲頂高度の違いを反映する偏光度の 変動幅が小さくなっている.経度方向にもフラックス強度の違いが表しているヘイズや雲の高度に 偏光度が影響を受けているように見える. より高い領域で散乱された光がメタンの吸収の影響をよ り受けにくくなると考えるとこの傾向の説明がつく. そのため偏光度を用いて周辺領域と比較した 粒子特性の変化を有無を議論する際にはフラックスの強度を考慮に入れる必要がある. 波長毎の偏 光度の比較では参考程度にとどめる必要がある 889 nm を含めて, より強いメタン吸収のある波長 ほど偏光度が高く検出される傾向がある.これは 2003 年の Schmid らのスリット分光観測の結果 と矛盾しない. 一方で 730 nm, 890 nm の観測波長を使用した Schmid ら, B, V, R バンドを用いた McLean らの観測結果では赤道から 20°離れた緯度 68°付近の領域では直線偏光度の値は 5%を記 録している一方で本研究の 889 nm を除く 727 nm, 619 nm, 756 nm で 0.2%程度の値にとどまっ ている.

8/9 の 727 nm の偏光度が他の観測日のデータと比べて突出している.この結果は常光線と異常 光線を同時に取得することができない LCTF による偏光観測において天候の安定性が極めて重要 であり半波長板の回転時に明るさを変化させる原因である薄雲の通過があったと考えられる.直線 偏光子を使用した偏光観測に求められる天候条件の厳しさが現れた結果となった.

6 Summary

本研究では分光撮像観測と同時に行う撮像偏光観測により極域ヘイズの時間変化と偏光度分布の 時間変化を比較し,特定高度に注目した偏光度の時間変化を明らかにすることで輝度的に安定して いる領域の粒子特性の変化の有無を明らかにすることを試みた.2020 年 7 月から 10 月までの期間 においてピリカ望遠鏡を使用した木星分光撮像観測と偏光撮像観測を行い,21 夜の観測で数日間の 連続したデータと 1 週間以上間の空いたデータを取得した. 典型的なシーイングサイズは 2-3 秒角 であった.

分光撮像観測の結果からは7/15,7/29-7/30,8/2 において南極域に存在するヘイズの波構造が数日 程度維持されていることが確認された.889 nm で観測される最も上層のヘイズ構造は727 nm,619 nm においても共通した波形が見られることもある.より深い層の波形になるほど共通性が失われ る傾向があることから木星大気上層における対流構造は1barより上層でのみ影響を及ぼしている ことが示唆された.測定された装置光学系の器械消偏光の値は800 nm 以長の波長で著しい現象を 起こしており,889 nm の偏光撮像観測結果は信頼性に乏しく参考程度にとどめる必要があるが輝度 プロファイルと偏光度プロファイルの比較ではフラックスの強度と偏光度の大きさに共通した変化 が見られた.このため偏光度を用いて周辺領域と比較した粒子特性の変化の有無を議論する際には フラックスの強度を考慮に入れる必要がある. 高緯度域の偏光度の値は先行研究の値と比べて低く 出ており経度方向の変動も 0.1%程度にとどまっていた.

7 Aknowledgements

この論文を作成するに当たり、多くの方々にお世話になりました.

指導教官の佐藤 光輝 教授には研究を進めていくにあたって, 研究のアイデアや, 着目点, 解析など, 丁寧なご指導をいただきました.

高橋幸弘教授には研究に対する姿勢,考え方など多くのことを教えていただきました.

高木 聖子 特任助教をはじめ, ピリカ望遠鏡ユーザーの皆様には, 限られた観測時間の中で望遠鏡 を使用するにあたって様々な点で協力していただけました.

そして,なよろ市立天文台の職員の皆様および,惑星宇宙グループの先輩,同期,スタッフの皆様 には研究室生活の中で大変お世話になりました.この場を借りてお礼申し上げます.

8 References

参考文献

- Banfield, D., Gierasch, P. J., Bell, M.; Ustinov, E., Ingersoll, A. P., Vasavada, A. R., West, Robert A., Belton, M. J. S., (1998) Jupiter's Cloud Structure from Galileo Imaging Data, Icarus 135 230-250
- [2] Barrado-Izagirre. N., Jrojas. J., Hueso. R., Sanchez-Lavega. A., Colas. F., Dauvergne. J., Peach. D., and the IOPW Team., (2013). - Jupiter's zonal winds and their variability studied with small-size telescopes., Astron Astrophys, Volume 554, id.A74, 11 pp (2013)
- [3] Karkoschka. E., (1994), Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum, Icarus 111 174-192
- [4] McLean, W., Stam, D. M., Bagnulo, S., Borisov, G., Devogèle, M., Cellino, A., Rivet, J. P., Bendjova, P.(2017), Vernet, D., Paolini, G., Pollacco. D., A polarimetric investigation of Jupiter: Disk-resolved imaging polarimetry and spectropolarimetry, Astron. Astrophys., 601, A142
- [5] Stam. D. M., Hovenier. J. W., and Waters. L. B. F. M., (2004), Using polarimetry to detect and characterize Jupiter-like extrasolar planets, Astron. Astrophys., 663-672, A428
- [6] Schmid. H. M., Joos. F., Buenzli. E., and Gisler. D., (2011), Long slit spectropolarimetry of Jupiter and Saturn, Icarus 212 701–713 (2011)

- [7] Seiff, A.; Kirk, D.B.; Knight, T.C.D. et al. (1998). Thermal structure of Jupiter's atmosphere near the edge of a 5-μ m hot spot in the north equatorial belt. Journal of Geophysical Research 103 22857-22889
- [8] Smith, P. H., Tomasko, M. G., (1984), Photometry and polarimetry of Jupiter at large phase angles II. Polarimetry of the South Tropical Zone, South Equatorial Belt, and the polar regions from the Pioneer 10 and 11 missions, Icasus 58 35-73.
- [9] Tabataba-Vakili. F., Rogers. J. H., Eichstädt. G., Orton. G. S., Hansen. C. J., Momary. T. W., Sinclair. J. A., Giles. R. S., Caplinger. M. A., Ravine. M. A., Bolton. S. J., (2020), Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam, Icarus 335 113405
- [10] Wolstencroft. R. D., Smith. R. J., (1979), Spectropolarimetry of the Metha and Ammonia of Jupiter between 6800 and 8200 Å, Icarus 38, 155-165
- [11] Xylar S.Asay-Davisa., Philip. S. Marcus., Michael H.Wong., Imkede Pater., (2011), Changes in Jupiter's zonal velocity between 1979 and 2008, Icarus 211 1215–1332
- [12] 今井正尭 (2013) ピリカ望遠鏡による金星紫外吸収模様の緯度プロファイルと循環周期観測
- [13] 合田雄哉 (2016) 木星極域ヘイズの外縁部波構造及び非対称分布
- [14] FN の高校物理 「偏光とは何か」
 http://fnorio.com/0124polarization_of_light0/polarization_of_light0.html
 2019/01/31 07:28 閲覧
- [15] 国立天文台編,理科年表平成24年 丸善出版
- [16] 松田佳久,(2000),「惑星気象学」,東京大学出版会
- [17] Calibrations required for FOCAS polarimetry https://www.naoj.org/Observing/Instruments/FOCAS/pol/calibration.html 2021/01/17 14:56 閲覧